FISHMEAL INFORMATION NETWORK

Comments

Transcription

FISHMEAL INFORMATION NETWORK
Page 1
fin:
fishmeal information network
dossier 2008
Annual Review of the feed grade
fish stocks used to produce fishmeal
and fish oil for the UK market
fin is an initiative of GAFTA, the Grain and Feed Trade Association
Page 2
FIN Dossier 2008
Annual Review of the feed grade fish stocks
used to produce fishmeal and fish oil for the UK market
May 2008
from the Fishmeal Information Network
INTRODUCTION
The Fishmeal Information Network aims to provide the latest factual information
available about fishmeal and its role in feed for farm livestock and farmed fish.
In this Dossier FIN reviews the most recent information on the status of fish
stocks used to produce fishmeal and fish oil for the UK market.
INDEPENDENT ASSESSMENTS OF FEED GRADE FISH STOCKS
As in previous Dossiers, the 2008 edition focuses on recent independent
documentary assessments of these stocks. These are predominantly published
by the United Nation’s Food and Agriculture Organisation (FAO) and the
International Council for the Exploration of the Sea (ICES). The Dossier seeks to
provide factual information on the status and management of fish stocks used to
produce fishmeal for the UK market.
FURTHER REPORTS AND STATEMENTS ON FEED GRADE FISH STOCKS
In addition this dossier also includes a separate section quoting summaries of
reports and statements from organisations with an interest in feed fish stocks.
FIN’s aim is to present a balanced cross-section of their views.
This publication is updated annually. This 2008 edition is based on information
available to FIN up to April 2008.
Page 3
INDEX OF CONTENTS
Page 4
Fishmeal production
Page 5
STATUS OF FEED GRADE FISH STOCKS USED TO PRODUCE
FISHMEAL AND FISH OIL FOR THE UK MARKET
Page 6-10
Overview of management and control measures
Page 11
North Sea & North East Atlantic feed grade fish stocks
Overview of controls (p 11)
Individual species information
Sandeel
(p 14)
Sprat
(p 15)
Capelin
(p 19)
Blue whiting
(p 21)
Herring
(p 23)
Norway pout
(p 25)
Page 27
South American feed grade fish stocks
Overview of controls (p 27)
Individual species information
Anchovy
(p 29)
Jack mackerel
(p 31)
Sardine
(p 33)
Page 35
Fishmeal facts and figures
Page 37
List of Documentary extracts (in date order)
Page 38
Documentary extracts (in date order)
Page 56
FURTHER REPORTS AND STATEMENTS ON FEED GRADE
FISH STOCKS
Page 74
Glossary – Organisations
Page 75
Glossary – Terms of reference
Page 76
Page 77
Useful web sites
FIN contact
Page 4
FISHMEAL PRODUCTION
What is fishmeal?
Fishmeal is the brown flour obtained after cooking, pressing, drying and milling whole
fish and food fish trimmings. Use of whole fish is almost exclusively from small, bony
species of pelagic fish (generally living in the surface waters or middle depths of the
sea). UN FAO says that 90% of the fish used to make fishmeal and oil is “presently
unmarketable in large quantities as human food”.
A valuable outlet for food fish trimmings
Fishmeal production also provides a major outlet to recycle trimmings from the food fish
processing sector, which might otherwise be dumped at extra cost to the environment
and the consumer. In 2008, 38% of trimmings of fishmeal consumed in the UK was
produced from trimmings (trade estimates). In 2006 trade estimates were that 33% of
fishmeal produced in the EU was manufactured from trimmings/offal from food fish
processing. Spain, France, Germany, Ireland and the UK produce fishmeal primarily
from trimmings. Worldwide, the proportion is believed to be lower.
Produced from short-lived, fast growing species
In general, the types of fish used to produce fishmeal are capable of very rapid
reproduction and stock recovery. Stocks of Peruvian anchoveta, for example, are usually
severely depleted by a warm current of water in the eastern Pacific Ocean (El Niño)
every seven to ten years. However, natural stock replenishment usually takes just 12-18
months, supported by careful fisheries management and surveillance schemes.
Virtually all fishmeal supplies to the UK are sourced from Europe (UK, Denmark,
Norway, Iceland and Ireland) and South America (Peru, Chile).
Europe (six species)
Six key species are used to produce fishmeal and fish oil in Europe. These can
be divided into three groups:
a) Not suitable for human consumption or inedible feed grade fish (sandeel)
b) Potential use for human consumption but mainly used for fishmeal because of
limited outlets for human consumption (blue whiting, sprat, capelin, Norway
pout).
c) Primary use is human consumption but any surplus within the Total Allowable
Catch (TAC), or fish failing to reach the human consumption specification,
may be used for fishmeal (herring).
Norway pout was excluded from the 2007 Dossier as stocks were depleted and
fishing had been stopped late in 2005 to September 2006, then again in 2007.
However they have been restored to this 2008 Dossier as stocks have recovered
enough for a quota to be set.
South America (three species)
In Peru, anchovy is by far the most important species for fishmeal production.
The Chilean fishmeal industry uses jack mackerel, anchovy and sardine.
Page 5
STATUS OF FEED GRADE FISH STOCKS USED TO PRODUCE
FISHMEAL(FM) AND FISH OIL FOR THE UK MARKET
EUROPE
Capelin
Mallotus
villosus
Blue Whiting
Micromesistius
Poutassou
Sandeel
Ammodytidae
% of FM
used in UK
2007
Whether used for human
consumption/fishmeal
Commentary on status of fish
stocks at December 2007 and
summary of advice for 2008
Source
of St.
Info
Less than
1%
Used for both fishmeal and
human consumption – est.
60%:40%.
Icelandic: Mainly unknown but
sufficient to allow a fishery in
2007/08. Barents Sea: an
increased risk of reduced
reproductive capacity. 2006 and
2007 year classes above the
long-term average
Full reproductive capacity, but
being harvested at risk.
ICES
Oct 07
See
page 19
21%
Less than
3%
Mainly used for fishmeal.
Limited use for human
consumption - there are
processing difficulties.
Not used for human
consumption.
Sprat
Sprattus
Sprattus
3%
Potential uses for human
consumption but mainly
used for fishmeal.
Herring
Clupea
harengus
3%
Primarily used for human
consumption, but non-food
grade fish and trimmings
may be used for fishmeal.
Norway pout
Trimmings
Less than
1%
38%
SOUTH AMERICA
Anchovy
28%
Engraulis
ringens
Jack
mackerel
Trachurus
murphyi
Sardine
Stangomera
bentincki
1%
Less than
1%
ICES recommended exploratory
fishing April 2008 which found
stocks recovered and that
470,000t could be fished in ‘08.
State unknown, but has probably
been at a median level for the
past 10 years. The stock is lightly
exploited. No advice yet on TAC.
ICES
Oct 07
Page
21
ICES
Oct 07
Page
14
ICES
June 07
Page
17
Main Atlanto Scandian stock:
ICES
assessed as full reproductive
June &
capacity & harvested sustainably.
Oct 07
North Sea autumn spawning
Page
stock at risk. Spring stable. More 23
p23/24.
Not used for human
Recovered to full reproductive
ICES
consumption
capacity. Strong year class
June &
should allow a sustainable
Oct
fishery in 2008 but biomass to
2007
be checked before fishery rePage 25
opens and ‘in year’ ICES advice.
Trimmings generally comprise small pelagic species (i.e. mackerel,
capelin and herring) & trimmings from the white fish processing sector
(e.g. cod).
Very small amount used for
human consumption.
Majority used for fishmeal.
50% of Chilean jack
mackerel used for human
consumption and 50% for
fishmeal.
Used for human
consumption and fishmeal
Fully fished, according to most
recent FAO commentary in 2006.
Managed by quotas and closed
season programme.
As above
FAO/
IMARPE
P 29
FAO/
IFOP
P 31
As above.
FAO/
IFOP
P 33
Page 6
OVERVIEW OF MANAGEMENT AND CONTROL
MEASURES
1. Fish stock management and control measures include:
Producers’ Code of Responsible Practice
The International Fishmeal and Fish Oil Organisation (IFFO), which represents
the fishmeal and fish oil industry worldwide, announced the development of its
new Code of Responsible Practice (CORP) in May 2008. IFFO says the Code
will enable fishmeal and fish oil producers to show that they are offering
traceable, high quality marine products which are manufactured safely using fish
from responsibly managed fisheries. Compliance will be third-party audited. Raw
material sourcing must take place in a country which complies with the key
elements of the FAO Code of Responsible Fishing. Producers should be able to
enter the audit process early in 2009. The first certifications would then be
announced later in 2009.
Official Government controls
All fisheries listed in this Dossier as involved in the supply of fishmeal to the UK
are subject to government controls to conserve stocks and prevent over-fishing.
Independent scientific monitoring and assessment
Controls on these fisheries are based on regular monitoring and assessment of
the status of individual stocks, conducted by independent and government
scientific organisations. Where more information is needed to make an adequate
assessment about the structure of a fish stock in the NE Atlantic and North Sea
ICES will advise time is needed to gather more information.
Annual catch limits
The fish stocks listed in this dossier as used to supply fishmeal to the UK (page
5) are all subject to total annual catch limits, set by Governments on a yearly
basis. Small amounts of fish which do not have catch limits may also be used
from time to time.
Total catch limits for the NE Atlantic and North Sea are agreed by the EU
Council, Norway or Iceland (with advice from ICES). In South America the
Institutes of Fisheries Research in Chile and Peru advise national governments
on catch limits.
Page 7
Overview of all controls observed by principal suppliers:
Species
TACs
Area
catch
limit
Closed
area
Seasonal
bans
Bycatch
limits
Note
3
Type
of
gear
Note
1
Any
effect on
seabed
Min
mesh
size
Min
fish
landing
size
Vessel reg
Satellite
track
-ing
ITQ
system
Note
2
9
9
9
9
9
9
9
Capelin
Blue
whiting
Sandeel
9
9
9
9
North East Atlantic and North Sea
9
9
9
P
No 9
MT No 9
9
9
9
9
9
T
Negligible
9
Sprat
Herring
Norway
pout
9
9
9
9
9
9
9
9
9
9
9
9
9
P
No
No
No
9
9
9
9
9
9
9
9
9
9
Anchovy
9
9
9
9
9
9
9
9
South America
P
No
P+
No
9
9
9
9
9
9
9
9
9
9
9
9
P
9
9
9
9
J Mackerel
Sardine
P+T
P
MT
No
9
See
p 31
1. P is Purse Seiner, T is Trawler and MT is Mid Water Trawler. 2. Individual Transferable Quota.
3. Just as the Dossier went to press a reviewer said there were also by-catch limits on the Capelin and Blue whiting
fishery. This information will be checked out for the next edition.
2. Independent stock assessment
There are four key organisations involved in assessing/reporting on the status of
feed fish stocks. These are:
A. The UN Food and Agriculture Organisation (FAO)
B. The International Council for the Exploration of the Seas (ICES)
C. IMARPE in Peru
D. IFOP in Chile
A. UN Food and Agriculture Organisation (FAO).
The FAO’s blueprint for sustainable fisheries is defined by a number of
documents including:
♦ United Nations Convention on the Law of the Sea 1982
♦ Agenda 21, the Rio Declaration on Environment and Development, and
the Statement of principles for the Sustainable Management of Forests
1992
♦ The 1995 FAO Code of Conduct for Responsible Fisheries (four
International Plans of Action) assembled in a single instrument the
commitments and requirements of all major fishery instruments.
♦ The 1995 UN Fish Stocks Agreement
♦ The 2002 Johannesburg Political Declaration on Sustainable Development
and Plan of Implementation.
Page 8
♦ Strategy for improving information on status and trends of capture
fisheries 2003
♦ Guidelines for the ecolabelling of fish and fishery products from marine
capture fisheries, 2005. FAO adopted international guidelines for the
ecolabelling of fish and fishery products from ‘well-managed’ marine
capture fisheries. These are voluntary guidelines and are aimed at setting
a framework for public and private schemes. FAO ecolabelling schemes
entitle a fishery product to bear a distinctive logo or statement which
certifies that the fish has been harvested in compliance with conservation
and sustainability standards.
FAO ‘State of World Fisheries and Aquaculture’
The mission of the Fisheries Department of the FAO is to facilitate and secure
the long-term sustainable development of the world’s fisheries and
aquaculture.
Its global view of capture and aquaculture fisheries entitled ‘State of World
Fisheries and Aquaculture’ is published every two years. Its purpose is to
provide policy-makers, civil society and those who derive their livelihood from
the sector with a comprehensive, objective and global view of capture
fisheries and aquaculture, including associated policy issues. The most recent
issue is that for 2006 which was published in March 2007. Its findings were
first included in the 2007 Dossier and are repeated in this edition, below.
FAO summary for ALL fish species for consumption and feed 2006
The overall conclusion is that the global state of exploitation of the world
marine fishery resources has tended to remain relatively stable over the
last 10-15 years, even if changes have been reported for some fish stocks
and specific areas. The overall examination of the state of stocks and
groups of stocks for which information is available confirms that the
proportion of overexploited and depleted stocks have remained
unchanged in recent years, after the noticeable increasing trends
observed in the 1970s and 1980s.
It is estimated that about 25% of the stocks monitored in 2005 were
underexploited (3%) or moderately exploited (20%) and could perhaps
produce more. About half the stocks (52%) were fully exploited and
therefore producing catches that were at or close to their maximum
sustainable limits, with no room for further expansion. A quarter of the
stocks (25%) were either overexploited (17%), depleted (7%) or
recovering from depletion (1%) and thus were yielding less than their
maximum potential owing to excess fishing pressure exerted in the past,
with no possibilities in the short to medium term of further expansion and
with an increased risk of further declines and need for rebuilding.
Page 9
The overall assessment reinforces earlier observations that the maximum
wild fisheries potential from the world’s oceans has probably been
reached and calls for a more cautious and closely controlled development
and management of world fisheries.
B. International Council for the Exploration of the Seas (ICES)
ICES coordinates and promotes marine research in the North Atlantic, including
adjacent seas such as the Baltic Sea and North Sea. Scientists working through
ICES gather information about the marine ecosystem. As well as filling gaps in
existing knowledge, this information is also developed into unbiased, non-political
advice. The advice is then used by the 20 member countries, which fund and
support ICES, to help them manage the North Atlantic Ocean and adjacent seas.
Generally ICES publishes new advice on individual fish stocks twice a year, in
May/June and October.
ICES terminology
The nature of this ICES advice has changed over in recent years with the
move to provide advice on the basis of an ecosystem approach, with a
more general picture of stock status in response to concerns about marine
management. This has led to a more integrated presentation of its advice
and a change in the language of its fisheries advice. ICES no longer
classifies a stock as being either within or outside safe biological limits. It
now refers to a spawning stock biomass (SSB) in relation to precautionary
limits (bpa) and fishing mortality in relation to precautionary limits (fpa). It
now states for example that a stock has full reproductive capacity
(biomass) and harvested sustainably (mortality), or has full reproductive
capacity but at risk of being harvested unsustainably, or has reduced
reproductive capacity.
ICES ecosystem approach
ICES advice came from the two Committees – the Advisory Committee on
Fishery Management (ACFM) and Advisory Committee on Ecosystems
(ACE) which have been integrated. The new report format delivers advice
on the basis of an ecosystem approach by integrating information on the
ecosystem and the fisheries. All stocks belonging to a given area are
placed in the area, together with an overview of the ecosystem, and the
state of the stocks and fisheries.
C. Institute of Fisheries Research (IMARPE) in Peru
The role of IMARPE is to study the environment and marine biodiversity,
evaluate the fish resource and provide information to enable decisions to be made about
the fishing, aquaculture and protection of the marine environment. IMARPE provides the
Ministry of Fisheries with an honest scientific and technical basis to enable the rational
use of marine resources with the view of developing the socio-economic base of Peru.
Page 10
D. Fisheries Development Institute (IFOP) in Chile
The Fisheries Development Institute or IFOP is a non-profit technological institute
controlled by the Agency for Economic Development (CORFO), which in turn is
controlled by the Ministry of Economy. It is the main Chilean institution carrying
out scientific and technological fishery research concerning the exploitation of
fisheries resources and fish stock assessment in jurisdictional waters. IFOP
advises Government before annual quotas are set.
3. Annual EU programme to implement TACs in the NE Atlantic & North Sea
In May 2006 the EU Commission published a Communication on improving
consultation on Community fisheries management. Under this Communication a
new calendar for Community fisheries management for 2007 and beyond was
established.
April
Commission publishes its ‘policy statement’ concerning setting
fishing opportunities for the following year. This includes a
discussion of harvest rules for TAC and effort levels and other
technical issues such as effort management.
Early June ICES & STECF provide scientific advice for stocks (notably Baltic,
pelagic and, every second year, deep-sea species) in June and
October.
June-July
The Commission consults the Regional Advisory Council (RAC) on
the application of Community fisheries policy to the ‘June advice’
stocks. Negotiations take place with third countries concerning
jointly managed pelagic stocks.
Early Sept The Commission issues its proposal for a Regulation on fishing
opportunities for the ‘June advice’ stocks.
