6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn

Transcription

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn
6.642, Continuum Electromechanics, Fall 2004
Prof. Markus Zahn
Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities
I.
Magnetic Field Normal Instability
Courtesy of MIT Press. Used with permission.
A. Equilibrium ( ξ = 0 )
B. Perturbations: e
1⎡
µaH2a − µbHb2 ⎤ = 0
⎦
2⎣
x>0
⎧⎪−ρagx + Pod
Po ( x ) = ⎨
x<0
⎪⎩−ρb gx + Poe
;
B0 = µaHa = µbHb
Poe − Pod +
(
j ωt − k y y − k z z
−
)
−
Ha = Ha i x + ha , Hb = Hb i x + hb
⎡
⎢ − coth ka
⎡h ⎤
⎢ xc ⎥ = k ⎢
⎢
1
⎢⎣hxd ⎥⎦
⎢−
⎣ sinh ka
1
⎤
⎡
⎤
sinh ka ⎥⎥ ⎢ Ψ c ⎥
⎥
⎥⎢
coth ka⎥ ⎣ Ψ d ⎦
⎦
⎡
⎢ − coth kb
⎡h ⎤
⎢ xe ⎥ = k ⎢
⎢
1
⎢⎣hxf ⎥⎦
⎢−
sinh
kb
⎣
1
⎤
⎡
⎥
sinh kb ⎥ ⎢ Ψ e
⎥⎢
coth kb ⎥ ⎣ Ψ f
⎦
6.642, Continuum Electromechanics
Prof. Markus Zahn
⎤
⎥
⎥
⎦
Lecture 8
Page 1 of 13
C. Boundary Conditions
v xc = v xf = 0
Ψc = Ψf = 0
vxd,e =
−
n=
∂ξ
∂ξ
∂ξ
+ vyd,e
+ vzd,e
⇒ vxd = vxe = jωξ
∂t
∂y
∂z
ix −
∂ξ −
∂ξ −
iy −
i
∂y
∂z z
−
≈ ix −
2
2
⎡
⎛ ∂ξ ⎞
⎛ ∂ξ ⎞ ⎤
⎢1 + ⎜
⎟ +⎜ ⎟ ⎥
∂y ⎠
⎢
⎝ ∂z ⎠ ⎥⎦
⎝
⎣
∂ξ −
∂ξ −
iy −
iz
∂y
∂z
p ni = Tije nj − γ∇ ⋅ nni
⎛ ∂2 ξ ∂2 ξ ⎞
∇ ⋅n = −⎜ 2 + 2 ⎟
⎜ ∂y
∂z ⎟⎠
⎝
i = x ⇒ ni = nx = 1
⎛ ∂2 ξ ∂2 ξ ⎞
P0 + P ' = Txx nx + Txy ny + Txz nz + γ ⎜ 2 + 2 ⎟
⎜ ∂y
∂z ⎟⎠
⎝
1
perturbation perturbation
µHxhz
µHxhy
second order
Equilibrium ( ξ = 0 )
P0 = Txx0 ⇒ Pod − Poe =
1⎡
µaH2a − µbHb2 ⎤
⎦
2⎣
Perturbations
Pd' ( ξ ) − Pe' ( ξ ) =
1⎡
2µaHah'd ( ξ ) − 2µbHbh'e ( ξ ) ⎤ − γk2 ξ
⎦
2⎣
Pd' ( ξ ) = Pod ( ξ ) + Pd' ( 0 ) =
Pe' ( ξ ) = Poe ( ξ ) + Pe' ( 0 ) =
6.642, Continuum Electromechanics
Prof. Markus Zahn
dPod
dx
dPoe
dx
ξ + Pd' ( 0 ) = −ρagξ + Pd' ( 0 )
x =0
ξ + Pe' ( 0 ) = −ρb gξ + Pe' ( 0 )
x =0
Lecture 8
Page 2 of 13
⎡p ⎤ jωρ
a
⎢ c⎥ =
k
⎢⎣pd ⎥⎦
⎡
⎢ − coth ka
⎢
⎢
1
⎢−
sinh
ka
⎣
1
⎤
⎡ c⎤
⎥
sinh ka ⎥ ⎢ v x ⎥
⎥⎢ ⎥
coth ka⎥ ⎢⎣ v xd ⎥⎦
⎦
⎡p ⎤ jωρ
b
⎢ e⎥ =
k
⎢⎣pf ⎥⎦
⎡
⎢ − coth kb
⎢
⎢
1
⎢−
⎣ sinh kb
1
⎤
⎡ e
⎥
sinh kb ⎥ ⎢ v x
⎥⎢
coth kb ⎥ ⎢⎣ v xf
⎦
pd =
⎤
⎥
⎥
⎥
⎦
jωρa
−ω2ρa
coth kav d =
coth ka ξ
x
k
k
Pe = −
jωρb
ω2ρb
coth kbv e =
coth kb ξ
x
k
k
hxd = k coth kaΨ d
hxe = −k coth kbΨ e
