LESSON 1: PLANT CELLS

Transcription

LESSON 1: PLANT CELLS
LESSON 1: PLANT CELLS
LEVEL 1
What is a plant? A quick answer might be “something that is green and has leaves.” But
are all plants green? There’s a type of maple tree that has purplish-red leaves. Obviously it is a
plant because it is a tree. So being green can’t be a requirement for being a plant, though most
plants are indeed green. What about leaves? Do all plants have leaves? Think about a cactus. Do
those sharp needles count as leaves? Or what about the “stone plant”? It looks like a rock. (No
kidding--it really does!) What makes a plant a plant?
The answer is... a plant is a plant because it can make its own food using a process called
photosynthesis. Plants can use the energy from sunlight to turn water and carbon dioxide into
sugar. (“Photo” means “light,” and “synthesis” means “make.”) Wouldn’t it be nice if you could
make your own food from sunlight? No more going to the grocery store or planting a garden. You
could just stand in the sunshine, take a deep breath, drink a glass of water, and make your own
food. Sounds funny, but that’s exactly what plants do. They take water from the ground, carbon
dioxide from the air, and energy from light and turn them into food.
Photosynthesis is a very complicated chemical process. The exact details of how a plant
takes apart the molecules of water and carbon dioxide and turns them into sugar is so complicated
that you need a college degree in chemistry to really understand it. Since you probably don’t
want to learn about “photophosphorylation” and “chemiosmosis,” we’ll just stick to the basics of
photosynthesis.
To understand the basics of photosynthesis we need to start by looking at a plant cell. A
cell is the basic “building block” of a plant. A plant is made of individual cells in much the same way
that a Lego™ structure is made of individual bricks.
Here is a simplified drawing of a typical plant cell. (In reality they are much more
complicated than this. But for now, this is enough.) Inside the cell are little parts called organelles.
Use a colored pencil to add a little
color to this diagram. Color lightly!
Coloring suggestion:
green: chloroplasts
yellow: nucleus
red: endoplasmic reticulum
orange: mitochondria
purple: Golgi bodies
Not all plant cells have exactly this shape. Some are very long and thin, some are flat,
some are round, and some are curved. The shape of a plant cell depends on where it is in the
plant: a root cell will look different from a leaf cell. However, all plant cells are similar to the one
shown here. Most importantly for our discussion of photosynthesis, all plant cells have organelles
called chloroplasts.
1
The things that look
like stacks of pennies
(or maybe pancakes)
are called thylakoids.
Chlorophyll molecules
are located on the surfaces of the thylakoids.
inside a chloroplast
It is inside the chloroplast that photosynthesis takes place. The chloroplast’s job is to use the
energy in the sunlight to make sugar. The chloroplasts contain a special chemical called chlorophyll.
This chemical happens to reflect green light, which is why most plants look green. One molecule of chlorophyll is so small that you can’t see it, even with a microscope. It’s
made of five different kinds of atoms (carbon, hydrogen, nitrogen, oxygen, and magnesium) linked
together to make this shape:
This molecule has the amazing ability to transform light energy into chemical energy. The
light energy is used to tear apart molecules of water and carbon dioxide. The plant takes six carbon
dioxides and twelve waters and turns them into one glucose (sugar) molecule plus six oxygens and
six waters.
The water molecules on the bottom are not the same water molecules from the top. The plant
tears apart the original water molecules and makes totally new ones!
2
Without drawing each individual molecule, the formula for photosynthesis looks like this:
LIGHT
CARBON
DIOXIDE
WATER
SUGAR
(glucose)
OXYGEN
WATER
This says in pictures what we’ve already said in words: plants use sunlight, carbon dioxide
and water to make sugar. In the process of making sugar, oxygen and water also are produced.
Oxygen and water are called “by-products” of photosynthesis. (A by-product is something extra that
is produced along with what you intended to make.)
