Aportes de ITENU a la Resolución de Problemas de Números de

Transcription

Aportes de ITENU a la Resolución de Problemas de Números de
Aportes de ITENU a la Resolución de Problemas
de Números de Fibonacci
Carolina Melo Lopez
Semillero de Investigación ITENU.
Encuentro ALTENCOA6-2014.
Universidad de Nariño-Pasto.
Agosto del 2014
ITENU
This group was created during the fourth international conference on
Algebra, Number Theory, Combinatorics and Applications in Tunja,
Colombia, ALTENCOA4-2010.
We are focused on the number theory, we are dedicated specifically
to solve problems The Fibonacci Quarterly.
ITENU
Lines of research
Fibonacci numbers.
Theory of partitions.
Theory of compositions.
Theory of representations.
Figurate numbers.
ITENU
Fibonacci Quarterly
The Fibonacci Quarterly is a scientific journal on mathematical
topics related to the Fibonacci numbers, published four times by
year. It is the primary publication of The Fibonacci Association,
which has published it since 1963.
B-1142
Theorem
Prove that
n
X
k=1
F4k−1 = F2n F2n+1 for any positive integer n.
B-1142
Proof.
P
2
We know that F2n+1 = Fn2 + Fn+1
and nk=1 Fk2 = Fn Fn+1 , see
for example [?, p.79, Cor. 5.4] and [?, p.77, Th. 5.5], respectively.
Thus,
n
X
F4k−1 =
k=1
=
n
X
k=1
2n
X
2
2
F2k
+ F2k−1
Fk2
k=1
= F2n F2n+1 .
This proves the result.
B-1146
Theorem
Prove that
2
2
Fn+2
≥ 5Fn−1
for all integer n ≥ 1.
B-1146
Proof.
We prove the inequality by strong induction on n: The inequality
is clear when n = 1 and when n = 2, We now assume that the
2
2 ,
inequality is true to a natural number n. Since Fn+2
≥ 5Fn−1
2
2
Fn+1 ≥ 5Fn−2 and 2Fn+1 Fn+2 ≥ 2(5Fn−2 Fn−1 ), we have that:
2
Fn+3
= (Fn+2 + Fn+1 )2
2
2
= Fn+2
+ 2Fn+2 Fn+1 + Fn+1
≥ 5Fn−1 + 2(5Fn−2 Fn−1 ) + 5Fn−2
= 5(Fn−1 + Fn−2 )2
= 5Fn2
This proves the result.
B-1144
Theorem
Prove that
n
Y
(Fk2 + 1) ≥ Fn Fn+1 + 1
k=1
n
Y
(L2k + 1) ≥ Ln Ln+1 − 1
k=1
For any positive integer n.
B-1144
n
X
k=1
n
X
k=1
Fk2 = Fn Fn+1 , [1, p.77, Id.5.5]
L2k = Ln Ln+1 − 2, [1, p.78, Id.5.10]
B-1144
Lemma
Let {Gn }n∈N be the generalized Fibonacci sequence with integers a
and b. That is, G1 = a, G2 = b and Gn = Gn−1 + Gn−2 for all
n ∈ N\{1, 2}, then
n
X
k=1
Gk2 = Gn Gn+1 + a(a − b)
B-1144
Proof.
(by PMI) When n = 1:
P1
2
2
2
2
k=1 Gk = G1 = a = a − ab + ab = G1 G2 + a(a − b). So the
result is true when n = 1.
Assume it is true for an arbitrary positive integer t:
t
X
k=1
Gk2 = Gt Gt+1 + a(a − b).
B-1144
Proof.
Then
t+1
X
k=1
Gk2 =
t
X
!
Gk2
2
+ Gt+1
k=1
2
= Gt Gt+1 + a(a − b) + Gt+1
by the lH
= Gt+1 (Gt + Gt+1 ) + a(a − b)
= Gt+1 Gt+2 + a(a − b)
So the statement is true when n = t + 1. Thus it is true for every
positive integer n.
B-1144
Lemma
If {xn }n∈N is a sequence of nonnegative real numbers, then
!
n
n
Y
X
(xk + 1) ≥
xk + 1.
k=1
k=1
B-1144
Proof.
Q
P1
(by PMI) When n = 1, 1k=1 (xk + 1) = x1 + 1 =
k=1 xk + 1.
So the result is true when n = 1.
Assume it is true for an arbitrary positive integer t:
!
t
t
X
Y
(xk + 1) ≥
xk + 1.
k=1
k=1
B-1144
Proof.
Then
t+1
Y
t
Y
(xk + 1) =
k=1
"
≥
!
(xk + 1) (xt+1 + 1)
k=1
t
X
!
xk
#
+ 1 (xt+1 + 1)
by the lH
k=1
≥ xt+1
t
X
!
xk
k=1
≥
t+1
X
k=1
k=1
!
xk
+
t+1
X
+1
!
xk
+1
B-1144
Theorem
Prove that
n
Y
(Fk2 + 1) ≥ Fn Fn+1 + 1
k=1
n
Y
(L2k + 1) ≥ Ln Ln+1 − 1
k=1
For any positive integer n.
B-1144
Proof.
Let {Gn }n∈N be the generalized Fibonacci sequence with integers a
and b. That is, G1 = a, G2 = b and Gn = Gn−1 + Gn−2 for all
n ∈ N\{1, 2}. Note that if a = b = 1, then Gn = Fn . If a = 1 and
b = 3, then Gn = Ln .
This way, can be proved a more general result. I.e.:
n
Y
(Gk2 + 1) ≥ Gn Gn+1 + a(a − b) + 1
k=1
for all n ∈ N
B-1144
Proof.
So
n
Y
(Gk2 + 1) ≥
k=1
n
Y
n
X
!
Gk2
+1
k=1
(Gk2 + 1) ≥ Gk Gk+1 + a(a − b) + 1
k=1
Bibliography
Koshy N. N., Lecciones Populares de Matemáticas. Números
de Fibonacci, A Wiley-Interscience Publication JOHN WILEY
& SONS, INC. New York, October 2001. 672 pp. ISBN:
978-0-471-39969-8
Vorobiov Thomas, Fibonacci and Lucas Numbers with
Applications, Editorial Mir, Moscú.

Similar documents

Staphylococcus spp. inhabiting backyard rabbits

Staphylococcus spp. inhabiting backyard rabbits All isolates were tested using the STAPHYtest 16 (Erba Lachema, Czech Republic). Clumping factor, coagulase and hyaluronidase production, and novobiocin susceptibility were tested using Itest comme...

More information