−
−
−
⎡−
∂ξ −
∂ξ − ⎤ ⎡
n i b = 0 = ⎢i x −
iy −
i z ⎥ i ⎢(Ba − Bb ) i x + ( µahxd − µbhxe ) i x + µahyd − µbhye i y
∂y
∂z ⎦ ⎣
⎣
(
)
− ⎤
+ ( µahzd − µbhze ) i z ⎥
⎦
Ba = Bb = B0
µahxd = µbhxe
−
−
−
− ⎤
⎡−
∂ξ −
∂ξ − ⎤ ⎡
n × h = 0 = ⎢i x −
iy −
i z ⎥ × ⎢(Ha − Hb ) i x + (hxd − hxe ) i x + hyd − hye i y + (hzd − hze ) i z ⎥
∂y
∂z ⎦ ⎣
⎣
⎦
(
−
(
)
−
= i z hyd − hye − i y (hzd − hze ) +
)
−
−
∂ξ
∂ξ
Ha − Hb ) i z −
Ha − Hb ) i y
(
(
∂y
∂z
(hyd − hye ) = − ∂∂ξy (Ha − Hb ) ⇒ + jk y ( Ψ d − Ψ e ) = jk y (Ha − Hb ) ξ
(hzd − hze ) = − ∂z (Ha − Hb ) ⇒ + jk z ( Ψ d − Ψ e ) = jk z (Ha − Hb ) ξ
∂ξ
Ψ d − Ψ e = + (Ha − Hb ) ξ
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 3 of 13
µa k coth kaΨ d = −µb k coth kbΨ e
Ψd =
−µb coth kb
Ψe
µa coth ka
⎡ µ coth kb
⎤
Ψe ⎢− b
− 1⎥ = (Ha − Hb ) ξ
⎣ µa coth ka
⎦
Ψe = −
Ψd = +
(Ha − Hb ) ξ
µa coth ka
µa coth ka + µb coth kb
(Ha − Hb ) ξ
µb coth kb
µa coth ka + µb coth kb
D. Dispersion Equation
−ρagξ −
=
ω2ρa
ω2ρb
coth kaξ + ρb gξ −
coth kb ξ
k
k
µaHa k coth ka (Ha − Hb ) µb coth kb ξ − µbHb k coth kb (Ha − Hb ) ξµa coth ka
µa coth ka + µb coth kb
− γk 2 ξ
B0 (Ha − Hb ) coth ka coth kb ( µb − µa ) k
ω2
ρa coth ka + ρb coth kb ) = ( ρb − ρa ) g + γk2 −
(
k
µa coth ka + µb coth kb
Ha =
⎛ 1
B0
B
1 ⎞ ( µb − µa ) B0
, Hb = 0 ⇒ Ha − Hb = B0 ⎜⎜
−
⎟⎟ =
µa
µb
µaµb
⎝ µa µb ⎠
B20 ( µb − µa ) k
ω2
ρa coth ka + ρb coth kb ) = g ( ρb − ρa ) + γk2 −
(
k
µaµb ⎡⎣µb tanh ka + µa tanh kb ⎤⎦
2
E. Short Wavelength Limit (k a
1, k b
1)
tanhka ≈ tanhkb ≈ 1
B20 ( µb − µa ) k
ω2
ρa + ρb ) = g ( ρb − ρa ) + γk 2 −
=f
(
k
µaµb ( µa + µb )
2
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 4 of 13
Incipience of Instability
f =0
B20 ( µb − µa )
df
= 0 = 2γk c −
µaµb ( µa + µb )
dk
2
B20 ( µb − µa )
2
kc =
2γµaµb ( µa + µb )
2
2
⎡ B2 ( µ − µ )2 ⎤
⎡ B2 ( µ − µ )2 ⎤
0
b
a
a
⎥ −⎢ 0 b
⎥ 1 =0
g ( ρb − ρa ) + γ ⎢
⎢ 2γµaµb ( µa + µb ) ⎥
⎢ µaµb ( µa + µb ) ⎥ 2γ
⎣
⎦
⎣
⎦
2
⎡ B2 ( µ − µ )2 ⎤
a
⎢ 0 b
⎥ = 4g ( ρb − ρa ) γ
⎢ µaµb ( µa + µb ) ⎥
⎣
⎦
kc =
1
2γ
4g ( ρb − ρa ) γ =
g ( ρb − ρa )
γ
Courtesy of MIT Press. Used with permission.