Now let’s do something interesting with this formula. Let’s flip it around:
SUGAR
(glucose)
OXYGEN
WATER
CARBON
DIOXIDE
WATER
ENERGY
This “backwards” photosynthesis is called respiration. Respiration is what all cells do (both
plant and animal cells) to get energy from sugar. Plant cells use the sugar they make, plus oxygen
and water from the environment, to make energy that keeps their cells alive and growing. Animals
use the sugar they eat (made by plants), water they drink, and oxygen they breathe in, to make
energy for their cells. Both plants and animals breathe out carbon dioxide and water vapor. (You can
see this water vapor in your breath on a cold winter day--it looks like a cloud of steam.)
Both these processes--photosynthesis and respiration--go on at the same time in plants.
(Animals do only respiration.) Photosynthesis and respiration complement each other nicely. The
waste products of one process become the raw materials for the other. We could draw it like this:
Animals depend on plants not only for putting oxygen back into the air, but also for supplying
food. All animals are dependent upon plants whether they eat plants or not. Even carnivores such
as lions depend on plants, because the prey that they eat (zebras, for instance) are usually plant
eaters. Without grass for the zebra to eat, the lion would starve.
3
Could plants survive without animals? Perhaps some could. But what would happen if there
were no bees or butterflies to pollinate flowers? What about plants that depend on seed-eating
animals to spread their seeds? Plants do benefit from animals.
Let’s wrap up this section with a brief review of what goes on in a leaf. See if you can follow
along with this paragraph, putting your finger on the appropriate words or arrows in the diagram as
you read. Stop when you come to a comma or period and make sure your finger is in the right place
before you continue. You may also want to color the diagram. Make sure you color lightly so that
you can still see the words clearly.
The plant uses light, carbon dioxide, and water in a process called photosynthesis.
This process results in the production of oxygen, water, and glucose (sugar). Some of the
glucose is used by the plant as its own food. (This “eating” process inside a plant cell is
called “respiration.”) For respiration, the plant needs some of its sugar, plus oxygen and
water. It produces energy, plus carbon dioxide and water.
Plants usually make more glucose than they need. The leftover glucose is packaged
into starches or fats and is stored in the roots, seeds and fruits.
4
And now for something completely different...
HOW CELLS DIVIDE
As a plant grows, it must increase the number of cells it has.
To make more cells, plants use a process called mitosis. Mitosis
is both very simple and very complex. It is simple because it just
means that a cell splits in half, making two cells. That’s it. The
word mitosis just means splitting in half. However, in order to do
this, the cell must go through some very complicated procedures.
First, the nucleus must prepare. If there are to be two cells,
each new cell must have a complete copy of the DNA instructions. Also, each new cell will need a full
set of organelles. Let’s say a cell needs 10 chloroplasts to survive. That means that before it is ready
to split in half, the “parent” cell needs to have 20 chloroplasts, 10 for each new “daughter” cell. (Sorry,
there are no “son” cells, only “daughter” cells!) Each new cell will also need mitochondria, Golgi
bodies, ribosomes and all the other organelles. So a cell has to keep busy making new organelles all
the time.
When the cell has enough organelles to make two cells, the division process starts. Scientists
have lots of complicated names for all these steps, but we’re going to use ordinary words for our
explanation. (If you want to know the complicated words, you can look them up on the Internet; just
use the key word “mitosis.”)
This is how the nucleus divides:
1) The DNA in the nucleus doubles, making two complete
copies. Organelles called centrosomes go to the opposite
sides of the nucleus and get ready to start pulling it apart.
2) The two copies of the DNA separate. At this point they look
pretty organized. Usually the DNA looks like a pile of yarn, but
right now it’s all lined up neat and tidy. The membrane around
the nucleus start to disintegrate.
3) New membranes begin to form around the two
new nuclei (nu-klee-i).
4) The membranes are complete. Now there are two
separate, identical nuclei.
Now the whole cell prepares to split in half. Half of the
organelles go to one side, and half go to the other. Each
side has a nucleus. At this point the cell looks very long.
In fact, this is sometimes called the “elongation phase”
because the cell looks very long.