October
The Commission adopts a regulation on TACs for the ‘June advice’
stocks. ICES and STECF provide scientific advice for the remaining
stocks. Discussions on fisheries policy options and latest scientific
advice for the ‘October advice’ stock continue with stakeholders.
November Negotiations with Norway and other coastal States concerning
‘October advice’ stocks. The Commission takes account of
discussions with RACs in preparing its second fishing proposal, to
be issued in late November.
December The Commission adopts a regulation on fishing opportunities for the
‘October advice’ stocks.
January
Regulations come into force for next calendar year.
4. Ecolabelling schemes
In addition a number of international organisations are offering independent third
part-certified ecolabelling schemes for Fisheries. These include The Marine
Stewardship Council (MSC) and Friends of the Sea. At the time of writing a few
feed fisheries were exploring this approach, but none had completed the
process. In the UK the Sea Fish Industry Authority in 2007 introduced a vesselbased accreditation scheme.
Page 11
OVERVIEW OF CONTROLS - NORTH SEA &
NE ATLANTIC FEED GRADE FISH STOCKS
Information relating to the status of stocks of the six main species (sandeel, blue
whiting, sprat, capelin, herring and Norway pout) caught for fishmeal production
in the North Sea and North East Atlantic is taken from the latest reports provided
by the FAO and ICES, predominantly the reports from ICES (which were issued
in June and October 2007).
Feed fish stocks in the North Sea and North East Atlantic are protected from
overexploitation through total catch limits, minimum mesh sizes and satellite
tracking of vessels. Where concerns or scientific uncertainty exist, specific
management programmes to protect and rebuild stocks are introduced.
IMPORTANT RECENT DEVELOPMENTS
♦ EU 2008 TACs. Precautionary closures of fisheries in 2007 were proved
successful in the case of the Norway pout fishery and the North Sea sandeel
fisheries which had recovered sufficiently for TACs to be set for 2008, that for
sandeel following an in season review in April 2008. A stable sprat stock
enabled the quota to be increased by 15% for 2008 and the quota for the
largest NE Atlantic herring stock was increased by 38,000 tonnes. However
quotas for blue whiting and some herring stocks were reduced. ICES
commented that efforts and sacrifices were paying off with certain
stocks. It said that, when implemented correctly, reduced quotas and fishing
effort translated directly into lower fishing pressure which in turn contributes
greatly to the rebuilding of depleted fish stocks. In June 2008 the Commission
presented its approach to 2008 fish quotas. It called for more serious efforts
in both TACs and fishing effort management to put European fisheries back
on a sustainable basis. It stated that one of the problems was that some
TACs were higher than scientific recommendations.
♦ New EU DG MARE and Maritime Policy. In March 2008 the European
Commission announced far-reaching reorganisation of the Director-General in
Charge of Fisheries and Maritime Affairs. The former DG FISH became DG
MARE and three geographic Directorates were set up to manage fisheries –
one for the Atlantic, Arctic and outermost regions; one for the Mediterranean
and Black Sea; and one for the North Sea, Baltic Sea and landlocked
countries. This followed the October 2007 adoption of an Integrated Maritime
Policy. On fisheries issues this covered:
♦ Taking firm action towards the elimination of discards and of destructive
fishing practices such as high sea bottom trawling in sensitive habitats
♦ Take firm action to eliminate illegal, unreported and unregulated fisheries
♦ Promote the development of an environmentally safe aquaculture industry
in Europe
♦ Implementation of an eco-system approach in European fisheries
Page 12
♦ However in January 2008 The European Court of Auditors commented on
the failures in the management of community fisheries resources. It
criticised unreliable catch data which is inadequate for setting TACs and
quotas, inspections of limited effectiveness and inappropriate systems for
following up infringement and imposing sanctions. EU Commissioner Joe
Borg commented: “The Court’s report has come at a critical moment. The
Commission is scheduled to table a new regulation on Fisheries Control in the
second half of 2008.”
♦ EU launches first-ever joint fisheries policing plan. In July 2007 the
Community Fisheries Control Agency (CFCA), an EU agency charged with
coordinating fisheries inspection and control between member states, has
adopted a plan for joint multi-national monitoring of the North Sea, Kattegat,
Skagerrak and the Eastern Channel
♦ In March 2007 the EU introduced a policy to reduce unwanted bycatches and eliminate discards in European fisheries. This involves the
adoption of a progressive fishery-by-fishery discard ban and the setting of
standards for maximum acceptable by-catch targets, rather than a series of
measures to regulate landings. The incentive would be for fishers to take from
the sea only what can be marketed. Actual regulations will be developed and
proposed from 2008.
♦ The way ahead for European aquaculture was debated in Brussels in
November 2008. EU Fisheries Commissioner Joe Borg stated: ‘…it is clear
that aquaculture production will grow considerably in the coming decades.
The challenge will be to ensure that this growth is sustainable both in the EU
and in the world, and that it delivers healthy products, meeting customers’
needs and expectations’.
♦ Long-term management plan for blue whiting. Agreement was reached in
December 2005 on a long-term management plan consistent with a
precautionary approach, The plan includes arrangements for sharing out the
quota among the main fishing nations. The establishment of an annual quota
for blue whiting now ensures that all stocks used to produce fishmeal
supplies for the UK are subject to annual catch limits. The annual quotas
since then have been 2.0Mt for 2006, then 1.7Mt for 2007 and1.15Mt for
2008.
Page 13
Overview of annual quotas for North East Atlantic and North Sea
Tonnes
North Sea
sandeel
Sprat
Capelin
Barents
Sea
Icelandic
Blue whiting
EU
Faroes
Norway
Iceland
Total
Herring
Atlanto
Scandian*
North Sea
By-catch:
North Sea
2003
2004
2005
2006
2007
2008
863,000
836,200
655,960
300,000
170,000
400,000
Quotas
are set
by
EU
286,250
284,250
296,250
203,940
195,128
195,000
EU
NA
NA
NIL
NIL
NIL
NIL
690,000
737,000
803,000
210,000
180,000
150,000
Russia/
Norway
Iceland
Joint
364,500
444,125
437,665
300,050
1.7M
350,906
300,572
296,200
202,836
1.15M**
No
quota
No
quota
No
quota
438,557
522,500
514,900
353,000
2.0M
710,000
825,000
890,000
967,000
1,280,000
1,518,000
NEAFC
284,000
51,693
326,000
43,200
379,850
50,000
322,874
42,500
341,000
31,875
201,227
18,806
EU
EU
By-catch
21,000
21,000
24,150
20,528
15,396
11,470
EU
S&K
Baltic,
135,078 163,650 163,342 170,260/
188,724
EU
S&K.(spring
133,000
spawn)
Icelandic
110,000 110,000 110,000 130,000
130,000
Iceland
Norway Pout
North Sea +
198,000 198,000 NIL
95,000
NIL
50,000
EU
S&K
+IYM
IYM = in year management. NA = Not available.
S&K = Skagerrak and Kattegat.
* Also known as Norwegian Spring Spawning or NE Atlantic
**For blue whiting there the total catch limit for the NE Atlantic in 2008 was set at 1.26Mt, then
EU, Iceland, Norway and Faroe Islands agreed quotas amounting to a maximum catch of
1.15Mt.The quotas listed here are those before inter country transfers.
Page 14
1. SANDEEL
Scientific
Name
Ammodyties tobianus
Description Sandeels are small eel-like fish which swim in large shoals and live
in sandy substrates. They are an abundant and crucial component
of food webs in the North Atlantic and are an important prey
species for many marine predators such as seabirds and fish. In
the North Sea fishing mortality is lower than natural mortality.
Fishery
Demersal. An inedible feed-grade fish used mostly for fishmeal and
fish oil. No demand for human consumption. Sandeel are caught by
industrial fishery fleets. Seasonal fishery - mostly spring/summer.
Resilience
High. Sandeels are comparatively short-lived. Catching is mostly
year classes 1-4. Life span of less than 10 years. Minimum
population doubling time is less than 15 months. Maximum size is
20cm.
% use in UK It is estimated that sandeels accounted for less than 3% of the
fishmeal used in the UK in 2007.
Distribution North Sea, North East Atlantic (Sub-area IV) and Shetland.
Map: www.fishbase.org
Page 15
Current status of the sandeel stock
♦ The sandeel fishery built up from modest catch levels in the 1950s to around
800,000 tonnes per annum in the 1980s and 1990s but then reduced quite
abruptly to 350,000 tonnes in 2003 and 2004, then to 172,000 in 2005. Since
the reduction there has been a series of recommendations, restricted fishing
seasons, local measures to protect bird stocks and fisheries openings and
closings, with ICES recommending how the stock could be protected in order
than it rebuilds. The health of the stock is also affected by availability of zoo
plankton which, in turn, is influenced by climatic change.
♦ ICES recommended for 2008 that the North Sea fishery should only be
allowed and a quota set if a review of the stock in spring 2008 showed that
the stock continued to recover. For 2008 ICES again offered no advice on the
Division IIa (Skagerrak – Kattegat), Division VI (West Of Scotland) and
Shetland Area Fisheries for which it said inadequate information was
available on spawning stock or fishing mortality. FIN is informed that these
two areas are anyway not fished for sand eel.
Sandeel management and control measures
♦ In May 2008 a quota of 400,000 tonnes for 2008 was finally announced for
North Sea sandeel following exploratory fishing in April – which had indicated
substantial recovery of the stock. Trade sources say that this quota is
actually below the 470,000 tonnes which the status of the stocks would permit
if following ICES’s precautionary advice (470,000 tonnes).
♦ Following monitoring and exploratory fishing of sandeel in the spring of 2007,
in June 2007 the EU Commission agreed with Norway to set the North Sea
sandeel TAC for 2007 at 170,000 tonnes, out of which the Commission set its
autonomous quota of 153,000 tonnes, corresponding to 90% of the TAC.
Since the advice from ICES emphasised that Skagerrak and Kattegat were
not included in the analysis, the Commission was open to considering that
additional fishing opportunities for S&K could be added to the autonomous
quota. Because there was no agreement on quota sharing between the EU
and Norway for 2007, catches exceeded the quota by 36,000 tonnes.
TAC history 2003 - 2008
North East Atlantic and North Sea – quotas
Tonnes
2003
2004
2005
2006
2007
863,000
836,200
655,960
300,000
170,000
Sandeel
*set in spring 2008
2008
400,000*
Page 16
Examples of ecosystem fisheries management of sandeels:
♦ Precautionary initiative - North Sea (Firth of Forth)
o Sandeel fishery prohibited (April to August) in a 20,000 km2 band of
the North Sea off the Firth of Forth and Grampian Coast to
safeguard seabird colonies.
♦ Precautionary initiative – Shetland (Shetland Box)
o A yearly quota of 1,000 tonnes has been agreed for the sandeel
fishery off the coast of Shetland. Fishing would normally continue
uninterrupted from April onwards. It was agreed to stop fishing
during June and July to protect food supplies for the breeding
seabird population.
Page 17
2. SPRAT
Scientific
Name
Sprattus sprattus
Description Sprat favour mostly inshore shoals moving to the surface at night.
Filter feeders that predate on a variety of planktonic organisms.
Spawning usually occurs in coastal waters in spring and summer,
with planktonic eggs and larvae.
Fishery
Pelagic. Potential use for human consumption (juvenile are
marketed as whitebait) but mainly used for fishmeal because of
limited outlets for human consumption. Sprat are caught by trawl,
pair trawl and seine net.
Resilience
High. Life span maximum 6 years. Minimum population doubling
time is less than 15 months. Maximum size is 16cm.
% use in UK It is estimated that sprat accounted for 3% of the fishmeal used in
the UK in 2007.
Distribution North East Atlantic, North Sea, Baltic south to Morocco, also
Mediterranean, Adriatic and Black Seas.
Current status of the sprat stock
♦ In 2007 the state of the North Sea and Norwegian Sea stock was unknown.
Relative trends in biomass indicate the stock has been at a median level for
the past 10 years. The 2006 year class is estimated to be poor and ICES
suggests catches in 2007 were likely to be 195,000 tonnes. There is no basis
for specific numerical advice for the TAC in 2008, only in-year advice, but
there are indications that the stock is lightly exploited.
Page 18
Map: ICES
Sprat management and control measures
TACs – Sprat fishing quotas for 2008
The preliminary TAC for 2008 for EC waters of Zone IV the North Sea and Zone
II, the Norwegian Sea of 195,000 tonnes for 2008 (175,777 EU, 10063 Norway
and 9160 Faeroe Islands). There is also a TAC of 52,000 tonnes for 2008 for the
Skagerrak and Kattegat, zone IIIa.
TAC history 2003 - 2008
Norwegian Sea and North Sea – quotas
Tonnes
2003
2004
2005
2006
2007
286,250 284,250 296,250 203,940 195,128
Sprat
2008
195,000
Page 19
3. CAPELIN
Scientific
Name
Mallotus villosus
Description Capelin is a small pelagic shoaling fish which feed on animal
plankton and small fishes. They are an important prey species for
cod, saithe and other fish species. Spawning late winter.
Fishery
Pelagic. Used both for fishmeal and human consumption. Capelin
are caught by purse seine. Seasonal – mainly January to April, and
late summer. Two capelin stocks – Barents Sea and Icelandic.
Resilience
Medium. Life span maximum 6 years. Minimum population doubling
time 1.4 to 4.4 years. Maximum size is 25.2cm.
% use in UK It is estimated that capelin accounted for less than 1% of the
fishmeal used in the UK in 2007.
Distribution Northern hemisphere - North Atlantic, Barents/Norwegian Seas.
Map: www.fishbase.org
Page 20
Current status of the capelin stock used to supply fishmeal to the UK
♦ The status of Iceland capelin was largely unknown but there sufficient to allow
a fishery in 2007/08. In addition to setting a TAC, the stock is managed in
season to maintain a spawning biomass of 400,000 tonnes. Icelandic capelin
is managed by Iceland in co-operation with Norway and Greenland.
♦ Barents Sea capelin in October 2007 was classified as having an increased
risk of reduced reproductive capacity. The spawning stock in 2008 will consist
of fish from the 2004 and 2005 year classes, but the 2005 year class will
dominate. The 2006 and 2007 year classes are above the long-term average.
Barents Sea capelin is managed by Norway and Russia. There is currently no
commercial fishing of this fishery and ICES recommend a nil quota for 2008.
ICES considers the management plans to be consistent with the
precautionary approach.
♦ Capelin has a key role in the food chain between animal plankton and other
fish. Most fish, but especially groundfish, feed on capelin at some stage in
their life and it is estimated that capelin may be 40% of the total food of cod.
The estimated annual consumption of capelin by cod has varied between 0.2
and 3.0 million tonnes over the period 1984-2003. Young herring consume
capelin larvae, and this predation pressure is thought to be one of the causes
for the poor year classes since 2002.
Capelin management and control measures
TACs – Capelin fishing quotas for 2008
♦ Icelandic – Initially harvest control rules indicated a catch for 2008 of 207,000
tonnes, but after about 40,000 tonnes was fished in 2008, Iceland imposed a
ban on fishing in February amid concerns about stocks. But by March further
stocks had been located and a 150,000 tonne quota for 2008 announced. The
catch is used partly for human consumption partly for fishmeal and fish oil
production.
♦ Barents Sea – ICES classifies the stock as having an increased risk of
reduced reproductive capacity. Since the probability of SSB below limit
biomass is about 15%, the agreed harvest control rule means zero quota in
2008.
TAC history 2003 - 2008
Tonnes
Icelandic
Barents
Sea
2003
690,000
Info not
avail
Capelin quotas
2004
2005
2006
737,000
803,000
210,000
Info not
NIL
NIL
avail
2007
180,000
NIL
2008
150,000
NIL
Page 21
4. BLUE WHITING
Scientific
Name
Micromesistius poutassou
Description Blue whiting are found in open seas, most often near the surface or
in mid water, but can be found down to depths of 1000m. Feeds
primarily on krill and small crustaceans. Spawns in the spring.
Fishery
Pelagic. Potential use for human consumption but mainly used for
fishmeal because of limited outlets for human consumption. Blue
whiting are caught by pelagic trawler. All year round, but minaly
February to May.
Resilience
Medium. Life span maximum 20 years. Minimum population
doubling time 1.4 to 4.4 years. Maximum size is 50cm.
% use in UK It is estimated that blue whiting accounted for 21% of the fishmeal
used in the UK in 2007.
Distribution Very large fishery. Distribution extends from Straits of Gibraltar to
the Barents Sea including NE Atlantic, North and Norwegian Seas.
Map: www.fishbase.org
Page 22
Current status of the blue whiting stock
♦ In October 2007 ICES, on the most recent estimates of fishing mortality
and SSB, classified the stock as having full reproductive capacity, but
being harvested at increased risk. SSB increased to a historical high in
2003, but has decreased since then.The estimated fishing mortality is well
above Fpa. Recruitment in the last decade appears to be at a much higher
level than prior to 1996. The 2005 and 2006 year classes are estimated at
the pre-1996 level. ICES for the third year recommended larger reductions
in catches than were actually implemented.
♦ ICES criticised the management plan as not in accordance with the
precautionary approach. However many within the industry believe that
current management is consistent with a precautionary approach and
targets set in 2005 (see below). A new stock assessment tool is currently
in development, for blue whiting and Atlanto Scandian herring and there is
a working group of the nations which fish this stock looking at alternative
long term approaches to management – due to report by 3rd quarter of
2008.
