Kinematic Analysis of Mechanisms
Transcription
Kinematic Analysis of Mechanisms
FOUNDATION of MECHANICS 1 Presentation03: Kinematics analysis of mechanisms Outline • Four-bar linkage: introduction; velocity and acceleration analyses (graphical approach). • Crank-slider mechanism: position, velocity, and acceleration analyses (graphical and analytical approaches) approaches). • General analytical approach: the matrix formulation. • Elements for the analytical study of Relative Motions. FOUR-BAR LINKAGE Four-bar Four bar linkage GRASHOF’s rule a: longest bar, b: shortest bar c, d: intermediate length bars. – a + b < c + d Grashof mechanism – a + b > c + d non-Grashofian mechanism – a + b = c + d Change-point mechanism FOUR-BAR LINKAGE Grashof-type yp four-bar CRANK – ROCKER Dead-point configurations Grashof-type four-bar TWO CRANKS Grashof-type four-bar TWO ROCKERS FOUR-BAR LINKAGE Change-point mechanism Isosceles linkage Parallelogram linkage Antiparallel linkage Locomotive Table lamp FOUR-BAR LINKAGE Position analysis Known: geometry, θ1 2 A O1A AB BO3 B 3 1 B 2 A θ1 O1 3 1 4 O1O3 O3 2’ θ1 O1 4 B’ B 3’ O3 FOUR-BAR LINKAGE Position analysis NO SOLUTION A θ1 1 O1 4 O3 A B≡B’ SINGULARITY θ1 1 O1 4 O3 FOUR-BAR LINKAGE Velocity analysis Known: geometry, position, 1 C24 2 vA 2 C12 ≡ A vB 1 1 C14 ≡ O1 B ≡ C23 3 3 4 C34 ≡ O3 1 vA, 2 vB, 3 FOUR-BAR LINKAGE Acceleration analysis Known: geometry, position, 1 (assumed as constant), 2, 3 2 A B 3 1 aBn 1 aA 2 aBAn (aBAt? aBAn) 3 aBn (aBt? aBn) aBt a aA BAn 4 O1 aBt aBn O3 aBAt aA aBAn aB = aBn + aBt aBn aB aBAt aA aBAn aB aB = aA + aBAt + aBAt RRRP (or 3R-P) KINEMATIC CHAIN Crank-Slider mechanism Crank-Slotted mechanism CRANK-SLIDER MECHANISM Velocity analysis 1 C31 vA, 2 vA vB C24 2 C34 A ≡ C12 1 2 1 C23 ≡ B vB C14 ≡ O 4 3 CRANK-SLIDER MECHANISM Kinematic analysis: analytical method A l r B O s Position sB r cos( ) l cos( ); Velocity sB r (sin( ) Acceleration sin( ) sin( ) sin(2 ) 2 1 2 sin 2 ( ) ); cos( ) cos( ) sin( ) 2sin( ); 2 sB r sin( ) r cos( ) l sin( ) l 2 cos( ) 2 cos( ) cos( ) KINEMATIC ANALYSIS: ANALYTICAL METHOD Matrix formulation Position: q s f ( q, s ) 0 d f ( q, s ) dt q, s, q Velocity: Closure equations s f q q Acceleration: q, s, q, s, q f s s0 1 1 s s B h( q ) q k ( q ) q det( B ) 0 k ( q ) ds ' 2 2 s k (q) q q k q k q dt q 1 det( B ) 0 B h 1 DOF systems: q := independent variable s ::= dependent variables SINGULARITY KINEMATIC ANALYSIS: ANALYTICAL METHOD Matrix formulation: example (Crank-slider) Position: q : f ( q, s ) 0 Closure equations s : sB r cos( ) l cos( ) sB 0 r sin( ) l sin( ) 0 Velocity: d f ( q, s ) dt f q q h f s s0 det( B ) 0 1 B r sin(( ) l sin(( ) 1 r cos( ) l cos( ) 0 0 s B 0 s B h( q ) q k ( q ) q det( B ) l cos( ) 2 KINEMATIC ANALYSIS: ANALYTICAL METHOD Matrix formulation: example (Crank-slider) d f ( q, s ) Velocity: dt f q h 2 q f s s0 det( B ) 0 1 s B h( q ) q k ( q ) q B 1 cos( ) 0 r sin( ) l cos( ) cos( ) r cos( ) r sin( ) r tan( ) cos( ) sB 1 tan( ) k ( q ) ds ' 2 2 k (q) q q k q k q Acceleration: s dt q cos(( ) sin( i ( ) 2 cos( ) cos( ) r cos( ) r tan( ) sin( ) sB r sin( ) r tan( ) cos( ) RELATIVE MOTION Position ( P - O0 ) ( P - O1 ) (O1 - O0 ) i1 x1 j1 y1 i0 x 0 j0 y 0 Velocity 1 P 2 vP y1 j1 y0 i1 O1 x1 d ( P - O0 ) dt d i1 d j1 i 0 x 0 j0 y 0 i1 x1 j1 y1 x1 y1 dt dt j0 O0 i0 x0 v O1 ( P O1 ) v r vT v r RELATIVE MOTION ( P - O0 ) ( P - O1 ) (O1 - O0 ) i1 x1 j1 y1 i0 x 0 j0 y 0 v P i0 x 0 j0 y 0 i1 x1 j1 y1 ( P O1 ) Acceleration d i d j1 d ( P O1 ) 1 a P i 0 x 0 j0 y 0 i1 x1 j1 y1 x1 y1 ( P O1 ) dt dt dt aO ( P O1 ) 2 ( P O1 ) a r 2 v r aT a r a C KINEMATICS: SUMMARY T i /P bl Topic/Problem M h d Methods • Kinematics of a p particle Cartesian p planar vectors; Complex Numbers • Kinematics of a rigid body Cartesian planar vectors; Complex Numbers (Rivals theorem, Instant Centre of Rotation, Kennedy-Aronhold theorem, g motions)) Rotational/Translational/Rolling • Kinematic analysis of mechanisms (Position, Velocity, and Acceleration analyses, Relative motion) Graphical approach; Analytical approaches: • explicit formulation • matrix formulation • Complex Numbers
Similar documents
Tipos de Mecanismos: Simples e Complexos
• Significado físico dos 2 valores de γ γ1
More information