5
→
Now the cell builds a wall between the two sides. Usually the two cells stay stuck together,
though, because that’s the way a plant stays together. If the cells came apart, the plant would come
apart. Then each cell starts all over again. As soon as mitosis is over, it’s time to start making extra
organelles again, to prepare for the next division. (And just think--this goes on billions of times each
day, right in your own backyard!)
Wow--we made mitosis seem pretty easy to understand. Just be aware that if you go online
and check out some Internet articles or videos about mitosis, you’ll see words like “cytokinesis,”
“metaprophase,” and “telophase.” However, don’t let these fancy words scare you off. For example,
in cytokinesis, “cyto” means “cell,” and “kinesis” means “movement.” If you know what the Latin and
Greek roots mean, the word becomes easy to understand.
ACTIVITY 1: LOOK AT SOME REAL CELLS
Use the key words “plant cell micrographs” in an Internet search engine (like Google) to
see some actual photographs (micrographs) of real plant cells. The micrographs will be in black
and white because the electron microscopes used to take the pictures don’t use light to create their
pictures--they use electrons. No light means no color.
ACTIVITY 2: SOME PLANT CELL VIDEOS
There are two short video clips related to plant cell mitosis posted on the Botany playlist at
YouTube.com/TheBasementWorkshop. The first one shows actual footage of a real nucleus dividing in half. The second one is very silly and shows some people in a swimming pool trying to imitate
mitosis.
ACTIVITY 3: WATCH CHLOROPLASTS “STREAMING”
Chloroplasts move around inside the cell in a very orderly way. They flow around in a circle,
around the outside edge. They do this so that each chloroplast has an equal chance to absorb
sunlight if the light is stronger on one side than another. You can see this in action by watching two
videos posted on the Botany playlist (YouTube.com/TheBasementWorkshop).
ACTIVITY 4: ONE MORE VIDEO: THE DISCOVERY THAT PLANTS DON’T EAT DIRT
Until recent centuries, people assumed that plants “ate” dirt. It seemed obvious. You put a
seed into the ground and it grew into a large plant. It seemed likely that the plant absorbed nutrition
from the soil through its roots. In 1643, a scientist named Jan Van Helmont decided to test if this was
true. He carefully weighed a pot of dirt before he planted a seed. He let the seed grow into a large
plant then dumped out the dirt and weighed it again. Surprise! The dirt weighed almost the same at
the end of the experiment! You can watch a short video that shows Van Helmont and mentions a few
other scientists who contributed to our knowledge of how plants work. This video is on the Botany
playlist.
6
ACTIVTY 5: PHOTOSYNTHESIS/MITOSIS CROSSWORD PUZZLE
ACROSS
1) The organelles where photosynthesis takes place
2) The nucleus is surrounded by a thin ______________. (Hint: Read step 3 on page 5.)
3) The “parent” cell produces two ”________________.”
4) The process by which plants use light, carbon dioxide, and water to make glucose sugar
5) The phase in which a cell gets very long
6 The goal of respiration is to release _____.
7) Plants need this liquid for photosynthesis
8) The DNA of a plant cell is inside this organelle
9) The name of the chemical in the chloroplasts
10) Plants need this gas for photosynthesis.
DOWN
1) Plants use this source of energy for photosynthesis
2) When plant cells divide in half it is called __________.
3) Humans can’t make their own sugar; we have to ___.
4) Glucose is a type of _____.
5) This is produced by plants during photosynthesis. It is also used by plants during respiration.
6) The instructions inside the nucleus are in the form of ___.
7) The empty “bubble” in a plant cell
8) The process used by both plants and animals to get energy from sugar and oxygen
9) The outer layer of a plant cell is called the ____.
7
ACTIVITY 6: FILL IN THE MISSING ATOMS IN CHLOROPHYLL
Use the chlorophyll atom in this chapter to help you fill in the missing atoms.