♦ Blue whiting is fished by the EU, Denmark (on behalf of the Faeroe
Islands and Greenland), Iceland, the Russian Federation and Norway,
which together form the North East Atlantic Fisheries Commission
(NEAFC). Total landings in 2004 were 2.4 million tonnes (2.3 million
tonnes in 2003 and 2 million tonnes in 2002).
♦ In December 2005 these coastal states agreed on a sharing arrangement
for the blue whiting stock. The management targets are to maintain
Spawning Stock Biomass at levels above 1.5 Mt and the fishing mortality
rates at levels of no more than 0.32 (Fpa) for appropriate age groups as
defined by ICES. The Parties agreed to reduce the TAC by at least
100,000 tonnes annually until the fishing mortality (amount of fish taken
from the stock by fishing) reaches 0.32 (Fpa).
♦ In addition on 13 December 2005 the EU Commission announced
agreement had been reached between Norway and the EU on blue
whiting fisheries in the Northeast Atlantic. The Commission, on behalf of
the EU, and Norway agreed that 61% of each party's TAC, to be set under
a future coastal agreement, can be caught in the waters of the other party.
Blue whiting management and control measures
TACs – Blue whiting fishing quotas for 2008
The quota is 1.15M tonnes (down from 1.7Mt in 2007 and 2Mt in 2006) for blue
whiting in the Northeast Atlantic.
TAC history 2003– 2008
Tonnes
Total
2003
No quota
Blue whiting quotas
2004
2005
2006
No quota No quota
2.0M
2007
1.7M
2008
1.15M
Page 23
5. HERRING
Scientific Nm Clupea harengus
Description
Herring school in coastal waters and have complex feeding and spawning
migrations. Spends the day in deeper waters rising to the surface at night. Feeds
on small planktonic copepods in the first year, then mainly on copepods. Has
major impact as prey and predator to most other fish stocks and prey for sea
mammals.
Fishery
Abundant pelagic species. In the EU primary use is human consumption but any
surplus within the TAC may be used for fishmeal. Baltic herring may be used as
feed grade. In Norway and Iceland may be directed as feed or food grade. Can
be caught as a by-catch in the feed grade sprat fishery and small mesh fisheries.
Highly commercial – caught by purse seiner and trawl fisheries.
Resilience
Medium. Minimum population doubling time is 1.4 – 4.4 years. Maximum age is
11 years. Maximum size is 45cm.
% use in UK It is estimated herring accounted for 3% of UK fishmeal in 2007.
Map: ICES
Page 24
Current status of the herring stocks
Herring is spread across a number of fishing divisions including the North Sea,
Skaggerak, Kattegat, NE Atlantic, Baltic and Norwegian/Icelandic waters.
In November 2007 ICES advised that the biggest stock, North East Atlantic, or
Norwegian spring spawning, herring had full reproductive capacity and was
being harvested sustainably. It said the management plan implied maximum
catches of 1,518,000 tonnes in 2008 which was expected to leave a spawning
stock of 12.2 Mt in 2009. “The Norwegian spring spawning herring stock in the
NE Atlantic remains at a high level. The fishing pressure on this stock is low and
outlook is positive”, according to ICES.
In June 2007 ICES advised that the North Sea autumn spawning stocks were
classified as being at risk of having reduced reproductive capacity and at risk of
being harvested unsustainably. It s advice on reducing the TAC was very
complex and based on a number of scenarios – see
http://www.ices.dk/committe/acom/comwork/report/2007/may/her-47d3.pdf
In June 2007 the ICES assessment for Icelandic summer spawning herring was
uncertain, but Icelandic surveys indicate that spawning stock biomass has
increased continuously since 1987. ICES suggests catches in 2007/08 should
not exceed the average over the last three years, or 117.000 tonnes.
Herring management and control measures
TACs – Herring fishing quotas for 2008
Atlanto-Scandian herring (NE Atlantic or Norwegian spring spawning). A
TAC of 1,518,000 (significantly increased) for 2008. The fishery is shared
between the EU, Faeroe Islands, Iceland, Norway and the Russian Federation.
This stock is fished in accordance with long-term management plans and has
benefited from a very low level of fishing pressure. The North Sea autumn
spawning TAC was reduced substantially from 341,000 to 201,227 and Icelandic
spring spawning remained at 130,000. (Four Baltic herring fisheries have a total
quota of about 300,000 tonnes for 2008, slightly less than for 2007, but the
proportion used in reduction to fishmeal and fish oil is not known.)
TAC history 2003 to 2008
Tonnes
NE Atlantic
North Sea
Icelandic
By-catch:
North Sea
By-catch
S&K
51,693
Herring quotas
2004
2005
2006
825,000
890,000
732,000
326,000
379,850
322,874
110,000
110,000
110,000
43,200
50,000
42,500
21,000
21,000
2003
710,000
284,000
24,150
20,528
2007
2008
1,280,000 1,518,009
341,000
201,227
130,000
130,000
31,875
18,806
15,396
11,470
Page 25
NORWAY POUT
Scientific name
Description
Resilience:
Fishery
% use in UK
Distribution
Trisopterus esmarkii
A small short-lived gadoid which rarely gets older than five
years
Medium, minimum population doubling time 1.4 - 4.4 years
(K=0.36; tm=2.3; tmax=5; Fec=27,000)
The main area is The North Sea and Skaggerak-.Kattegat
where landings were 200,000 tonnes per annum up to 1995,
then declined through to 2007. The species is also taken as
by-catch in the Blue Whiting Fishery. Mainly fished by
Danish and Norwegian vessels using small mesh trawls.
A second fishery is operated by Danish vessels in the West
of Scotland.
It is estimated Norway pout accounted for less than 1% of
UK fishmeal in 2007.
Northeast Atlantic: southwest Barents Sea, sometimes at
Bear Island, south to the English Channel, around Iceland,
and at the Faeroe Islands. Spawning takes place in the
North Sea between Shetland and Norway
Current status of the North Sea/Skagerrak-Kattegat Norway pout stock
Recruitment is highly variable and influences the spawning stock biomass and
total stock biomass quickly due to the short life span. It is also important prey for
other species. Hence stock size is heavily influences by inter-annual variability in
recruitment and predation.
The North Sea fishery developed in the 1960s, peaked at 740,000 tonnes in
1974, in the 1980s and early 1990s fluctuated around 200,000, and then fell
sharply. The fishery was closed in late 2005 to September 2006 and again in
2007. The stock has also been protected with small mesh trawler bans, closed
and seasonal areas, and mesh limitations.
Due to relatively good recruitment in 2005 the spawning stock for 2007 was
classified by ICES within safe biological limits/having full reproductive capacity. A
sustainable fishery is possible in 2008. Based on preliminary estimates of the
2007 year class, ICES proposed a TAC of 97,000 tonnes for 2008 or a TAC of
Page 26
50,000 tonnes for the first half of the year followed by a new TAC for the second
half of the year to be determined by stock assessment in April-May.
Norway pout management and control measures
Tonnes
2003
173,000
Norway pout quotas (tonnes)
2004
2005
2006
173,000 NIL
NIL
IYM = in year management
2007
NIL
2008
50,000
+IYM
Page 27
OVERVIEW OF CONTROLS - SOUTH AMERICAN
FEED GRADE FISH STOCKS
The status of fish stocks used by the South American fishmeal industry are
detailed in the latest published version of the biennial FAO State of World
Fisheries and Aquaculture 2006 (published March 2007), the Review of the State
of World Marine Fishery Resources (2005) and in national Government statistics.
Three species in the Southeast Pacific account for around 80% of total catches in
the region:
• Anchovy (two stocks)
• Jack mackerel
• South American pilchard (sardine)
Control of Southeastern Pacific fisheries
The governments of Peru and Chile have adopted a precautionary approach to
fisheries management to safeguard the viability and prevent depletion of stocks,
by means of national quotas for individual species and a closed season
programme. They have taken steps to ensure commercial fishing in Peru and
Chile is strictly monitored and controlled. These controls are based on
independent scientific advice.
Peru
• Government control of fisheries in Peru is managed by the Vice-Ministry of
Fisheries, a part of the Ministry of Production.
• The government-funded marine research institute in Peru, IMARPE,
advises government and conducts acoustic surveys to assess fish
populations two to three times every year along the entire Peruvian
coastline.
• Peruvian fishing companies, representing over 70% of the vessels have
organised themselves into the Sociedad Nacional de Pesqueria (SNP)
and developed an Ethical Code of Conduct that has responsible fishing as
a central theme, including strict compliance with regulations.
Chile
• Government control of fisheries in Chile is managed by the Under
Secretary of Fisheries, with the approval of the National Fisheries Council
in Chile.
• The Chilean Fishery Research and Development Institute, IFOP, conducts
research cruises and acoustic assessments of fish stocks.
Overall
• Peru and Chile have started scientific collaboration towards joint stock
assessments of sardine and anchovy for Southern Peru and Northern
Chile (bordering the Humboldt Current LME) to foster national and
regional efforts to manage and sustain fish stocks.
• SGS (international surveillance company) is appointed to monitor and
record all fishing landings in Peru and Chile for management purposes.
Page 28
El Niño and La Niña
The whole of the Southeast Pacific is well known for experiencing large changes
in the abundance and species composition of the main fish resources. The area
is under the influence of two phases of the El Niño Southern Oscillation (El Niño
and La Niña), generally on a ten-year cycle. These are the main source of
interannual variability, having noticeable regional and extra-regional impacts on
climate, and on the state of fishery resources and related fishery productivity,
particularly when the warm phase of El Niño occurs. As a consequence large
catch fluctuations are common in the area. The severe El Niño event (warm
water currents) in 1997-98, led to a sharp decline in catches of two leading
species (anchoveta and Chilean jack mackerel) during the late 1990s.
The National Oceanic and Atmospheric Administration (NOAA) of the USA
reported at the end of February 2007 that El Niño conditions were decreasing.
The elevated temperatures associated with the recent El Niño conditions were of
relatively short duration and never went very high. Sea Surface Temperatures
decreased during February indicating neutral conditions, and the possible
transition from neutral to La Niña conditions over the 3 months (March to May). It
was not clear what effect this would have on fisheries.
The situation in 2007
Lower fishmeal production in 2006 and 2007 compared with 2005 reflects a
responsible and precautionary approach to catch limits on the part of the relevant
governments, especially in Peru and Chile.
Fishmeal production in Peru and Chile
Tonnes
Peru
Chile
2000
2.3M
1.0
Fishmeal production tonnes
2001
2002
2003
2004
2005
2006
2007
1.8M
1.9M
1.2M
1.9M
2.0M
1.4M
1.4M
699,000 839,000 664,000 933,000 789,000 758,000 713,000
NOTE: El Niño and La Niña are officially defined as sustained sea surface
temperature anomalies of magnitude greater than 0.5°C across the central
tropical Pacific Ocean. When the condition is met for a period of less than five
months, it is classified as El Niño or La Niña conditions; if the anomaly
persists for five months or longer, it is classified as an El Niño or La Niña
episode. Historically, it has occurred at irregular intervals of 2-7 years and has
usually lasted one or two years.
Page 29
1. PERUVIAN ANCHOVY (anchoveta – Peru and Chile)
Scientific
name
Engraulis ringens Jenyns, 1842
Description Anchovy form huge schools chiefly in surface waters ranging from 3
to 80 metres. Mostly restricted to cool, nutrient-rich upwelling
zones. A filter-feeder entirely dependent on the rich plankton of the
Humboldt current. Spawn in batches all year round, with two peaks.
Fishery
Pelagic species. Very small amount is now used for human
consumption. Majority used for fishmeal. Highly commercial –
caught by purse seiner.
Resilience High. Minimum population doubling time is less than 15 months.
Short-lived species. Maximum age 3 years. Maximum size 18.5cm.
% use in UK It is estimated that anchovy accounted for 28% of the fishmeal used
in the UK in 2007.
Distribution South-eastern Pacific Ocean, mainly within 80 km of the coasts of
Peru and Chile.
Map: www.fishbase.org
Page 30
Current status of the anchovy stocks
In the Southeast Pacific, the FAO report for 2006 stated that anchoveta has fully
recovered after the severe El Nino event in 1997- 98 and produced a total catch
of 10.7Mt in 2004. In 2005 FAO stated that anchoveta recovery was due to
particularly favourable environmental conditions and good recruitment, coupled
with a careful fisheries management and surveillance schemes. FAO has
expressed some potential concerns over potential overfishing due to an excess
fishing capacity and has recommended that the two stocks evolve and are
maintained at a safer fully exploited level through the continued application of
robust effort control and surveillance measures.
Peruvian anchoveta annual catches for fishmeal production - Mt
Tonnes
2000
2001
2002
2003
2004
2005
2006
2007
Anchoveta
9.7
7.2
8
5.3
8.6
9.4
6.0
6.1
Source: IFFO and Ministerio de la Producción del Perú.
Anchovy management and control measures by Peruvian Government
•
IMARPE advises on fisheries control based on ecosystem effects. The
approach is a multi-step procedure, which includes identification of
ecosystems, relevant ecosystem components and linking human activities to
impacts on the ecosystems.
• IMARPE undertakes hydro-acoustic evaluation of pelagic resources along the
entire Peruvian coastline to assess environmental status of fish stocks.
• Fishing stops during Feb and March to protect growth of anchovy and sardine
juveniles. Fishing closure from August to October to protect spawning stock
• All fishing boats operating outside the 5 mile limit fitted with a satellite tracking
system to allow government to monitor position of all boats at any given time.
• The Peruvian government imposes closed fishing seasons, closed entry of
new fishing boats, and vessel licences to fish within the 200 mile limit.
• Limits on the minimum size of fish that can be landed with local short-term
fishing closures if the level of small fish exceeds the number allowed.
• The Swiss-based international surveillance company SGS records all fishing
landings on the coast of Peru for government management purposes. Only
authorised vessels with the correct licence are permitted to unload fish in the
115 unloading points. This system is effective 24 hours per day.
• Fishmeal plants all have to have a working licence from the Ministry of
Production and health certification from the Ministry of Health. Plants are also
formalising HACCP systems and working towards implementing quality
control systems such as FEMAS.
• A Fishing Behaviour Code has been established which covers the owners of
plants and vessels, technicians of plants, skippers and crew members.
• Anchovy in the north of Chile is regulated by individual quotas and biological
bans.
For more about anchovy - www.iffo.net/intranet/content/archivos/67.pdf
Page 31
2. JACK MACKEREL (mostly Chile)
Scientific
Name
Trachurus murphyi
Description Jack mackerel form schools and are found in shore and open
oceanic waters at a depth of 10 – 300 metres. Feed mainly on fish
larvae and small crustaceans.
Fishery
Pelagic species. Used for human consumption (canned) and used
for fishmeal. Highly commercial – caught by purse seiner.
Resilience Low. Minimum population doubling time is 4.5 – 14 years. The
maximum age is 16 years. Maximum size is 70cm.
% use in UK It is estimated that jack mackerel accounted for 1% of the fishmeal
used in the UK in 2007.
Distribution South-eastern Pacific Ocean, off Peru and Chile.
Map: www.fishbase.org
Page 32
Current status of the jack mackerel stocks
In the Southeast Pacific, the FAO report for 2006 stated that catches of Chilean
jack mackerel totaled 1.8Mt in 2004 – about one third of the historical peak
production reached in 1995. It was noted that the Chilean jack mackerel is in a
decadal cycle of natural low abundance and there were no signs of a reversal at
present.
In 2005 FAO reported that strict management measures based on the application
of a non-transferable individual quota system have been established for Chilean
jack mackerel. With the approval of the National Fisheries Council, the Under
Secretary of Fisheries in Chile has also responded to immediate concerns over
the potential impact of recent fishing effort with a number of control measures
based on acoustic assessments of fish stocks and research cruises to help
preserve stocks
Tonnes
Anchoveta
J mackerel
Tot Pelagic
Annual catches in Chile for fishmeal production Mt
2000
2001
2002
2003
2004
2005
2006
0.85
1.5
0.75
1.7
1.5
0.9
1.65
1.44
1.38
1.36
0.9
0.7
3.7
3.2
3.7
2.9
3.9
3.5
3.4
2007
1.4
0.7
3.1
Jack mackerel management and control measures by Chilean Government
To preserve stocks the Under Secretary of Fisheries with the approval of the
National Fisheries Council in Chile has introduced a number of monitored control
measures based on acoustic assessments of fish stocks and research cruises.
Sernapesca (The National Fisheries Service) is the Governmental body that
watches over the whole system.
•
•
•
•
•
Jack mackerel in Chile has been controlled by the government’s national
annual quotas since 1999/2000, and is administered with individual quotas.
Regular monitoring surveys to establish the state of the fishery resources.
The results are used to set control measures required to protect the stocks.
Legislation introduced to establish a maximum annual total catch limit for
each species declared fully exploited to provide quotas for each licensed
fishing company according to its annual catch.
For jack mackerel several fishing bans can be imposed during the year to
protect small-sized fish. Minimum landing sizes are also applied.
All fishing boats fitted with a Satellite Tracking System to ensure boats
operate outside prohibited areas (such as designated areas of recovery) or
the zone reserved for small artisan fisheries (first 5 miles offshore).