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 5 of 13
Courtesy of MIT Press. Used with permission.
II.
Electric Field Normal Instability
A. Polarization Forces
Courtesy of MIT Press. Used with permission.
µa →
εa
µb →
εb
B0 → D0
ω2
( ρa coth ka + ρb coth kb ) = g ( ρb − ρa ) + γk2 −
k
6.642, Continuum Electromechanics
Prof. Markus Zahn
D20 ( εb − εa ) k
2
εaεb ⎡⎣εb tanh ka + εa tanh kb⎤⎦
Lecture 8
Page 6 of 13
B. Perfectly conducting lower fluid ( εb → ∞ )
Courtesy of MIT Press. Used with permission.
2
⎛V ⎞
ω2
ρa coth ka + ρb coth kb ) = g ( ρb − ρa ) + γk 2 − εa ⎜ 0 ⎟ k coth ka
(
k
⎝ a ⎠
Courtesy of MIT Press. Used with permission.
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 7 of 13
III.
Tangential Gradient Fields
Courtesy of MIT Press. Used with permission.
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 8 of 13
A. Equilibrium
−
E = iθ
−
V0
V
≈ iy 0
θ0 r
θ0 r
V0
x⎞
⎛
⎜ 1 + ⎟ ; r ≈ R − x ; E0 =
R⎠
θ0 R
⎝
−
x⎞
⎛
≈ i y E0 ⎜1 + ⎟
R
⎝
⎠
lim ∆ → ∞
Poa ( x ) = −ρagx + Poa
Pob ( x ) = −ρb gx + Pob
Pob − Poa + Txx = 0
Txx = −
1 2
1
εEy = − εE20
2
2
Txx = −
1
( εa − εb ) E20 = Poa − Pob
2
B. Perturbations
⎡ α
⎢e x
⎢
⎢e β
⎣ x
⎡
⎤
− coth k∆
⎢
⎥
⎢
⎥ =k
⎢
1
⎥
⎢−
⎦
sinh
k∆
⎣
1
⎤
⎡
⎥
sinh k∆ ⎥ ⎢ Φ α
⎥⎢
coth k∆ ⎥ ⎣ Φ β
⎦
⎤
⎥
⎥
⎦
lim ∆ → ∞
e xa = k Φ a
e xb = −k Φ b
⎡ α
⎢p
⎢ β
⎣p
⎡
⎤
⎢ − coth k∆
⎥ = jωρ ⎢
⎥
k ⎢
1
⎦
⎢−
sinh
k∆
⎣
1
⎤⎡
α
⎥
sinh k∆ ⎥ ⎢ v x
⎥⎢ β
coth k∆ ⎥ ⎢ v
x
⎦⎣
⎤
⎥
⎥
⎥
⎦
v α = v β = jωξ
x
Pa =
x
jωρa
ω2ρa
v xa = −
ξ
k
k
Pb = −
jωρb
ω2ρb
v xb =
ξ
k
k
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 9 of 13
C. Boundary Conditions
−
n = ix −
∂ξ −
∂ξ −
iy −
i
∂y
∂z z
−
−
− ⎤
⎡−
∂ξ −
∂ξ − ⎤ ⎡
n × E = 0 ⇒ ⎢i x −
iy −
i z ⎥ × ⎢( exa − exb ) i x + eya − eyb i y + ( eza − ezb ) i z ⎥ = 0
∂y
∂z
⎣
⎦ ⎣
⎦
(
−
(
)
−
)
i z eya − eyb − i y ( eza − ezb ) = 0