Bonus question: How many atoms of magnesium are in a cholorphyll molecule? _____
Bonus idea: Magnesium can only form two bonds with other atoms. In this diagram, there are four lines
stretching out from the magnesium atom. Wait a minute--that math doesn’t add up! All four nitrogens can’t
bond with the magnesium. The dotted lines are sort of like “impossible” bonds. This makes for an unstable
situation. It’s this instability, however, that makes the chlorophyll molecule able to capture the sun’s energy!
ACTIVITY 7: LATIN WORD ROOTS
Many scientific words come from Latin or Greek. See if you can match the Latin or Greek
word root on the left with its meaning on the right. To help you figure them out, think about the
meanings of these words.
chloroplast
vacuum
photosynthesis
chlorophyll
nucleus
respiration
repeat
MATCH:
(TIP: Do the ones you are sure
1) photo ____
A) empty
of first, then use the process of
elimination to try to figure out the
2) vacuus ____
B) to make
ones you aren’t so sure of.)
3) synth ____
C) again
4) chloro ____
D) light
5) nucula ____
E) breath
6) re ____
F) greenish-yellow
7) spiros ____
G) leaf
8) phyllo ____
H) little nut or kernel 8
LEVEL 2
A cell is sort of like a miniature factory. Real factories make products, store them in warehouses, and ship them out to customers. Cells make things like sugars, proteins and fats,and they
store them and transport them. In this diagram, the plant cell looks flat. Remember that in real life
plant cells are three-dimensional.
wall
smooth
ER
vacuole
cytoskeleton
(all these little lines)
mitochondria
nucleus
rough
ER
ribosomes
leucoplast
Golgi body
chloroplast
All the “blank space”
behind the organelles
is the cytoplasm.
Here is what each little organelle does:
Vacuole: This is like a water-filled bubble in the middle of the cell. Water from outside the
cell constantly “leaks” into the vacuole, keeping it full. This water pressure inside the cell keeps the
cell firm and healthy. If a plant can’t get enough water to fill the vacuoles in its cells, the cells will
shrink, causing the plant to wilt.
Cytoplasm: This is the jelly-like fluid inside the cell but outside the vacuole. It contains not
only water, but proteins, fats, carbohydrates, and minerals. The cytoplasm circulates the chloroplasts around and around, making sure they all get an equal amount of light.
Chloroplasts: This is where photosynthesis occurs. Chloroplasts contain the chemical
chlorophyll, which can use the energy in sunlight to turn carbon dioxide and water into sugar
(making water and oxygen in the process).
Cytoskeleton: This is a network of fibers that does two jobs: it helps the cell to maintain its
shape, and it serves as a system of “roads”on which various things can travel across the cell.
Nucleus: This is sort of the “center” of the cell. It contains the instructions for how the cell
operates. The instructions are in the form of a very long protein molecule called DNA. The DNA
contains the “blueprints” for everything the cell makes.
Mitochondria: These are often called the “powerhouses” of the cell. Respiration takes
place here. (Remember, respiration is how a cell gets energy out of glucose.) The mitochondria
produce the energy the cell needs for its activities.
Leucoplasts: These are “storage tanks” for starches and lipids. (There are three different
types of leucoplasts, the most common being the amyloplast. You will sometimes see “amyloplast”
labeled on a cell drawing instead of “leucoplast.”)
Golgi bodies: These are sort of like warehouses where the products that the cell makes
are stored and packaged for shipping to other areas of the cell. They contain proteins and lipids
(fats) that will be used by the cell.
Endoplasmic reticulum (ER): This seems to do several jobs. One type of ER manufactures protein molecules. Another type of ER makes lipids (fat) molecules. Both types of ER help
the cell to maintain its shape by providing a bit of internal structure. ER also helps to transport
things about the cell. The ER is a busy place!
Ribosomes: These little dots along the ER are a bit like the workers on an assembly line.
They do the actual assembly of the plant’s proteins.