Page 33
3. SARDINE (mostly central Chile)
Scientific
Name
Clupea (Strangomera) bentincki, Norman 1936 (Sardinia araucana)
Description A coastal species that form large schools in central and southern
Chile. Feeds mostly on zooplankton.
Fishery
Pelagic species. Primarily used for fishmeal and partly for human
consumption. Highly commercial.
Resilience Medium. Minimum population doubling time is 1.4 – 2.4 years.
Maximum age is 4 years. Maximum size is 14cm.
% use in UK It is estimated that sardine accounted for less than 1% of the
fishmeal used in the UK in 2007.
Distribution Southeast Pacific, Chile.
.
Page 34
Current status of the sardine stocks
• In the Southeast Pacific, the FAO report for 2006 states that the Sardinia
araucana remains very low, producing a small fraction of the record
catches of the mid 1980s and early 1990s. The stock was considered to
be in a decadal cycle of natural low abundance and there were no signs of
a reversal at present. FAO in 2005 stated the stocks are fully exploited
and stocks should be properly monitored and controlled.
Annual catches in Chile for fishmeal production
Tonnes
2000
2001
2002
2003
2004
2005
2006
2007
Sardine 723,000 325,000 310,00 274,000 329,000 277,000 374,000 229,000
Sardine management and control measures by Chilean Government
•
Since 2002 sardines have been subject to a national quota.
•
Closed seasons for sardine and anchovy are set on an annual basis to
protect the spawning stocks appropriate to the spawning cycle usually
between August and September of each year in the northern part of the
country. Closed seasons are also imposed during December to mid
January to protect the recruitment process of anchovy.
•
In the central-southern part of the country closed seasons are set for
sardine and anchovy to protect the spawning period (usually July and
August) and also from mid-December to mid-February.
Page 35
FISHMEAL FACTS AND FIGURES
Fishmeal in the UK
UK fishmeal summary 2006
(tonnes)
UK consumption
189,000
Imports from EU
63,000
Imports from non-EU
76,000
UK production
44,000
Fishmeal imports into the UK
2007 (tonnes)
Peru
21,156
Peru via Germany
13,488
Denmark
12,884
Iceland
3,778
Chile
5,072
Norway
9,878
UK fishmeal summary 2007
Eire
11,407
(tonnes)
UK consumption
129,000 Faeroe Islands
3,378
Imports from EU*
44,000 Morocco
1,940
Imports from non-EU
43,000 USA
1,007
None recorded
UK production
42,000 Ecuador
*Includes fishmeal imported into another EU country and re-exported to the UK
♦ UK fishmeal consumption in 2007 was about 129,000 tonnes – significantly
down on 2006’s 189,000 tonnes. Of the 2007 consumption 87,442 tonnes
were imported and 42,000 tonnes produced in the UK, the latter mainly from
food fish trimmings.
♦ 38% of the fishmeal consumed in the UK is manufactured from trimmings
(supplier figures - 2008).
♦ The main suppliers to the UK in 2007 were Peru, Germany, Denmark,
Iceland, Chile, Norway and Eire (in order).
♦ A 2008 trade estimate is that approaching 75% of fishmeal consumed in the
UK going to aquaculture and the rest into farm animal and pet diets, mainly
pigs and poultry. See estimate for the world below.
Fishmeal in the EU
♦ EU fishmeal production is about 450,000 tonnes per year.
♦ In the EU about 33% of fishmeal is produced from trimmings from the food
fish processing sector (2006 trade estimate).
♦ FIN knows of no known recent estimate of use by sector – fish, pigs, poultry
etc, but see below for global figure.
Page 36
Fishmeal world-wide
♦ Usage by sector 2008 (source IFFO)
o Aquaculture 62%
o Pigs 22%
o Chicken 8%
o Other 8%
♦ World annual fishmeal production is about 5 to 6 million tonnes.
♦ In order of output the main fishmeal producing countries in 2007 were Peru,
Chile, Thailand, China, USA, Japan, Denmark, Norway and Iceland.
Fishmeal production by top (based on 2006) 16 countries 2001 to 2007
Source: IFFO 2008
‘000 tonnes
2001
2002
2003
2004
2005
2006
Peru
Chile
Thailand
China
USA
Japan
Denmark
Norway
Iceland
Ecuador
Mexico
S Africa
Morocco
Russ Fed
F Islands
Argentina
UK (19th largest)
1844
699
452
480
337
299
299
216
286
87
82
111
18
99
44
26
47
1941
839
475
406
336
290
311
241
304
59
80
117
20
65
37
34
48
1251
664
599
400
310
233
246
212
279
79
56
131
64
74
42
39
52
1983
933
541
330
353
229
259
215
204
85
55
114
83
57
68
48
53
2,019
794
473
305
269
220
213
154
188
87
55
109
67
60
57
44
53
1,378
811
461
297
232
219
209
169
144
91
80
73
28
65
62
50
44
*Source for UK only - UK trade estimate
2007
prov.
1,407
773
428
210
230
200
166
172
152
91
80
88
n.a.
60
54
n.a.
42*
Page 37
DOCUMENTARY EXTRACTS
For ease of reference, relevant extracts, mainly from UN FAO and ICES, have
been reproduced verbatim from the cited documents in support of the FIN
summary.
Lists of extracts
A. UN FAO State of World Fisheries and Aquaculture, March 2007 - relevant
extract detailing FAO's independent assessment of the status of fish stocks
off the Pacific Coast of Latin America.
B. EU Council Regulation 40/2008 of 16 January 2008 setting TACs and
Quotas for 2008 in the North Sea and surrounding area.
C. Reports of the ICES Advisory Committee on Fishery Management, June
and October 2007. Extracts from ICES latest assessment of North Sea
industrial stocks and by-catch levels looking ahead to 2008.
D. The State of World Aquaculture 2006. UN Food and Agriculture
Organisation. 4 September 2006
E. Use of fishery resources as feed inputs for aquaculture development –
trends and policy implications. FAO Fisheries Circular No 1018. 2006.
F. Report of the ICES Advisory Committee on Fishery Management and
Advisory Committee on Ecosystems, North Sea. May 2005.
G. Extract from paper by Professor Robert Furness, October 2001 –
interactions between sandeel-dependent seabirds and seals in the North Sea
Further information from:
H. UN FAO The State of World Fisheries and Aquaculture 2006
ftp://ftp.fao.org/docrep/fao/009/a0699e/a0699e.pdf
I. UN FAO Code of Conduct for Responsible Fisheries
http://www.fao.org/DOCREP/005/v9878e/v9878e00.htm
J. UN FAO Review of the State of World Marine Fishery Resources. 2005
http://www.fao.org/docrep/009/y5852e/y5852e00.htm
K. FULL List of FAO fisheries publications http://www.fao.org/fishery/publications/en
L. Access to FULL ICES advice by species and region
http://www.ices.dk/products/icesadvice.asp
Page 38
DOCUMENTARY EXTRACTS
Extract A
Review of The State of World Fisheries and Aquaculture 2006 – published March
2007. Relevant extracts from the United Nations Food and Agriculture
Organisation (FAO) independent assessment of the status of fish stocks.
(Premier advocacy document published every 2 years)
Status of marine fisheries (page 29)
♦ The global state of exploitation of the world marine fishery resources has
tended to remained relatively stable over the last 10-15 years, even if
changes have been reported for some fish stocks and specific areas. The
overall examination of the state of stocks and groups of stocks for which
information is available confirms that the proportion of overexploited and
depleted stocks have remained unchanged in recent years, after the
noticeable increasing trends observed in the 1970s and 1980s (page 29).
♦ Since FAO started monitoring the global state of stocks in 1974, there has
been a consistent global trend from almost 40% in 1974 to 23% in 2005 in the
proportions of underexploited and moderately stocks, which are those offering
some potential for expansion. At the same time, there has been an increasing
trend in the proportion of overexploited and depleted stocks, from about 10%
in the mid-1970’s to around 25% in the early 1990s, where it has stabilised
until the present, while the proportions of fully exploited stocks declined from
slightly over 50% in 1974 to around 45% in the early 1990’s, increasing to
52% in 2005 (page 29).
In detail this means (page 29):
In 2005 about 25% of the stocks monitored were underexploited (3%) or
moderately exploited (20%) and could perhaps produce more. In 2005 52% of
the stocks of the stocks were fully exploited and therefore producing catches that
were at or close to their maximum sustainable limits, with no room for further
expansion. 25% of the stocks were either overexploited (17%), depleted (7%) or
recovering from depletion (1%) and thus were yielding less than their maximum
potential owing to excess fishing pressure exerted in the past, with no
possibilities in the short to medium term of further expansion and with an
increased risk of further declines and need for rebuilding. Overall, more than
75% of the world fish stocks for which assessment information is available are
reported as already fully exploited or overexploited (or depleted and recovering
from depletion), reinforcing earlier observations that the maximum wild fisheries
potential from the world’s oceans has probably been reached and calls for a
more cautious and closely controlled development and management of world
fisheries.
Page 39
Status of fish stocks by area (page 29-33)
♦ Most of the stocks of the top ten species, which account in total for about 30%
of the world capture fisheries production in terms of quantity are fully
exploited or overexploited and therefore cannot be expected to produce major
increase in catches. This is the case for anchoveta with two main stocks in
the Southeast Pacific that are fully exploited and overexploited… the Blue
whiting, which is overexploited in the Northeast Atlantic…the Atlantic herring,
with several stocks that are fully exploited and others that are recovering from
depletion in the North Atlantic… the Chilean jack mackerel, which is fully
exploited and overexploited in the Southeast Pacific … as well as the Alaska
pollock, the Japanese anchovy and the yellow fin tuna.
♦ In the Southeast Pacific, the anchoveta has fully recovered after the severe El
Nino event in 1997- 98 and produced a total catch of 10.7 Mt in 2004.
Catches of Chilean jack mackerel totaled 1.8 Mt in the same year – about one
third of the historical peak production reached in 1995 – while the stock of
South American pilchard remains very low, producing a small fraction of the
record catches of the 1980s and early 1990s. The Chilean jack mackerel and,
particularly, the South American pilchard are in a decadal cycle of natural low
abundance and there are no signs of a reversal at present (page 33).
♦ In the Northeast Atlantic, catches of blue whiting continue to increase steeply
and the species is considered overexploited. Most stocks of Atlantic cod in
the area are also overexploited or depleted, while capelin and herring are
exploited to their full potential. The Atlantic horse mackerel and the Atlantic
mackerel are also fully exploited.
Fishmeal (page 56, page 119, page 153-156)
♦ The bulk of fishmeal production – about 60% - is exported each year. In 2005,
fishmeal production in the five major exporting countries amounted to 3.5 Mt,
which compares with 4.7 Mt in 2000. Catches of fish for reduction were low in
all major fishmeal-producing countries. Fishmeal prices, which increased
strongly in 2005 and in the opening months of 2006, are a result of strong
demand, especially from China and other Asian countries.
♦ Fishmeal remains the preferred protein source for most aquaculture feeds.
The fishmeal components of feeds can be replaced by vegetable protein (e.g.
soya) or monocellular proteins, but the economics of this practice currently
remain unattractive. It is worth noting that chicken, cattle and pigs do not
naturally feed on fish and therefore the inclusion of fishmeal in feeds for these
animals is a nutritional or economic convenience rather than an absolute
necessity: the same cannot be said for carnivorous fish.
♦ The FAO projections for the decade ending in 2010 were constructed on the
expectation that quantities of fish used for non-food purposes (fishmeal)
would decline from about 35 Mt per year to 26 Mt per year. This does not
Page 40
seem to be happening…..Among the fish used by the fishmeal industry is the
Peruvian anchoveta. This species can contribute as much as one-third of the
raw material used for fishmeal worldwide in a given year, but the standing
biomass of the species usually fluctuates dramatically from one year to the
next. Therefore, the fluctuation in anchoveta landings in Chile and Peru
largely explains the fluctuations also in the amount of fish allocated to nonfood uses worldwide.
See www.fao.org
Extract B
EU Council Regulation No 40/2008 of 16 January 2008– setting TACs and
Quotas for 2008 in the North Sea and surrounding area.
Establishing for 2008 the fishing possibilities and associated conditions for
certain fish stocks and groups of fish stocks, applicable in Community waters
and, for Community vessels, in waters where catch limitations are required.
.
Page 41
Extract C
ICES STOCK BY STOCK ASSESSMENT
http://www.ices.dk/committe/acom/comwork/report/2007/
Reports of the ICES Advisory Committee on Fishery Management, June
and October 2007: extracts from ICES latest assessment of North Sea industrial
stocks and by-catch levels looking forward to prospects for 2008.
ICES now generally publishes advice on fish stocks twice a year in June and
October. Generally in June new advice is published on sprat, Norway pout and
herring. In October new advice is published on sandeel and the other industrial
species.
ICES: SANDEEL
6.4.24 Sandeel in the North Sea (Sub-area IV)
State of the stock October 2007
Spawning biomass in relation to precautionary limits Reduced Reproductive
capacity. SSB is estimated to be at Blim in 2007. Fishing mortality has been
decreasing since 2001 but the present level is uncertain. In the absence of an F
reference point, the state of the stock cannot be evaluated with regard to
sustainable harvest. Recruitment has been below average since 2002.
Advice on management October 2007:
The fishery should only be allowed if monitoring information is available and
shows that the stock can be rebuilt to Bpa by 2009.
6.4.23 Sandeel in Skagerrak Kattegat (Division IIIA)
The available information is inadequate to evaluate spawning stock or fishing
mortality relative to risk, so the state of the stock is unknown. There are no
explicit management objectives for this stock.
The fishery is an extension of the North Sea fishery into Division IIIa, but with
smaller vessels working closer inshore, mostly along the coast of Jutland.
The available information suggests that Subarea IV and Division IIIa can be
combined to one stock unit. No assessments of sandeel in Division IIIa have
been carried out so far. Biological data for this area are sparse and would have
to be evaluated before a decision is made about treating sandeels in Subarea IV
and Division IIIa as one stock.
Page 42
ICES: SANDEEL continued
5.4.32 Sandeel in Division VIa (West of Scotland)
The available information is inadequate to evaluate spawning stock or fishing
mortality relative to risk, so the state of the stock is unknown. There is no current
information on which to evaluate the state of the stock.
There are no explicit management objectives for this stock. No reference points
have been defined for this stock. The stock was last assessed in 1996 and a new
assessment has not been made. At that time it was considered to be within safe
biological limits.
Management considerations
A management regime was in place that installs a multi-annual TAC of 12 000 t
per year with the fishery closed from 31July. Access is limited to vessels with a
track record. These arrangements took effect in 1998.
Ecosystem considerations
Fishing grounds are close inshore and often adjacent to large colonies of
seabirds for which the sandeel population is an important food supply, especially
during the breeding season.
There have been no landings of sand eel from this fishery in recent years.
6.4.25 Sandeel (Shetland area)
State of the stock October 2007
The available information is inadequate to evaluate spawning stock or fishing
mortality relative to risk, so the state of the stock is unknown. It is believed that
fishing mortality is well below natural mortality. This means that natural
processes largely drive stock variations. An assessment made in 2001 based on
survey data alone suggests that the SSB in 2000 is close to its lowest observed
value and that recruitment was weak.
Management objectives
There is a national management plan in force taking both fisheries and wildlife
conservation in consideration. The Shetland sandeel fishery re-opened in 1995
subject to a multi-annual management regime. The regime consisted of an
annual TAC of 7000 t and a closure during the months of June and July. The
seasonal closure was installed to avoid direct competition between the fishery
and seabirds during the chick-rearing season. ICES suggested in October 2001
that the management plan be evaluated before the agreed end date. The
evaluation has been carried out and all interest groups have agreed to the
continuation of the current measures.
ICES considers that no advice can be given for the stock for 2008.
There have been no landings of sand eel from this fishery in recent years.
Page 43
ICES: SANDEEL continued
Harvest control rules for sandeel in the North Sea and Skagerrak in 2008
In 2007 The EC and Norway requested ICES to provide further advice to the
European Community and Norway on: Harvest control rules for sandeel in the
North Sea and Skagerrak in 2008 that:
1.1. are flexible to account for changes in the biology of sandeel and specifically
changes in the time that sandeels start feeding;
1.2. are based on fisheries-independent information. In 2006 ICES was unable to
provide advice on recent developments of survey methodologies and their
application for recruitment and stock estimation(abundance and distribution).
ICES response
ICES has considered the available survey information on sandeel in the North
Sea. There are a number of Danish and Norwegian initiatives to develop fisheryindependent information series, some of which have operated for four years. It
is envisioned that this information, when properly disseminated and evaluated
could provide a useful basis for future management of sandeel. However, ICES
considers that at present the series are still too short and not well enough
disseminated to be used as a basis for management decisions for 2008.
Harvest control rules that are flexible to account for changes in the biology
of sandeel
ICES has evaluated several generic harvest control rules for sandeel in 2006
(ICES, 2006). A general harvest control rule based on an escapement strategy
that would leave an SSB at least the size of Bpa in the sea after a year of fishing
was found to be in accordance with the precautionary approach.