eya = eyb ⇒ jk y Φ a = jk y Φ b ⎫
⎪⎪
⎬ ⇒ Φ a = Φb ≡ Φ
⎪
eza = ezb ⇒ jk z Φ a = jk z Φ b ⎪
⎭
ni
⎡−
ε E = 0 ⇒ ⎢i x −
⎣
−
−
∂ξ −
∂ξ − ⎤ ⎡
iy −
i z ⎥ i ⎢E0 ( εa − εb ) i y + ( εaexa − εbexb ) i x +
∂y
∂z
⎦ ⎣
− ⎤
+ ( εaeza − εb ezb ) i z ⎥ = 0
⎦
εa e xa − εb e xb + jk y ξ E0 ( εa − εb ) = 0
k Φ ( εa + εb ) + jk y E0 ( εa − εb ) ξ = 0
Φ=
− jk y E0 ( εa − εb ) ξ
k ( εa + εb )
⎡ ∂2 ξ ∂2 ξ ⎤
p ni = Tij nj + γ ⎢ 2 + 2 ⎥ ni
∂z ⎦⎥
⎣⎢ ∂y
i = x , nx = 1
p = T xx + Txy ny + Txz nz − γk2 ξ
(
)
Txx =
2
1
1
1
ε E2x − E2y − E2z = − ε ⎡⎣Ey0 + ey ⎤⎦ = − ε ⎡⎣E2y0 + 2E0ey ⎤⎦
2
2
2
Txy =
ε Ey0 ex
Txz =
ε e x ez
6.642, Continuum Electromechanics
Prof. Markus Zahn
−
( εaeya − εbeyb ) i y
Lecture 8
Page 10 of 13
Txy ny second order
Txz nz third order
Txx ( ξ ) = −
( )
1 d 2
Ey0
ε
2 dx
= −εE0
T xx = −εE0
= −εE0
ξ − ε E0ey
dE0
ξ − ε E0ey
dx
dE0
ξ − ε E0 e y
dx
dE0
ξ − jk y Φε E0
dx
T xx = − ( εa − εb ) E0
pT =
x =0
dE0
ξ − jk y E0 Φ ( εa − εb )
dx
dp0
ξ + p = P a − P b − g ( ρa − ρb ) ξ
dx
P a − P b − g ( ρa − ρb ) ξ = − ( εa − εb ) E0
−
dE0
ξ − jk y ΦE0 ( εa − εb ) − γk2 ξ
dx
ω2
( ρa + ρb ) ξ − g ( ρa − ρb ) ξ =
k
− ( εa − εb ) E0
(
jk y E0 ( εa − εb ) − jk y E0
dE0
ξ − γk2 ξ −
dx
k ( εa + εb )
) ( εa − εb ) ξ
k2y E20 ( εa − εb )
dE0
ω2
ρa + ρb ) = g ( ρb − ρa ) + γk2 + ( εa − εb ) E0
+
(
k
dx
k ( εa + εb )
2
E0
R
Uniform tangential field always stabilizes.
Gradient field stabilizes, if higher permittivity fluid is in stronger
electric field. System stable even if heavier fluid above if
( εa − εb ) E0
dE0
> g ( ρa − ρb )
dx
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 11 of 13
Courtesy of MIT Press. Used with permission.
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 12 of 13
Courtesy of MIT Press. Used with permission.
6.642, Continuum Electromechanics
Prof. Markus Zahn
Lecture 8
Page 13 of 13

Similar documents