9
Now for some info about the cell wall. It’s not really an
organelle, but it’s still important. The outside wall of a plant cell is
very tough. It is made of something called cellulose, which animals
cannot digest. Only microorganisms (such as bacteria) can tear it
apart. That is why animals that live on nothing but plants (herbivores)
need “good” microorganisms in their digestive systems to help them
digest the plants. For example, a cow can live on nothing but grass
because of the microorganisms living in the first of its four stomachs
(the rumen). The microorganisms can tear apart the outer wall of the
grass cells so that the proteins and fats and sugars inside of them spill
out and are then available for the cow’s body to use.
You don’t have a rumen, so when you eat plant cells, they
mostly just pass right through your system, undigested. This isn’t
bad for you, however. In fact, nutritionists call this plant material
roughage or fiber, and they recommend that we eat plenty of it. The
plants in our diet help to keep our intestines healthy even though they
provide only some nutrition. (Cooking can help to break down the
plant cell walls, and very thorough chewing helps a bit, too.)
Just inside the cell wall there is a cell membrane. It is very
thin and hard to see compared to the thick cell wall. Membranes are
found in all types of cells, not just plant cells. They are fragile and
come apart easily, but still have an important job. They control what comes into the cell, allowing
nutrients and water to flow in but keeping harmful things out. Let’s discuss the process of photosynthesis again, this time taking a closer look at it. Just
how does a chloroplast produce sugar? The process begins with the chlorophyll molecule. It has
the amazing ability to turn light energy into chemical energy. The reaction center of the molecule
is a magnesium atom surrounded by four nitrogens. The nitrogens would like to bond with the
magnesium, but magnesium can only make a total of two bonds, so two of the nitrogens are out of
luck. See the dotted lines? That is where those two nitrogens would like to put bonds, but can’t.
It’s this chemical “problem,” however, that makes life on Earth possible! These atoms are the
ones that “catch” the energy from the sun and transfer it along to other molecules, providing energy
for the process of photosynthesis. When a photon of light hits the reaction center of the chlorophyll,
an electron from one of the atoms absorbs the energy and “jumps up.” This is called the electron’s
excited state. (Do you jump up or stand on your toes when you are excited?)
10
Just as you must obey the law of gravity and come back down again, the electron must also
return to its normal state. On the way back down, though, it can pass its extra energy along to other
molecules. (Where does the extra energy go when you jump up and come back down? Think about
the thud you hear when you hit the floor.) This passed-along energy is put to work in the chloroplast. It is used to split water atoms into hydrogen atoms and oxygen atoms. Some of these freed oxygen
atoms go off into the air and are breathed in by animals.
The energy contained in those released hydrogen atoms is used to prepare a molecule called
ATP. The ATP molecule will then provide energy for the production of a sugar molecule. ATP stands
for adenosine triphosphate. Notice that the word triphosphate begins with “tri.” It means three, just as
in tricycle or triangle. The adenosine has three phosphates. We could draw it like this:
The way it releases energy is by losing one of its phosphates. The energy that kept the
phosphate attached is released as the phosphate drops off.
11
ATP can be recycled by sticking the phosphate back on again. It takes energy to put it back
on, of course, but since the plant uses light energy to recharge, it always has plenty of solar power
available. ATP is sort of like a little molecular rechargeable battery.
Energy is used to put the P back on.
Energy is released when the P pops off.
Now if you think this is starting to get a little complicated already, you are right.
Photosynthesis is incredibly complicated. A basic first-year college text would describe this energy
transfer using sentences like this: “As the excited electrons give up energy on their way down to
the P700 chlorophyll energy transport chain, the thykaloid membrane couples the exergonic flow of
electrons to the endergonic reaction of phosphorylating ADP to make ATP.” We will use much simpler
explanations here to finish up our overview of photosynthesis. What we have learned about photosynthesis so far is called the light phase of photosynthesis
because it needs light energy. The second half of the process is usually called the dark phase
because it doesn’t need light. It doesn’t need darkness, though--it can take place while it is light, it
just doesn’t need the light.