In the longer term, a management based on a combination of effort limitation,
area closures, and TACs is suggested. Further development along such lines will
require scientific work, as well as dialogue with managers and industry to clarify
the feasibility of this kind of management.
ICES has previously suggested (suggested, not advised, because ICES cannot
fully evaluate whether the harvest control rule is consistent with the precautionary
approach in the longer term) that an implementation of such an escapement
strategy could be based on an exploratory fishery at the beginning of the fishing
season, using the cpue of the fleet as an indicator of the incoming recruitment (1year-olds).
Because the data that is used for the regression between cpue and recruitment
only reflects the years when the stock is low, the suggested HCR is also only
applicable in such situations. It is foreseen that alternative methodologies will be
explored in the follow-up meeting before the summer of 2008. Those alternative
methodologies should not rely on a particular selection of years for the
regression.
Page 44
ICES: SANDEEL continued
The length of the exploratory fishery has previously been suggested as weeks
14–18 because it was observed that the availability of sandeel to the fishery
generally increased during that period and reached a level which could be taken
as an indication of year class strength. For 2007 the availability of the 2006 year
class was already at this level from the beginning of the exploratory fishery. ICES
therefore suggests that the length of the exploratory fishery be set to weeks 14–
18, but that if there are strong indications that the level has been reached earlier,
the advice and decision on the TAC for that year could also be earlier.
ICES suggests the following HCR for 2008 for sandeel in the North Sea
(Subarea IV)
1. The aim of management in 2008 should be to rebuild SSB to above Bpa in
2009;
2. An exploratory fishery should start not earlier than 1st April 2008;
3. The total kilowatt-days for fisheries for sandeel in 2008 should be constrained
to no more than the total kilowatt-days applied during the exploratory fishing in
2007 during weeks 14–18 (1 700 000 kW-days)1;
4. A TAC for 2008 and the maximum number of kilowatt-days shall be
determined on the basis of the exploratory fishing as soon as possible and in
accordance with the following rules:
4.1. TAC 2008= −138 + 3.77 × N1× Wobs / Wm (N1 is the real-time
estimate of age group 1 in billions, derived from the exploratory fishery in
2008, the TAC is expressed in 1000 t, Wobs is the observed mean weight
of age group 1 during the exploratory fishery, and Wm (4.75 g) is the longterm mean weight of age group 1),
4.2. If the TAC calculated in point 4.1) exceeds 400 000 t the TAC shall be
set at 400 000 t,
4.3. The number of kilowatt-days for 2008 shall not exceed the effort in
20051;
5. The fishery shall be closed 1 August 2008.
Page 45
ICES: SPRAT
6.4.20 Sprat in the North Sea (Subarea IV)
State of the stock June 2007
Precautionary reference points have not been defined for this stock and the
available information is inadequate to estimate the absolute stock size. However,
relative trends in biomass from an exploratory assessment indicate that the
stock has been at a median level for the past 10 years. The 2006 year class is
estimated to be poor in the IBTS survey carried out in 2007.
Advice on management June 2007.
(Since 2001 ICES has been advising catches of 160,000 to 223,000 tonnes per
year. The agreed TACs were slightly above ICES advice from 2001 to 2005, then
reduced to 175,000 tonnes for 2006 and 170,000 tonnes for 2007.)
ICES declined in June 2007 to advise on a catch for 2008. It said it would give
advice on 2008, during 2008.
6.4.19 Sprat in Division IIIa (Skagerrak & Kattegat)
State of the stock June 2007
The available information is inadequate to evaluate stock trends and therefore
the state of the stock is unknown. There are no explicit management objectives
for this stock. Sprat in this area is short-lived with large annual natural
fluctuations in stock biomass. Landings of sprat in Division IIIa has typically been
around 20 000 t, except in 2005 when it was much higher. Sprat in Division IIIa is
mainly fished together with juvenile herring and the exploitation of sprat is limited
by the restrictions imposed on fisheries for juvenile herring.
Catch forecast for 2008
The available survey results are not reliable indicators of sprat abundance in
Division IIIa. Therefore, fishing possibilities in 2007 or 2008 cannot be projected.
Advice on management June 2007
ICES does not advise on management except to say that catches will be ‘Limited
by restriction on juvenile herring catches.
8.4.8 Sprat in Subdivisions 22 32 (Baltic)
State of the stock June 2007
Based on the most recent estimates of SSB and F, ICES classifies the stock as
having full reproductive capacity and being harvested sustainably. SSB is
estimated to be close to 1.2 million tonnes and well above Bpa. F is estimated at
0.3 and below candidate target reference points (F0.1 or Fpa). Recruitment in
2006 2007 is estimated to be average.
Advice on management June 2007
Landings should be less than 432.000 with a fishing mortality below Fpa = 0.40.
Page 46
ICES: CAPELIN
3.4.8 Barents Sea capelin (Subareas I and II, excluding Division IIa west of
5°W)
State of stocks 2007
Based on the most recent estimates of SSB and recruitment ICES classifies the
stock as having an increased risk of reduced reproductive capacity. The maturing
component in autumn 2007 was estimated to be 0.84 mill. tonnes. The
spawning stock in 2008 will consist of fish from the 2004 and 2005 year classes,
but the 2005 year class will dominate. The survey estimate ranks the 2006 and
2007 year classes above the long-term average.
Advice on management 2007
The agreed harvest control rule implies zero catches in 2008. ICES has advised
zero TAC since 2004.
2.4.11 Capelin in the Iceland East Greenland Jan Mayen area (Subareas V
and XIV and Division IIa west of 5°W)
State of the stock Juner 2007
In the absence of defined reference points, the state of the stock is unknown.
The SSB is highly variable because it is dependent on only two age groups. It is
estimated that 410 000 t were left for spawning in spring 2007. In the years
2002 to 2005 no recruitment estimates were available from surveys. An estimate
for the 2005 year class is available from an acoustic survey in November 2006. It
is estimated low, but sufficient to allow a fishery in 2007/08.
Advice on Management June 2007
Apply the harvest control rule (which appears to be setting preliminary and final
quotas based on assessments of the stock with the objective of ensuring
sufficient stock is left for spawning) which would result in a catch of 207,000
tonnes for 2007/08.
Page 47
ICES: BLUE WHITING
9.4.4 Blue whiting combined stock (Sub-areas I-IX, XII and XIV)
State of the stock October 2007
Based on the most recent estimates of fishing mortality and SSB, ICES classifies
the stock as having full reproductive capacity, but being harvested at increased
risk. SSB increased to a historical high in 2003, but has decreased since then.
The estimated fishing mortality is well above Fpa. Recruitment in the last decade
appears to be at a much higher level than prior to 1996. The 2005 and 2006 year
classes are estimated at the pre-1996 level. The management targets are to
maintain the SSB of the blue whiting stock at levels above 1.5 million tonnes
(Blim) and the fishing mortality rates at levels of no more than 0.32 (Fpa). To
achieve this, TAC are reduced by at least 100 000 t a year until the fishing
mortality is reduced to 0.32 (Fpa). The plan states that if the spawning stock falls
below 2.25million t unspecified actions to obtain a safe and rapid recovery to this
level should be taken.
This is a management agreement between the four Coastal States. ICES has
evaluated this management plan in 2006 and found it not to be in accordance
with the precautionary approach.
Management considerations
The large landings over the last decade were supported by recruitments, which
were much higher than in earlier years. Because fishing mortality has remained
high and only a few year classes support the fishery and the SSB, the stock is
vulnerable to overexploitation. Recruitment of the year classes 2005 and 2006 is
weak and might be an order of magnitude lower than recruitment in the
preceding 10 years. If catches in 2008 are not considerably reduced from the
present level, it is expected that SSB will decline below Bpa in 2009.
In 2006, ICES reviewed the 2005 agreed management plan and considered that
it was not precautionary. The simulations showed that, given the high recruitment
level observed for the period 1996 2004, the management plan would be robust
to uncertainties in both assessment and implementation. However, for low
recruitment scenarios, the management plan was not robust to these
uncertainties, unless there were unrealistically low levels of noise and bias in
both stock assessment estimates and implementation of the TAC.
ICES encourages managers to develop an alternative management plan to meet
their objectives for exploitation of the stock that would be consistent with the
precautionary approach.
The knowledge of the factors which drive blue whiting recruitment is very limited.
It is not known if the poor 2005 and 2006 year classes are an anomaly or if it is a
shift towards the low recruitment regime, as observed in the period before the
mid-1990s.
Predicted catch in 2008 of ICES advice followed – 835,000 tonnes
Page 48
ICES: HERRING
9.4.5 Norwegian spring-spawning herring (In the Uk this stock is more often
called Atlanto Scandian heering, and sometimes NE Atlantic herring)
(Revised 8 November 2007)
State of stocks 2007
Based on the most recent estimates of SSB and fishing mortality, ICES classifies
the stock as having full reproductive capacity and being harvested sustainably.
The estimate of the spawning-stock biomass, although uncertain, is well above
Bpa in 2007. Fishing mortality is well below Fpa. The spawning stock is now
dominated by the strong 1998, 1999, and 2002 year classes. Surveys indicate
that the 2003 year class is moderate, while the 2004 year class is also strong
(comparable to the 1998 year class).
This stock has a large dependency on the occasional appearance of very strong
year classes. This has happened more frequently recently. In recent years the
migration behaviour has changed, particularly in geographical locations of the
overwintering and feeding areas. These, in turn affect the distribution of the
fisheries. Herring have an important role as food to higher trophic levels.
Advice on management 2007
The predicted catch if ICES advice and the management plan is followed is
1,518,000
6.4.18 Herring in Subarea IV, Division VIId, and Division IIIa (North Sea,
English Channel, Skagerrak & Kattegat autumn spawners)
State of stocks 2007
The stock is at risk of having reduced reproductive capacity and at risk of being
harvested unsustainably. SSB in 2006 was estimated at 1.2 million t, and is
expected to remain below Bpa (1.3 million t) in 2007. All year classes since 2001
are estimated to be among the weakest since the late 1970s.
Advice on management 2007
(ICES advises changes to the management plan to ensure the safety of the
spawning stock and lays out a formula for calculating the recommended catch –
for details – go to
http://www.ices.dk/committe/acom/comwork/report/2007/may/her-47d3.pdf .)
2.4.10 Icelandic summer-spawning herring (Division Va)
State of stocks 2007
The assessment of the stock is uncertain, but Icelandic surveys indicate that SSB
has increased continuously since 1987.
Advice on management 2007
The stock size has increased in recent years according to the acoustic survey.
However, until this has been confirmed by other observations, catches in
2007/08 should not exceed the average over the last 3 years of 117 000 tonnes.
Page 49
ICES recommendations for further herring stocks including those in the
Baltic, Gulf of Bosnia etc can be reached from
http://www.ices.dk/committe/acom/comwork/report/asp/advice.asp
ICES: NORWAY POUT
6.4.22 Norway pout in ICES Subarea IV (North Sea) and Division IIIa
(Skagerrak Kattegat)
Based on the most recent estimate of SSB, ICES classifies the stock as having
full reproductive capacity (SSB> Bpa).The stock has increased from a level
where SSB at the beginning of 2006 was below Blim. Fishing mortality has been
very low in 2005 and the first half of 2006 due to closure of the targeted Norway
pout fishery. The recruitment in 2005 has been estimated to slightly above the
long-term average (67 billions), while recruitment in 2006 (41.5 billions) is below
the long-term average. No explicit and specific management objectives have
been set for this stock.
The fishery should be closed until information confirming that the stock will be
above Bpa at the beginning of 2008 is available. Current information indicates
that SSB at the start of 2008 will be just at Bpa, with zero catch in the second
half of year 2007.
The population dynamics of Norway pout in the North Sea and Skagerrak are
very dependent on changes caused by recruitment variation and variation in
predation (or other natural) mortality, and less by the fishery. Recruitment is
highly variable and influences SSB and TSB rapidly, due to the short life span of
the species. With present fishing mortality levels the status of the stock is more
determined by natural processes and less by the fishery. Norway pout is an
important prey species for a variety of fish species (e.g. saithe, haddock, and
mackerel). However, growth and mean weight-at-age for these predators seems
independent of the stock size of Norway pout.
Historically, the fishery includes by catches especially of haddock, saithe, and
herring. By catches of these species have been low in the recent decade.
Page 50
Extract D
The State of World Aquaculture 2006. UN Food and Agriculture
Organisation. 4 September 2006.
The FAO report ‘The State of World Aquaculture’ highlights the massive growth
in the aquaculture sector stating that nearly half the fish consumed as food
worldwide are raised on fish farms rather than caught in the wild, and points to
doubts regarding future supplies of fishmeal and fish oil.
In 1980 just 9% of the fish consumed by humans came from aquaculture, in 2005
this figure has risen to 43%, equating to 45.5 million tonnes of farmed fish. FAO
estimates that an additional 40 million tonnes of aquatic food will be required by
2030, just to maintain current levels of consumption. The only option to meet this
demand is farming them. The report highlights competing demands with the
livestock sector for the use of fishmeal and fish oil and points to doubts regarding
future supplies of fishmeal and fish oil, used to feed carnivorous cultured species,
such as salmon and makes the following key points:
♦ One argument is against the use of low-cost fish species such as sardine,
herring and anchovy as feed to produce a higher value carnivorous species
on the grounds it takes more than 1kg of feed species to produce 1kg of
farmed fish and it could push farmed fish prices up.
♦ Feed accounts for about 60-80% of operational costs in intensive
aquaculture, while feed and fertilisers represent about 40-60% of the total
cost of aquaculture production in semi-intensive aquaculture systems.
Fertilizers and feed resources will therefore continue to dominate aquaculture
needs.
♦ It has been estimated that about 53% of global fishmeal and 87% of fish oil
was consumed by salmonids, marine fish and marine shrimp in 2003.
♦ Since 1985, global production has stabilised at 6 to 7 million tonnes of
fishmeal and I million tonnes of fish oil. This means that the expanding
aquaculture and livestock sectors will be competing for a resource that is not
increasing. Under a situation of apparently limited supply of fishmeal and fish
oil and assuming little or no improvement in the efficiency of the use of
fishmeal and fish oil, the expansion of some types of aquaculture could be
constrained if not stopped, and could continue to drive the price of fishmeal
up.
♦ The report highlights the anchovy fishery, a major fishmeal component and a
fishery vulnerable to the El Niño phenomenon with landings declining
dramatically after every major event. However Peruvian anchovy populations
have demonstrated a high capacity to recover from these events provided
these are followed by more favourable environmental conditions and proper
fisheries management is in place. Other species such as horse mackerel and
sardine have been incorporated into fishmeal processing making fishmeal
production more resilient to these events and to the effects of single species’
abundance variability.
Page 51
♦ Fishmeal can be replaced by vegetable protein, but results in increased costs
in the form of enzymes to remove anti-nutritional factors and amino acids to
improve the nutritional profile.
♦ Fishmeal is still relatively available and its use will continue until availability
becomes seriously constrained. The replacement of fish oil is more
challenging. However, the rising prices of both fishmeal and oil are driving
research in the feed industry towards finding substitutes.
♦ This highlights the need to reduce reliance on fishmeal and to improve the
efficiency of use, and considerable research is currently underway in many
producing countries. Along these lines, the livestock sector appears to have
made the greatest advances, which it has been forced to do because of
economic factors.
The next report in this series is due in autumn 2008.
www.fao.org/newsroom/en/news/2006/1000383/index.html
Extract E
Use of fishery resources as feed inputs for aquaculture development –
trends and policy implications. FAO Fisheries Circular No 1018. 2006.
(http://www.fao.org/fi/eims_search/1_dett.asp?calling=simple_s_result&lang=en&
pub_id=209854)
It is generally estimated that the amount of low value fish used in aquaculture
(trash fish such as anchovy, herring, sardines, capelin, and sandeel) ranges
between 5 and 6 million tonnes.
It is estimated that in 2003 the aquaculture sector consumed 2.94 million tonnes
or 53.2% of total reported world fishmeal production and 0.80 million tonnes or
86.8 % of total fish oil production. This estimated consumption of fishmeal and
fish oil by the aquaculture sector equals 14.95 to 18.69 million tonnes of pelagics.
Coupled with the current estimated use of 5 to 6 million tonnes of trash fish as a
direct food source for farmed fish, it is estimated that the aquaculture sector
consumed the equivalent of 20-25 million tonnes of fish as feed in 2003 for the
total production of about 30 million tonnes of farmed finfish and crustaceans.
Although production of fishmeal and fish oil has remained relatively static over
the years there has been considerable uncertainty on the future availability and
uses of these finite commodities due to: increasing consumer concern for food
and feed safety, the sustainable use of available fishing resources, strong global
demand for fishmeal and fish oil that cannot keep pace with demand and that the
prices of these finite commodities will increase in the long run.
A significant amount of laboratory and field-based research has been carried out
on trying to find dietary replacements for fishmeal and fish oil within compound
aquafeeds. The most promising results to date have been with omnivorous
and/or herbivorous finfish and crustacean species such as carp and tilapia.
Page 52
Results to date with more carnivorous fish and crustacean species have shown
that the level of dietary fishmeal and fish oil can be reduced significantly (at least
by half) but not to the extent where completed replacement has been possible at
a commercial level. If aquaculture is to continue to grow it must target aquatic
species with more flexible feeding habits and dietary nutrient demands.
Policy guidelines
♦ For major aquaculture-producing countries prohibit the use of trash fish or
low value fish species as the feed for high value or shellfish species
♦ For major aquaculture-producing countries to prohibit the recycling of
aquaculture products within aquafeeds
♦ The need to encourage the increased use of and recycling of adequately
processed terrestrial animal by-product meals within compound
aquafeeds.
♦ To promote and encourage the utilisation of largely untapped existing
feed-grade waste streams within the fisheries sector, including by catch
and discards
♦ Discourage the use of food fish fit for human consumption for animal
feeding
EXTRACT F
Report of the ICES Advisory Committee on Fishery Management and
Advisory Committee on Ecosystems, 2004. Vol 1 Number 2 Book 1 Part 1
(regional ecosystem overviews). Published May 2005.
2.1.1.4 Ecosystem Impacts of Industrial Fisheries (sandeel, blue whiting,
Norway pout and sprat)
A combination of requests (as Q and A) from DG Fisheries (2002 -2004) asked
ICES to:
Q. Evaluate the effect of industrial fisheries at recent levels of fishing mortality on
yield and stock size of relevant and commercially important human-consumption
fish and fauna such as marine mammals and seabirds.
Q. Evaluate the relative benefits (in terms of economic and ecological efficiency)
of fishing ‘industrial fish’ (sandeel, blue whiting, Norway pout and sprat for
fishmeal and using the product as feed, or of not fishing these species and
obtaining higher yields from commercial fisheries.
Q. Comment on any major structural changes in marine ecosystems, including
changes to habitat, that may be caused by fishing for industrial species, and
significant consequences for fisheries or the marine environment
Page 53
A. The Baltic Sea
The industrial fishery for sprat in the Baltic Sea takes variable amounts of herring
as by-catch and a directed herring fishery can take sprat as by-catch depending
on the region. In general, the sprat and herring fisheries in the Baltic are thought
to have little or no discarding of by-catch species. The Baltic Sea is dominated by
three species – cod, herring and sprat. The abundance of cod is presently low,
herring stocks are increasing and the sprat stock is at a high level.
It would therefore seem unlikely that industrial fisheries for the prey species
(sprat, herring) are negatively affecting the food basis for the cod stock; indeed, it
is possible that the inverse is true, as fisheries for sprat and herring might reduce
the consumption of cod eggs and larvae pages (1-59 and 1-64)
There are no records of by-catch of sea birds, seals or harbour porpoises in any
form in the industrial fisheries in the Baltic. From the information available, it is
not likely that the industrial fishery on sprat is limiting the availability of food for
seabirds (1-59)
A. Blue whiting
The total size of the blue whiting stocks indicates that the species is an important
predator on lower trophic levels, and that it may be an important prey species for
larger fish and other predators. However, there is little information on the indirect
effects of the fisheries for blue whiting on its prey and predators (1-60)
A. Ecological efficiency of fishing ‘industrial’ fish
The production of fish protein for human consumption in aquaculture relies
heavily on feed pellets, which are generally derived from lower trophic level fish
harvested in ‘industrial fisheries’. A study by ICES taking into account the
composition of food pellets, the transfer efficiency in aquaculture systems, and
the transfer efficiency and composition of natural marine food webs shows that if
the only concern is about efficiency of converting sandeel biomass to human
consumption biomass, then the exploitation of sandeels by industrial fisheries for
the aquaculture industry is as least as efficient ecologically. Furthermore, there is
no evidence to support the contention that ceasing industrial fisheries will
stimulate catches in the human consumption fisheries. If fisheries management
results in a recovery of the currently depleted predator stocks in the North Sea,
this conclusion would need revisiting. Model analysis of food conversion
efficiency suggests that a closely regulated combination of industrial and human
consumption fisheries may provide the only solution to the long-term demand for
fish protein (1-60).
….the 1 million tonnes of sandeels taken annually by the industrial fishery might
be expected to produce 100,000 tonnes of farmed salmon or 150,000 tonnes of
farmed marine finfish. Even if one accepts that the industrial fishery has limited
1+ - aged sandeel consumption by fish predators, aquaculture supported by an
industrial fishery, would appear to be the more ecologically efficient option (1-69),
Page 54
There is no indication of a decline in the overall sandeel stock size. Thus the
reduction in the consumption of 1+ sandeels by fish predators does not appear to
be the result of a reduction in sandeel prey abundance caused by industrial
fishing. Trends in stock biomass of the fish predators……indicate a substantial
decline in predator biomass. This is particularly apparent for the three main
gadoid predators – cod, whiting and haddock, as well as North Sea
mackerel…….The high levels of fishing mortality experienced by these main fish
predator stocks provide the explanation for the stock decline….even were the
sandeel fishery to stop, current levels of fishing mortality are sufficiently high so
as to prevent any increase in the biomass of these major fish predators. Any
gains in human consumption fishery landings as a result of a sandeel closure are
therefore likely to be minimal (1-70/1-71).
A. Effect of closing the sandeel fishery off the East Coast of Scotland
(2000) on gadoid predators
Following the closure, sandeel abundance in the area increased markedly.
Sandeels featured strongly in the diets of three gadoid predators: cod, haddock,
whiting. Over the seven-year period, the biomass of all three predators in the
area declined, thus closure of the sandeel fishery had no beneficial effect on
gadoid predator biomass. The percentage of sandeels in the diet of each of the
predators was unaffected by the closure of the sandeel fishery and the resultant
increase in sandeel abundance, and no increase in food consumption rates was
observed…….In summary, ceasing the industrial fishery for sandeels off the east
coast of Scotland had no beneficial effect on the biomass, diet, feeding rate or
body condition of gadoid predators in the area. (1-72).
The results of these two case studies (Wee Bankie/Marr Bank area) provide no
evidence to support the contention that ceasing industrial fisheries will stimulate
catches in the human consumption fisheries at the current time, and under the
prevailing circumstances. Instead, the data suggest that, at current population
sizes, fish in the higher trophic levels in the North Sea food web are not food
limited, and thus there is no reason to expect any gain in human consumption
landings following a reduction in industrial fishery catches (1-76)……Analysis of
the MSVPA data available to date, however, suggests that, even under
circumstances of increased biomass of human consumption species, a carefully
managed industrial fishery should not impinge on those fisheries. Indeed, the
analysis of food conversion efficiency suggests that a closely regulated
combination of industrial and human consumption fisheries may provide the only
solution to the long-term demand for fish protein.
Q Given the uncertainty regarding the present state of the stock of sandeel in the
North Sea and the concern that incoming year class may be poor, ICES is
requested to outline likely effects of possible protective measures, notably
minimum landing size, closed areas and closed seasons.
Page 55
Two examples of closed areas (Firth of Forth and Shetland) highlight the
importance of understanding how different patches of sandeels are linked by
larval dispersal. Identifying and protecting source populations and small
reproductively-isolated resident populations could help in achieving sustainable
management of the North Sea stock (1-268).
In light of the changed perception of the geographical status of the North Sea
sandeel stock it might be more appropriate to set separate TAC’s to cover
identified separate sandeel populations (1-268)
Extract G
Paper by Robert W. Furness ‘Management implications of interactions
between fisheries and sandeel-dependent seabird and seals in the North
Sea’, October 2001 – published in ICES Journal Of Marine Science, 59: 261269, 2002
The lesser sandeel is a key food for many seabirds and seals, and is also the
target of the largest single-species fishery in the North Sea. Despite claims tat
sandeel fishing has harmed dependent predator populations, census data show
that most seabirds and grey seals increased in numbers as the fishery grew and
reached peak harvest. Generally high breeding success of black-legged
kittiwakes at North Sea colonies also suggests that sandeel abundance has
remained good for breeding seabirds at the broad scale, though local and smallscale effect of sandeel fishing should not be overlooked. VPA and CPUE data
suggest that abundance increased as the fishery grew. A negative correlation
between sandeel recruitment and total stock size preceding spawning suggests
that there is now resource competition (bottom-up control). Biogenergetics
modelling indicates that predatory fish take far more sandeel than taken by the
industrial fishery or wildlife. Effects of decreases in predatory fish stock have
been greater than increases in the take by seabirds and seals and by the fishery.
Thus, overall, there appears to have been a reduction in mortality during the last
30 years. Changes in predatory fish abundances, especially mackerel and
whiting, may influence sandeel stocks more than changes in industrial fishery, at
least at the scale of the North Sea as a whole. These interactions imply that
seabird and seal food supply in terms of sandeel may be strongly dependent on
decisions regarding management of stocks of mackerel and gadoids.
See www.ices.dk
Page 56
FURTHER REPORTS AND STATEMENTS ON
FEED FISH STOCKS
There has been considerable focus on the issue of feed/industrial fish stock
sustainability over the last few years, notably in the light of expanding demand
world-wide for fishmeal and fish oil for use in aquafeed.
This section presents extracts from and references to the main recent
contributions. The views expressed are those of the individual organisation or
person quoted.
1. The Benefits of Fish Meal in Aquaculture Diets (2006) EXTRACT
By R.D. Miles and F.A. Chapman, University of Florida - Fishmeal is
recognized by nutritionists as a high-quality, very digestible feed ingredient
that is favored for addition to the diet of most farm animals, especially fish
and shrimp.
Introduction
Fishmeal carries large quantities of energy per unit weight and is an excellent
source of protein, lipids (oils), minerals, and vitamins; there is very little
carbohydrate in fishmeal.
What Is Fishmeal
Fishmeal is a generic term for a nutrient-rich feed ingredient used primarily in
diets for domestic animals, sometimes used as a high-quality organic fertilizer.
Fishmeal can be made from almost any type of seafood but is generally
manufactured from wild-caught, small marine fish that contain a high percentage
of bones and oil, and usually deemed not suitable for direct human consumption.
These fishes are considered 'industrial' since most of them are caught for the
sole purpose of fishmeal and fish oil production. A small percentage of fishmeal
is rendered from the by-catch of other fisheries, and by-products or trimmings
created during processing (e.g., fish filleting and cannery operations) of various
seafood products destined for direct human consumption.
The fishmeal and fish oil industries are one of the few major animal industries
existing today that still relies greatly on a "hunting-and-gathering" technique.
Most fish rendered into meal and oil are captured at sea. Millions of tons of
fishmeal are produced worldwide. Contrary to recent popular beliefs, most
fishmeal and oil are produced from sustainable, managed, and monitored
fish stocks, reducing the possibility of over-fishing. [
http://edis.ifas.ufl.edu/FA122
Page 57
2. Closed waters: The welfare of farmed Atlantic salmon, rainbow trout,
Atlantic cod and Atlantic halibut. Compassion in World Farming and the
World Society for the Protection of Animals. 16 April 2007.
This 80-page report by two prominent animal welfare organisations, CIWF and
WSPA, covers fish welfare issues affecting the world’s aquaculture industry,
specifically focusing on Atlantic salmon, cod, halibut and rainbow trout. There is a
fairly large section on feeding wild fish to farmed fish and how it is damaging:
♦ Certain of the wild fish species utilised as feed (including mackerel,
blue whiting, sardines, anchovies, pilchards, capelin and herring) could
be used for direct human consumption. Certain wild industrial stocks
are being severely over fished and their viability jeopardised in order to
produce feed for farmed fish. An increase in wild industrial stocks
entails a reduction in feed supplies for predator fish, marine mammals
and seabirds.
♦ Huge quantities of wild ‘industrial’ fish are caught to feed to farmed
carnivorous fish such as salmon, trout, halibut and cod; this adds to the
pressure on wild stocks and is unsustainable. Over three tonnes of
wild-caught fish are needed to produce one tonne of farmed salmon. It
takes 2.3 tonnes of wild fish to produce one tonne of farmed trout. For
marine species such as halibut and cod, the ratio is over three times
the weight of wild fish to produce a given amount of farmed fish.
♦ The use of wild fish to feed farmed fish raises important sustainability
issues. Some of the fish used as feed could be used for direct human
consumption. In addition, the viability of certain ‘industrial’ fish stocks is
threatened by severe over fishing. Moreover, a decrease in wild
‘industrial’ stocks entails a reduction in feed supplies for predator fish,
marine mammals and seabirds. In view of these problems, the
sustainability of intensive carnivorous fish farming should be reviewed.
www.ciwf.org/publications/fis.html
Reactions to the Report
Appear to be deliberately ignoring the advances made within the Scottish
industry in an attempt to mislead the general public about the welfare of farmed
fish. Scottish Salmon Producers Organisation.
3. The Great Salmon Run: Competition between Wild and Farmed Salmon.
TRAFFIC North America/WWF. January 2007.
This wide-ranging report investigates wild and farmed salmon in North America
and discusses the dependence of salmon farming on high quality proteins such
as fishmeal and fish oil and the impact this has on wild fish stocks. The concern
being that as aquaculture production grows there will be increased pressure on
these stocks. The report anticipates improvements in all aspects of salmon
farming and highlights key points for the fishmeal sector:
♦ The resulting economic incentive has been to undertake a significant amount
of research to reduce the dependence of salmon feeds on fishmeal and fish
oil. Improved feed conversion ratios and reduced amounts of fishmeal in
Page 58
salmon diets indicate success in these research efforts, as do the reduction in
farmed salmon production costs.
♦ Critics argue that feeding carnivorous fish such as salmon leads to a net loss
of fish supplies because salmon farms consume more fish (as feed) than they
produce. Industry advocates maintain that salmon are very efficient
converters of feed into edible fish, consuming only 1.1-1.5 pounds of feed for
every pound of fish consumed.
♦ Feed companies are continuously looking for alternative ways to reduce the
proportion of fishmeal in salmon feeds. In fact fishmeal content has reduced
from 70% in 1972 to 35% today. Salmon feeds will continue to shift away from
fishmeal towards plant ingredients.
www.traffic.org – publications catalogue
4. Marine Conservation Society (MCS) Principles and Criteria for
Sustainable Fish Farming. MCS. 29 May 2007.
The MCS launched its Principles and Criteria for Sustainable Fish Farming. The
document addresses all key elements of environmental concern associated with
UK marine finfish culture and sets a reference point for businesses working
towards a sustainable and environmentally sound operation.
The document defines and promotes the MCS definition of best environmental
practice. It sets out a number of environmental indicators of importance to MCS,
to act as a benchmark for assessing existing production standards, procurement
policies and regulations.
There are six key principles, principle 2 covers the use of sustainable sources of
fish feed. The key points (edited extract) are:
♦ MCS believes that fish feed should be manufactured forma combination of
environmentally sustainable marine and non-marine raw materials from
independently certified sustainable sources, and from fish processing
trimmings. Feed use should also be optimised to ensure wastage is
minimised whilst food conversion ratios are maximised.
♦ If the aquaculture industry continues to grow as predicted (in 2015 the global
demand for fish is predicted to rise to 172 million tonnes with aquaculture
supplying 39% of this demand), requirements for marine feed raw materials
will not be met by increasing fisheries on these feed grade fish, as many
species used for fishmeal and oil are already either fully/over exploited (31%
of the top 10 species used for fish feed) and/or not adequately assessed
(63% of the top 10 species).
MCS Criteria for sustainable feed supply
♦ Sustainable fisheries – The utilisation of species from feed fisheries that are
independently certified as sustainable by organisations such as the MSC.
Until such time as these certified fisheries are in place, producer companies
should as a minimum have a policy in place to exclude feed fisheries if they
Page 59
are assessed by ICE/FAO or other recognized scientific bodies as being of
unknown stock status, below safe limits and/or harvested unsustainably
and/or whose fishery is know to have adverse effects on the wider
ecosystems such as seabird breeding success.
♦ Fishmeal and fish oil replacement – MCS encourages the partial
substitution (% dependent on species) of the marine component of the feed
derived from wild capture fisheries with replacement proteins/oils derived from
vegetable sources provided tit can be demonstrated that those sources are
also from a sustainable supply.
♦ Trimmings – The use of trimmings from fish processing in the manufactures
of fish feed should be maximized, ensuring as much as possible that sources
are form sustainable stock, to help reduce the pressure on wild capture
fisheries.
♦ Effective feed management – Systems should be in place to ensure that
feed wastage is minimized and feed uptake is maximize such as feedback
loops, underwater camera’s and diligent staff.
♦ Food Conversion Ratio’s (FCRs) – systems should be in place to monitor
and rectify any increase detected in FCRs of the species farmed.
www.mcsuk.org/downloads/fisheries/SustainableAquaMay07web.pdf.
5. EC Green Paper for the future EU Maritime policy. 3 May 2007. Draftsman
Struan Stevenson MEP tabled a draft opinion of the EP Fisheries Committee to
be voted upon at the Fisheries Committee meeting on 13 May and in the
Transport Committee meeting on 5 June on the EU Maritime Policy. To
implement sustainability, he stated, it was necessary to take into account the
state of the fish stocks, climate change, predators and pollution, and calls for
efforts to end the by-catch and discard problems. The EU Green Paper mentions
fishmeal: in order to ensure that fishmeal coming from EU sources is not
contaminated, it is imperative to reduce marine pollutants. www.ebcd.org
6. (With 5) European Parliament resolution on industrial fisheries and the
production of fishmeal and fish oil (2004/2262(INI)). 10 July 2007.