During the dark phase, the chloroplast uses the energy it just stored in the ATP molecules to
put together molecules of sugar. It takes small molecules called PGA (phosphoglyceric acid), turns
them into PGAL (phosphoglyceraldehyde), then puts several of these together to make a glucose
molecule. And, oh yes--at the same time that glucose is formed, a molecule of RuDP is formed.
RuDP is the molecule that “catches” the carbon dioxide out of the air and brings it into the cell. (And
remember, it’s actually more complicated than this!)
On the facing page is a very simplified diagram of how photosynthesis works. Follow along
step by step as we describe the process:
1) A photon of light strikes the center of a chlorophyll molecule.
2) An electron is excited and releases energy.
3) This energy splits a water molecule.
4) The oxygen goes off into the atmosphere. (Actually, two oxygens always pair up and escape
together as O2.)
5) The energy in the hydrogens is used to make an ADP into ATP.
6) Then the phosphate is immediately ripped off again, releasing energy which is used for step 9.
7) Meanwhile, a 5-carbon sugar molecule called RuDP snatches a carbon dioxide out of the air and
uses its carbon atom to make it into a 6-carbon sugar,
8) which immediately breaks down into two 3-carbon sugars.
9) These 3-carbon sugars are modified using energy from ATP and are put together to form one
molecule of 6-carbon sugar, glucose.
12
ACTIVITY 1: MATCHING
Match the cell part on the left with its function on the right.
1) nucleus __
2) endoplasmic reticulum ___
3) Golgi bodies ___
4) leucoplasts ___
5) chloroplasts ___
6) vacuole ___
7) mitochondria ___
8) ribosomes ___
9) cytoplasm ___
10) cytoskeleton ___
A) makes energy
B) warehouses for packaging, shipping, storage
C) jelly-like fluid
D) an empty area
E) network of fibers
F) stores starches and fats
G) uses light, water and CO2 to make sugar
H) assembles proteins
I) assembles, transports, gives shape
J) contains DNA instructions
13
ACTIVITY 2: MORE MATCHING
Can you match the cell part with the factory part or factory worker that it is most similar to?
1) nucleus ___
2) Golgi bodies ___
3) vacuole ___
4) mitochondria ___
5) ribosomes ___
6) leucoplasts ___
7) endoplasmic reticulum ___
8) cytoskeleton ___
A) workers on the assembly line
B) foreman (boss)
C) empty courtyard in middle of factory
D) storage tanks
E) sidewalks, roads
F) warehouse and shipping area
G) generator supplying electricity
H) assembly line
ACTIVITY 3: ANSWER THESE QUESTIONS
1) In your own words, what does the chlorophyll molecule do? ________________________
__________________________________________________________________________
2) What molecule provides the energy for the “dark phase” of photosynthesis, acting like a
little rechargeable battery? _________
3) Does the “dark phase” need darkness? _____
4) What cellular process is the “opposite” of photosynthesis? _________________
5) Can an electron stay in its excited state? _____
6) The energy released by the excited electron is used to do what? ____________________
7) What type of energy excites the electrons in chlorophyll? _________________
8) Besides light, what else does a plant need for photosynthesis?_________ and _________
9) What part of ATP comes off in order to release energy? _________________
10) Which phase of photosynthesis releases oxygen--light or dark? ________
11) What is the name of the molecule that “grabs” carbon from carbon dioxide? __________
12) What would happen if any one of the ingredients needed for photosynthesis was not
available? _________________________________________________
13) Plants both use water and produce water during photosynthesis. Are the water
molecules that go into the leaf the exact same ones that come out? _____
14) What type of atom sits right in the middle of the chlorophyll molecule? (Hint--it’s the only
one of its kind.) ______________
14
LESSON 1
Level 1
Activity 5: (Crossword puzzle)
ACROSS: 1) chloroplasts 2) membrane 3) daughters 4) photosynthesis 5) elongation
6) energy 7) water 8) nucleus 9) chlorophyll 10) carbon dioxide
DOWN: 1) light 2) mitosis 3) eat 4) sugar 5) oxygen 6) DNA 7) vacuole 8) respiration 9) wall
Activity 6: Compare your drawing to the one in the chapter
Activity 7: 1)D 2)A 3)B 4)F 5)H 6)C 7)E 8)G
Level 2
Activity 1: 1)J 2)I 3)B 4)F 5)G 6)D 7)A 8)H 9)C 10)E
Activity 2: 1)B 2)F 3)C 4)G 5)A 6)D 7)H 8)E
Activity 3: 1) Answers will vary. 2) ATP 3) no 4) respiration 5) no 6) split water molecules
7) light 8) carbon dioxide and water 9) the P 10) light phase 11) RuDP
12) there would be no photosynthesis 13) no 14) magnesium
57
ACTIVITIES FOR LESSON 1
1) Plant cell “penny pitch” game
This game can be played indoors or out. You can adapt the size and scale of all the game parts to suit
your playing area. For small areas, make the model a few feet in diameter, and pitch pennies. For large areas,
make the model very large and pitch bean bags or shoes. (You could even use an empty parking lot and draw
the model with chalk.)