The European Parliament adopted the report by Struan Stevenson which calls for
the Commission and the Council to lift the ban on feeding fishmeal to ruminants.
This report stresses the problem of discards from marine fisheries, a problem
which is estimated in Europe to account for up to 1 million tonnes annually. The
EP suggests that use of discards by the fishmeal and fish oil industry should be
examined, given the swiftly expanding EU aquaculture sector. MEPs also ask the
Commission to "increase scientific research into blue whiting" in order to obtain
improved advice and management in the near future. A final version of the
adopted text P6_TA(2007) 0327 is expected.
www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA2007-0326+O=DOC+XML+VO/EN&language=EN
Page 60
7. Report rebuts study claiming fish stocks will be extinct by 2048.
Science. 1 June 2007.
A new rebuttal of the report ‘Impacts of Biodiversity Loss on Ocean Ecosystem
Services’ (Boris Worm Nov 2006) was published in the 1 June 2007 issue of
Science.
‘Biodiversity Loss in the Ocean: How Bad Is It?’ claims ‘this (Worm’s) projection
is inaccurate and overly pessimistic….and inappropriate to appear in a scientific
journal’. Worm et al define ‘collapse’ as occurring when the current year’s catch
is <10% of the highest observed in a stock’s time series.
Ray Hilborn (University of Washington) states ‘the use of catch data to indicate
stock status’ is misleading for a number of reasons. Catch may be low due to
management restrictions, and healthy, well-managed stocks may be classified as
collapsed. Many stocks naturally fluctuate dramatically in abundance, and as the
length of the time series of data becomes longer, the chance that any particular
low in abundance will cause catches to fall below 10% of the historical high catch
becomes greater.’ www.sciencemag.org
8. Fish feed industry must look for independent certification and find
fishmeal from sustainable sources. June 2007. The new European
Aquaculture Technology Platform (EATP) met for the first time in March 2007.
Frank van Ooijen, Director of Communication for Nutreco highlighted the
challenges faced by the fish feed industry:
♦ Ensure access to raw materials in a dynamic world
♦ Source fishmeal and oil from sustainable sources
♦ Look for independent certification
♦ Further improve feed conversion ratios
♦ Ensure health and safety: undesirable substances
♦ Increase knowledge of fish’s nutritional requirements
♦ Increase knowledge link between nutrition-fish health
www.eatpnet.eu/doc/FrankvanOoijen.pdf
9. Fisheries 2027 – a long-term vision for sustainable fisheries’ and
‘Delivering Fisheries 2027 – towards an implementation plan’. UK
Department of the Environment, Food and Rural Affairs. 2 October 2007.
Defra published two documents which will generally guide future fisheries policy
and provide direction for marine fisheries.
Fisheries 2027 sets out nine vision statements for sustainable fisheries notably:
♦ Catch levels optimise the long-term economic benefits including ensuring that
stocks are not over-exploited.
♦ Fish and fish products (including those not from human consumption) are
bought only from sustainably managed stocks or sustainable aquaculture
operations.
Delivering Fisheries 2027 covers what Defra plans to do now:
♦ Continue work to increase the size of the fish stocks
Page 61
♦ Continue work to make sure harvesting is at a sustainable level
And what Defra plans to do during the next five years:
♦ Continue work to build fish stocks and that harvesting is at appropriate levels
♦ Press for long-term management plans for all key stocks at EU level
♦ Consider scope for developing strategies for individual stocks in relation to
commercial harvesting www.defra.gov.uk
10. FAO Workshop on use of wild fish to feed cultured fish. 16-18 Nov 2007.
Kochi, India. The prospectus for this conference references the FIN Dossier and
made the following point.
♦ Although quality and price are the main determinants for fishmeal purchasers
in the aquafeeds industry, the sustainability of feed fish sources is beginning
to become more important. At present, most buyers depend on the FIN
‘Sustainability Dossier’ for information on what stocks are ‘sustainable’
or not, but there is a recognised need for a comprehensive analytical
framework that integrates target stock assessment with the wider ecosystem
linkages.
The following document was issued after the Kochi workshop
Principles, Guidelines and Recommendations
With funding from the Government of Japan, the Aquaculture Management &
Conservation Service (FIMA) is implementing a project Towards Sustainable
Aquaculture: Selected Issues and Guidelines (GCP/INT/936/JPN). Of the five key
thematic areas identified for targeted action under the above project, Component
4 of the project is addressing the issue of “Use of wild fish and/or other aquatic
species to feed cultured fish and its implications to food security and poverty
alleviation”. As a part of the consultative process and to review and analyze
critical issues related to the use of wild fish to feed aquaculture species, a
targeted workshop on “use of wild fish and/or other aquatic species to feed
cultured fish and its implications to food security and poverty alleviation” was held
in Kochi, India, 16-18 November 2007. The workshop brought together the
acknowledged international experts in the relevant fields, including the authors of
regional reviews, case studies, global synthesis and experts from FAO, NACA
and other international and regional organizations.
During the working group sessions, the participants of the workshop were divided
into two main working groups namely; 1) policy development, food security and
poverty alleviation issues and 2) aquaculture technology issues. A further
working group on fisheries management was also convened on an ad hoc basis.
The two main working groups were tasked with developing guiding principles and
recommendations for FAO on steps to develop the guiding principles into
technical guidelines. The working groups were asked to give comments and
recommendations for each of the issues identified.
Page 62
Following a series of working group deliberations and subsequent reporting to
plenary, the workshop agreed a series of principles and guidelines covering the
issues compiled in Session V. The finalised principles and guidelines are
provided below.
Principles and Guidelines on the use of wild fish to feed cultured fish
The Workshop considered that the use of fish as feed is acceptable, but should
be governed by the following principles:
Principle 1: Aquaculture should not utilize resources from unsustainable
fisheries.
− Where a reduction fishery/fishery for feed is not under close management,
the aquaculture sector, as a stakeholder should insist that concrete action
must be taken to introduce management measures. (CCRF Article 9.1.2,
Article 9.1.3)
− Consumers are encouraged to demand products from those producers
who adopt sustainable practices.
− Whilst recognizing that the bulk of some fisheries cater for the reduction
industry, fish should be harvested and landed to maximize its use for
direct consumption.
Fisheries management considerations1
Principle 2: Guidelines for responsible fisheries should be employed where wild
aquatic organisms are harvested for use as feed (Reference to CCRF).
This principle applies to the major reduction fisheries of the world which are
typically managed fisheries and the stock is specifically targeted for use as feed.
In other cases fish for feed is derived from fisheries which are not managed.
Examples of this are where low value/trash fish are directly targeted for use as
feed and in other cases, derived as by-catch from targeted fisheries and landed
for use as feed.
− When evaluating existing or proposed operations producing fish for feed,
the impact on the harvested fish and the ecosystem must be assessed in
terms of sustainability, habitat and social implications.
− Fish for feed should come from a managed fishery or be subject to a
management arrangement (e.g. under a RFMO). Fish for feed may come
from fisheries outside national waters and therefore not be subject to a
national fishery management plan. Steps should be taken to ensure
1
These recommendation must be validated against existing FAO guidelines on responsible fisheries to
ensure consistency of use of terms and objectives
Page 63
responsible and sustainable fishing to enforce conservation and
management measures.
− The capture of fish from artisanal fisheries may not be under a
comprehensive management regime, but may still be subject to local
regulation. Where this fish is being used as both food and feed, the
overriding considerations are the equitable and sustainable use of the
resource.
− Where aquaculture operations are dependent upon fish for feed, research
and development that reduces this should be promoted. During this
process, best practices for management, handling and quality control of
this production should be employed.
Ecosystem and environmental impacts
Principle 3: Reduction fishery and fisheries for feed operations should not
significantly impact on the environment or create significant negative ecosystem
level impacts, including impacts on biodiversity.
− Where the by-catch of a fishery forms a significant part of the catch, direct
ecosystem level impacts may result in significant by-catch; growth over
fishing. Where this occurs, specific management measures must be
introduced for the by-catch component. Targets would be to minimize
growth over fishing, catch of non target species and juveniles as well as
reduction of discarding.
− The fishing of fish for feed should not significantly impact biodiversity.
Research is needed on the effects of biomass removal from specific
trophic levels, on ecosystem function. There is a need for information on
the environmental (trophic impacts) of removing large amounts of biomass
from lower trophic levels to feed cultured fish. The effects of this in terms
of capture fisheries for larger species in the same area.
− The use of fish for feed should not present a significant risk of disease and
contaminant transfer, either to the aquaculture stock, or to wild fish
species that exist in the receiving ecosystem. In case of risk of disease
transfer, wild aquatic organisms for feed in aquaculture should be
processed to reduce this risk.
Ethical issues and responsible use
Principle 4: Using fish as feed should not adversely impact the livelihoods and
compromise food security of poor and vulnerable groups.
Page 64
− The use of fish as feed in some regions contributes to the livelihoods of
many small scale fishers and farmers. Understanding of negative social
impacts of the use of fish for feed is necessary. It is recognized that there
are inevitable trade-offs relating to resource allocation. Therefore in the
application of the principles on such practices, care should be taken to
mitigate negative social and economic impacts.
Principle 5: The use of fish as feed should not be permitted to be governed by
market forces alone.
− Policies need to be developed and implemented to ensure equitable
access to fish resources and to safeguard food security.
− Markets (allocation of resources) and economic incentives should not
operate against the interests of the poor and against the goal of
environmental sustainability.
Principle 6: Formulation of policies related to the use of fish as feed should not
exclude other users of this primary resource.
− Fish as feed is used for many purposes, including non-human food
commodities; consequently there is a need for dialogue and participation
among resource users.
− The outcome of this dialogue should be the development of policies and
the application of economic measures and regulations which ensure
equitable and ethical resource allocation.
− There are different relationships between aquaculture and industrial
fisheries, and aquaculture and artisanal fisheries, but all should conform to
the principles above.
Aquaculture technology and development
Principle 7: Aquaculture should be encouraged to make a progressive move from
using wet fish for feed to formulated feeds.
Such formulated2 feeds are preferable as they increase the flexibility of raw
material options and allow the potential for additional control over such
characteristics as product consistency, nutritional quality, transport volume,
stability and sterility. The use of formulated feeds should lead to improved
environmental performance and general efficiency at farm level.
It is recognized that the use of formulated feeds may not be appropriate in all
2
Need to consider alterative terms e.g. compounded but also must include fish meals and farm-based feeds
Page 65
circumstances, especially in locations with poor infrastructure or where wet fish
supplies are available from sustainable fisheries. This should be treated on a
case-by-case basis using cost benefit analyses that incorporate environmental
and social parameters where possible.
− As a first step, suitable raw materials should to be identified from both
aquatic and terrestrial sources. Use of these raw materials must not
transfer risk3 to alternative resources e.g. unsustainable terrestrial
products.
− Consideration should be given to the aquatic culture of aquafeed
resources e.g. polychaetes, algae, artemia, molluscs, etc.
− The use of locally available raw materials should be promoted whenever
possible, including fishmeal and aquafeed production, from sustainable
sources.
− Where most of the ingredients are imported, centralized feed production at
the port of entry is likely to be the preferred option for logistical reasons.
− Where appropriate, develop and promote local fishmeal and aquafeed
manufacturing sectors to both address specific local needs and to improve
access to formulated feeds as this will provide additional livelihood
opportunities to local populations.
− All fishmeal and aquafeed manufacture must meet minimal environmental
standards and product quality requirements.
− Feed manufacturers and suppliers have a responsibility to provide
appropriate quality feeds and to assist farmers in managing and
presenting these feeds on farm in ways which facilitate efficient and
optimum uptake by the stock (TG 5, p29). There is an additional
responsibility to declare all raw materials used in feed manufacture and
the final nutritional composition.
− The group has noted a lack of planning in certain regions and the need to
rationalize the number of species farmed that are dependent upon fish for
feed. This will have a positive effect on feed development, sector logistics
and farm-level performance.
− It is important to identify and address the perceived concerns, barriers,
threats and risks to the adoption of new feed technologies and raw
material alternatives.
3
Need to identify the various risks e.g. quality, supply contaminants
Page 66
− Education, extension and demonstration, best management practices,
training and capacity-building is required to assist the adoption of new
feed technologies, aquafeed manufacture and the use of raw material
alternatives.
Principle 8: The use of fish as feed should not compromise food safety and
quality of aquaculture products.
− The quality and freshness of raw aquatic materials should be maintained
at all stages in the supply chain.
− As persistent contaminants may be concentrated in feed fish, monitoring
and control should ensure that levels be minimized in the finished feed
and final products, in accordance with internationally recognized
standards, to ensure that food safety and product quality are maintained.
− It is recognized that it is sometimes feasible to reduce contaminant
content to acceptable levels using processing technologies.
Principle 9: The use of alternative raw materials (both animal and plant) should
not compromise food safety and quality of aquaculture products.
− It should be considered that the use of alternative materials may introduce
additional risks such as pesticide contamination, antibiotics, GMOs, TSEs
as well as sustainability issues.
− The group noted that intra-species recycling is an increasing practice in
certain regions and it is considered this is not an advisable practice.
However the reality is that this is emerging in certain areas and that it
might be acceptable if certain safeguards are put in place. This may
restrict the acceptability of these products in certain markets.4
− When feeding materials derived from other fish, comprehensive
monitoring should be undertaken to determine any negative impacts.
− If cultured raw materials are incorporated into aquafeeds, then specific
care should be taken to ensure unacceptable antibiotic residues are not
incorporated into the final feed.
− It is important to increase the awareness of risks associated with the
diversification of raw materials utilized for aquafeeds. It is therefore
This should be consistent and reflective of existing FAO Technical Guidelines for Responsible Fisheries 5.
Aquaculture Development. Supplement 1. Good Aquaculture Feed Manufacturing Practices
http://www.fao.org/docrep/005/y1453e/y1453e00.htm
4
Page 67
important to develop and standardize risk assessment methodologies as
well as establish monitoring and control procedures for the management
of alternative raw material use.
− There is a need to develop appropriate communication strategies for final
consumers into the benefits and risks of fish fed on alternative materials.
Statistics and information needs for management
Principle 10: Management of fisheries requires a sound knowledge base and a
decision making process based on the participation of different stakeholders (e.g.
capture fishery operators, traders; fish meal producers; aquaculture operators)
− In many cases the historical trends in the catch and composition, CPUE,
quality of catch and economic value, etc. of the fisheries which are
producing fish for feed is poorly recorded. This is particularly the case for
fish that are the product of from mixed assemblage multi- gear fisheries
where there is non-selective targeting. Larger reduction fisheries are
generally better understood and monitored and may even be under a
Regional fisheries management organization.
− It is important that the long term trends in these fisheries are monitored to
enable more concrete management measures to be put in place and the
“real” value for the fisheries to be established. This will also allow more
effective decision making concerning the trade-off between the use of
catch for food or its diversion into feeds.
− Defining the sub-sectors - the aquaculture sub-sectors have varying
demands for types and quantities of fish for feed. It is important when
discussing the use of resources that the sub-sector using that resource is
clearly identified.
− The amount of fish that is caught and utilized for feeds should be reported.
It is the responsibility of the state which is the eventual recipient country,
to report on the usage fish for feeds.
Definition of terms
There is a degree of ambiguity in the terminology employed in respect of the use
of fish for feed and related aspects that often leads to misconceptions and
misinterpretations. There is a need to standardize the terminology and the
workshop recommends that key terms referred to in this document are defined
and included in a glossary section (FAO Secretariat).
− Trash fish/low value fish
− Forage fish
− Baitfish
− Feed fish
Page 68
−
−
−
−
−
−
−
−
−
−
−
−
−
−
Fish as feed/fish for feed
Reduction fishery
Fish (= all aquatic species)
Artisanal fishery
Small-scale fishery
By-catch
Non target species
Formulated feeds
Compound feeds
Raw material
Growth overfishing
Non-target species
Discard (ing)
Direct consumption
SESSION VI: PRESENTATION OF FINAL WORKSHOP RECOMMENDATIONS
IN PLENARY
Recommendations of the Workshop to FAO
The Workshop convened in plenary to compile a series of recommendations to
FAO that might expedite the adoption of the draft technical guidelines developed
by the working groups. Secretariat will review principles and recommendations
above to extract out recommendations that can be undertaken by FAO
1) These principles and specific guidance must be validated by the secretariat
against existing FAO guidance on responsible fisheries to ensure consistency of
use of terms and objectives.
2) In order to address the use of fish as feed in aquaculture and other sectors
and to determine the significance of such uses on food security and poverty
alleviation three immediate actions are recommended:
− It is clear that the level of knowledge and information concerning some
fisheries that are currently providing fish for feed is insufficient for effective
decision-making and resource allocation. The working group therefore
recommends the following areas to be focussed on:
a.
Select case studies from each of the regions – time series of CPUE
catch composition and review the impacts on the stocks; evaluate the
different uses and channels of disposal; allocation models could also
be developed based on this information. Such allocation models
should also assess the impact on food security in each case.
b.
FAO strongly encourages member countries to improve their
reporting of the fisheries catch/use of fish for non-direct human
Page 69
consumption and start to provide this as an annually updated data
set. The importance of using this information for good fisheries
management was emphasized.
Immediate approach: To be taken up in the CWP Aquaculture Workshop in
Bangkok, January 2008
3) In order to encourage practitioners to move away from fresh or non-formulated
feeds towards formulated feeds, there is a need to better inform farmers and the
aquaculture sector regarding the opportunities of formulated feeds and the
limitations concerning the direct use of fish as feeds.
4) It is recommended that FAO initiates the dialogue on the use of fish as feed
between the different non-human food production sectors (aquaculture, livestock,
pet foods, etc) which use this resource, both globally and at the regional level.
The objective is to build awareness and consensus on the ethical usage of finite
fisheries resources.
Immediate approach: Discussions with FAO departments in animal production
and husbandry to develop a joint plan for further action. Possible integration with
their code of conduct for good animal production.
11. Greenpeace: Challenging Sustainability of Aquaculture. At the Seafood
Summit in Barcelona, Spain in January 2008, Greenpeace presented a report
which stated that aquaculture was not a solution to over fishing. In addition to
claiming that the use of fishmeal and oil in feed led to further depletion of wild
stocks (referring to some out of date conversion rates), it also cited the negative
impact of aquaculture on local people and the environment, detailed alternative
feed ingredients and looked at sustainable systems and certifications.
http://www.greenpeace.org/canada/en/campaigns/oceans/resources/documents/
challenging-aquaculture
12. State of Information on salmon aquaculture feed and the environment.
September 2005. A report by Albert Tacon is published on the website of WWF’s
multi-stakeholder Salmon Aquaculture Dialogue group. It’s based on field visits
by Mr Tacon in 2005 and uses FAO data from 2003/4. Among the conclusions, it
comments on:
♦ The current dependence of the salmon aquaculture and salmon feeds upon
fishmeal and fish oil and the need to reduce this dependency for the longterm sustainability of the salmon aquaculture sector
♦ Absence of agreed standards and criteria for assessing the sustainability of
reduction fisheries
♦ Increasing awareness and need to assess the potential health impact of
dietary contaminants in the finished product
http://www.worldwildlife.org/what/globalmarkets/aquaculture/WWFBinaryitem884
0.pdf
Page 70
A summary article on this project was published in was published in International
Aquafeed, 8(4): 22-37.
13. Use of fishery resources as feed inputs for aquaculture development:
trends and policy implications. Tacon, A.G.J., Hasan, M.R., Subasinghe, R.P.
(2006). FAO Fisheries Circular No. 1018, Rome, Italy.
ftp://ftp.fao.org/docrep/fao/009/a0604e/a0604e00.pdf .
14. IFFO Code of Responsible Practice for the production of fishmeal and
fish oil announced May 14th 2008. The International Fishmeal and Fish Oil
Organisation (IFFO), which represents the fishmeal and fish oil industry
worldwide, is developing a new Code of Responsible Practice (CORP). The
Code will enable fishmeal and fish oil producers to show that they are offering
traceable, high quality marine products which are manufactured safely using fish
from responsibly managed fisheries.
CORP was announced at IFFO’s May members’ meeting in Brussels and the
cross-industry Technical Advisory Committee which will help to shape the Code,
will meet during summer 2008. Subject to final approval of the Code by the IFFO
Board at its annual conference in October this year, producers should be able to
enter the audit process early in 2009. The first certifications would then be
announced later next year. Compliance will be third-party audited in conjunction
http://www.iffo.net/default.asp?fname=3&url=162&sWebIdiomas=1
15. Sustainable marine resources for organic aquafeeds. EXTRACT from
paper by Ronald W. Hardy University of Idaho, Aquaculture Research Institute,
and Jonathan Shepherd, International Fishmeal and Fish Oil Organisation to the
National (US) Organic Standards Board in November 2007, part of which
addresses the sustainability of wild stocks.
Sustainability has many interpretations, but in fisheries, sustainability refers to
the way in which harvests of wild stocks are managed to maintain stock
abundance at healthy, sustained levels. Stocks of fish are subject to a variety of
environmental factors that determine spawning and year-class recruitment
success, and large variations in stock abundance unrelated to harvest pressure
are well documented. Thus, stocks must be managed conservatively to avoid
compounding the effects of variable recruitment success with excessive harvest,
thereby reducing stock abundance. Further, harvest management must consider
recruitment into spawning populations, and allow sufficient escapement of
maturing fish to perpetuate the stock. In the Americas, two species of pelagic
fish dominate the production of fish meal and fish oil, Peruvian anchovy
(Engraulis ringens) and gulf menhaden (Brevoortia patronus). Both stocks are
managed to maintain sustainability by restricting harvest, and both have relatively
long histories of stock assessment to document population abundance and
variability in year-class strength (Vaughan et al., 2006; IFFO 2007a,b). Landings
of the Peruvian anchovy are the highest of any species of fish in the world,
Page 71
ranging from 11, 276,000 metric tons (Mt) in 2000 to 6,204,000 Mt in 2003, an El
Niño year. Because the Peruvian anchovy is a short-lived fish, maturing at about
one year of age and having an average longevity of three years, the effects of El
Niño are also short-lived; stock abundance typically exceeds average values in
the year following an El Niño event. Further, extensive research on Peruvian
anchovy stocks was conducted in the 1990s, leading to the establishment of
strict harvest quotas and modified fishing techniques to reduce harvest of
juvenile fish. Illegal fishing is minimized by aggressive surveillance methods and,
as a result, stock biomass has remained healthy. Harvest rates of Peruvian
anchovies have been adjusted to prevent overharvesting during fishing seasons
when fish are less abundant (Shepherd et al., 2005). Menhaden stocks are also
harvested well below their biological capacity and controls on the fishing are
comprehensive (IFFO 2007b).
There are several other significant sources of fish meal and fish oil in the
Western Hemisphere associated with processing by-products from sustainably
managed fisheries, specifically the Alaska pollock (Theragra chalcogramma)
fisheries in the Bering Sea and Pacific salmon fisheries in Alaska (Oncorhynchus
sp.). These fisheries have been certified as being sustainably managed by the
Marine Stewardship Council (www.msc.org). The Alaska pollock fishery is
considered the best managed fishery in the world and is second in landings only
to the Peruvian anchovy in terms of rankings of capture fisheries in the world.
NOAA Fisheries, formerly the National Marine Fisheries Service, is the federal
agency responsible for managing the nation’s living marine resources. NOAA
Fisheries conducts annual trawl and hydro-acoustic surveys to assess Alaska
pollock stock abundance and determine the Acceptable Biological Catch level.
This value is used to calculate the Total Allowable Catch level which is then set
at or below the Acceptable Biological Catch level
(http://www.fakr.noaa.gov/npfmc/). In addition, each fishing vessel is assigned
two NOAA Fisheries observers who sample the nets to record by-catch. Records
indicated that by-catch is minimal, approximately 1% and most of the by-catch is
retained and processed, making the discard rate approximately 0.5%, a fraction
of the average discard rate of 25% for the world’s fisheries. Total landings of
Alaska pollock were 1,414,962 Mt in 2005 (Table 1). Of this total, 66% was
processing by-product, e.g., material remaining after filleting comprised of the
head, viscera, backbone with retained muscle tissue, and skin (Table 2). Fish
meal and fish oil are produced from by-product material in shore-based fish
processing plants and onboard fishing vessels using conventional wet reduction
processing methods. Since the material processed to make fish meal and oil is
removed from human-grade pollock or salmon, the quality of pollock or salmon
fish meal or oil is very high. Production in 2000 and 2005 is shown in Table 3;
pollock meal and oil production is concentrated at ports in the Aleutian Islands,
primarily Dutch Harbor, and on at-sea processing vessels, whereas salmon meal
production is in Kodiak. It should also be considered that if the 66% of the
harvest is not rendered and recycled into fishmeal then the only alternative is to
dump this valuable waste material, which used to be a widespread practice.
Page 72
Five species of Pacific salmon are native to Alaska, and collectively they
represent the second largest fisheries in Alaska after pollock. Total salmon
harvest in 2005 was 408,014 Mt, resulting in 110,164 Mt of by-product (Tables 13). Production of salmon meal and oil is a seasonal activity limited to one
processing plant, Kodiak Reduction, located in Kodiak Alaska. The biggest
consideration concerning the production of organic fish meal and oil in Alaska
from fish processing by-products will be the necessity of having strict limits on
inclusion of other species in batches of processing by-product. Very small
numbers of non-targeted species, such as skates and rays, are always captured
in the pollock fishery, and either discarded at sea, or added to processing byproduct used to make fish meal and oil. Strict limitations on allowable amounts
of by-catch in organically labelled fish meal and oil produced from fisheries
processing by-products must be established. Salmon, in contrast, are harvested
in targeted fisheries that do not result in capture of non-targeted species. The
primary challenge to producing pure salmon meal is concurrent processing of
non-salmonid fish during the salmon fishing season, and the necessity of keeping
by-products from fish processing plants in Kodiak that are handling other species
of fish from being combined with salmon processing by-products (D. James,
personal communication).
www.ams.usda.gov/NOSB/index
16. Outlook for fishmeal and fish oil production and its role in sustainable
aquaculture, Dr Andrew Jackson, Technical Director, IFFO. May 2008,
World Aquaculture Society, Busan, Korea. IFFO, the organisation which
represents producers of fishmeal and oil, has published or presented several
papers addressing the sustainability of feed fisheries and the responsible supply
chain. These are effectively summed up in this paper published just as this
Dossier went to press. Copies are likely to be available from [email protected]
The presentation included the folowing points :
♦ Global supply of 4.9 to 6.2 million tonnes of fishmeal over the last four full
calendar years.
♦ Details of the controls imposed in the world’s biggest fishery – the Peruvian
anchovy, including tight quotas set at precautionary levels to protect the
stocks, and recent indications of healthy stocks.
♦ But general tightening of supply due to a combnation of precautionary quota
setting, increased used of traditional feed species (e.g. Chilean Jack
mackerel) for human consumption, global warming and fishery changes, and
poor fisheries management in some countries.:
♦ Just over 60% of fishmeal is currently being used in aquaculture, compared
with about 35% in 2000. Chinese use of fishmeal was lower in 2006 and
2007 than in any of the six previous years.
Page 73
♦ The availability of fishmeal has not been a limiting factor in aquaculture
growth to date. Fishmeal supplies are likely to remain tight into the future and
aquaculture will take a larger share of production. Improved processing
technology will make better vegetable proteins available to aquaculture. This
combined with improved nutritional knoweldge will allow lower dietary
inclusion levels for fishmeal as feed volumes grow. Fishmeal will increasingly
become a strategic ingredient in specialist diets such as starter, broodstock
and finisher diets.
♦ The fishmeal industry supports and acts with government to reinforce
measures to protect fisheries and supply responsibly. This needs to be
demonstrated using third party verification. IFFO has announced
development of a Code of Responsible Practice – 3rd party audited and
framed by a crosss-industry technical advisory group including
representatives ofTesco and the Marine Conservation Society. Certified
fishmeal should be available in 2009.
♦ Sustainably produced fishmeal and fish oil will continue to be available and
desired for high performance diets imparting health promoting properties
(from the natural high omega-3 content) to the finished products.
Page 74
GLOSSARY
ORGANISATIONS
ACFM – Advisory Committee on Fishery Management, an ICES committee with
representatives from each country which decides on official ICES advice.
CEFAS - The UK Government’s Centre for Environment, Fisheries and Aquaculture
Science, based in Lowestoft, provides scientific research and advice in fisheries
management and environmental protection.
EU Fishmeal – Union of Fishmeal and Fish Oil Manufacturers in the European
Community
FAO - United Nations' Food and Agriculture Organisation, based in Rome, monitors
fishery resources worldwide and provides independent scientific assessments of the
status of individual stocks.
GAFTA - Grain and Feed Trade Association. The international Association promoting
trade in grain, animal feedingstuffs, pulses and rice world-wide.
ICES - International Council for the Exploration of the Sea, an independent scientific
organisation advising North Sea and North East Atlantic Governments on the status and
management of commercial fish stocks. The information collected by ICES is developed
into unbiased, non-political advice about the marine ecosystem.
IFFO - International Fishmeal and Fish Oil Organisation
IFOP – Institute of Fisheries Research (Chile)
IMARPE – Institute of Fisheries Research (Peru)
MCS - Marine Conservation Society. A registered charity
MSC - Marine Stewardship Council. An independent body set up to establish basic
principles for sustainable fishing and provide standards for individual fisheries.
NEAFC – North East Atlantic Fisheries Commission.
RAC – Regional Advisory Council
Seafish - The Sea Fish Industry Authority, a statutory, levy-funded body whose role is to
promote the efficiency of the sea fish industry in the UK whilst having regard to the
interests of consumers.
STECF - the Scientific, Technical and Economic Committee for Fisheries (STECF) of the
EU which advises on marine biology, marine ecology, fisheries science, fishing gear
technology and fisheries economics.
University of Glasgow – Dr Robert Furness, Personal Professorship (Institute of
Biomedial and Life Sciences) to study seabird and fishing interactions.
Page 75
TERMS OF REFERENCE
Adult fish
Fish that have reached sexual maturity
Age group
A group of fish of the same age in years
Benthic Bottom-living fish
Blim
Limit biomass
Bpa
Precautionary biomass
By-catch
Species in the catch that are not the main target of the fishery.
Cpue
catch per unit effort
Catch
The total quantity of the fish taken by the fishery
Demersal
Fish living on or close to the seabed
Discards
Organisms that are returned to the sea after capture
Flim
Limit fishing mortality rate
Fpa
Precautionary fishing mortality rate
Gadoid
Bony round fish with a body form like cod and hake
IBTS
International Bottom Trawl Survey
ISR
In Season Review (usually before setting TAC)
Industrial
Fishing
A fishery that catches fish in bulk for production of fishmeal and fish oil –
usually targeted at small, short-lived species
In year
ICES prefers to advise on the quota for a particular year until the year begins and
checks can be made on the up-to-date status of the stocks.
Juvenile fish
(Immature) fish that have not reached sexual maturity
Landings
Fish that are brought ashore
Larva
Stage of life between hatching from the egg and metamorphosis
Mortality rate
A measure of the rates at which fish in a given stock die during a given
time period. Natural mortality defines deaths due to natural causes – fishing
mortality deaths caused by fishing
Pelagic
Fish living mostly in mid-water or near the surface and grouped in shoals
Precautionary
approach
Implemented in the ICES advice on fisheries management in 1998,
consisting of a framework of biological reference points, related to upper
exploitation boundaries. Management decisions for sustainable fisheries should
restrict the risk that the spawning biomass falls below a minimum limit, or that the
fishing mortality rate becomes too high. A minimum level of spawning stock
biomass, or limit biomass (Blim is defined). Below Blim there is a higher risk that
the stock reaches a level where it suffers from severely reduced productivity. A
limit to fishing mortality has also been defined. Management should prevent the
spawning stock decreasing below Blim and avoid fishing mortality above Flim.
Management advice is generally aimed at avoiding the risk that the spawning
stock falls below the Bpa (precautionary biomass) and fishing mortality increases
above Fpa
Stock
A part of a fish population. Total stock refers to both juveniles and adults,
whether in numbers or by weight. Spawning stock biomass refers to the numbers
(weights) of individuals which are old enough to reproduce
Page 76
TAC
Total Allowable Catch - the annual or seasonal quota limit applied to commercial
landings of individual fish stocks.
USEFUL WEB SITES FOR INFORMATION ON FEED FISH STOCKS
www.ices.dk
ICES - International Council for the Exploration of the
Sea
www.fao.org/fishery
FAO - United Nations' Food and Agriculture
Organisation, based in Rome
www.fishbase.org
A global information system on fishes. Set up initially
in collaboration with FAO with support from the EC.
Since 2001 supported by a consortium of seven
research institutions. Includes very useful technical
information on fish stocks
www.greenfacts.org/fisheries/index.htm
Greenfacts has reproduced the 2004 UN FAO
publication ‘The State of World Fisheries and
Aquaculture’ in fact sheet format
www.seafish.co.uk
UK Sea Fish Industry Authority
www.fisheries.is
Information Centre of the Icelandic Ministry of
Fisheries
www.hafro.is
Marine Research Institute, Iceland
www.neafc.org
North East Atlantic Fisheries Commission
http://ec.europa.eu/fisheries EU official information site
www.fin.org.uk
FIN – Fishmeal Information Network
www.iffo.net
IFFO - International Fishmeal and Oil Organisation
Page 77
fin provides information about fishmeal and how it is used. All its fact
sheets, newsletters, flyers and industry news can be found on the fin
website.
www.fin.org.uk
fin is an initiative of the Grain and Feed Trade Association
fin is funded by the Seafish Industry Authority
fin’s aim in producing this dossier is to provide accurate information about the
fish stocks used to produce fishmeal. The documentary evidence reproduced has
been taken from published text. None of GAFTA, the Sea Fish Industry Authority
nor fin’s co-ordinators, Chamberlain, can accept responsibility or liability arising
from errors or omissions.
ALL ENQUIRIES should be addressed to:
June Pearson
Grain and Feed Trade Association
Gafta House
6 Chapel Place
Rivington Street
London
EC2A 3SH
Telephone +44 (0) 20 7814 9666
Email
[email protected]
Website
www.gafta.com