You will need:
• A large floor area (can be an area in a room, or as large as a parking lot outdoors)
• A long rope (to represent the cell wall)
• Small objects to represent ribosomes (dried beans, dimes, raisins--whatever you have on hand)
• Yarn (three colors--one for the cell membrane, one for the endoplasmic reticulum, one for the
vacuole)
• Green fabric, felt or paper than can be cut into chloroplasts
• Fabric or paper scraps of various colors and/or textures, for other cell parts
• Objects to pitch--such as pennies or bean bags, depending upon the size of your playing area.
Beanbags are obviously better for very large areas, pennies for smaller areas.
• Scissors
Set-up:
Use the ingredients listed above to make a flat model of a plant cell on the ground, using the diagram
as a guide. The organelles can be in any position. You may give the students freedom to arrange the cell
however they want to. (The cytoskeleton is not used, as it would make things too complicated. Also, some
of the parts are discussed only in Level 2. You can adapt this game to Level 1 by using only the cell parts
mentioned in Level 1.)
CELL WALL: Outer layer--provides protection and support for cell
CELL MEMBRANE: Thin membrane that controls flow of water and
chemicals in and out of the cell
NUCLEUS: Contains DNA (the instructions a cell needs for everything
it does and everything it has to manufacture)
NUCLEOLUS: Contains the DNA that tells how to make ribosomes
VACUOLE: Empty “bubble” helps to maintain shape of cell.
CHLOROPLAST: Where photosynthesis occurs (Makes sugar from
light, carbon dioxide and water.)
MITOCHONDRIA: The energy producers of the cell
CENTROSOME: Assists cell in mitosis (reproducing by splitting in
half)
AMYLOPLAST (a type of LEUCOPLAST): Stores sugar and starch
molecules made by the cell
ENDOPLASMIC RETICULUM: A series of tubes connected to the
nucleus (Rough ER has ribosomes surrounding it.)
RIBOSOMES: The “factories” that produce proteins the cell needs
GOLGI BODIES: Process and package proteins and fats made by the
cell (they look sort of like a stack of pancakes)
How to play:
If you have a lot of players, divide them up into teams. Make sure all players are standing the same
distance away from the cell. Call out the name of a team and then the name of an organelle. The members of
that team all pitch their objects, trying to land on the organelle you just called out. The team receives a point
for every “hit.” Have the players reclaim their objects. Then call out another team and another organelle. Make
sure all teams get a chance to aim for each organelle at some point in the game.
61
2) Photosynthesis game
You will need:
• A copy of the gameboard for each player
• Small “tokens” of at least three different kinds or colors, which will be used to represent carbon,
oxygen, and hydrogen atoms. (Suggestions: small candies, different types of breakfast cereal,
raisins, cranberries, nuts)
• One spinner (assemble and color the spinner according to directions) You will need scissors, glue,
a paper fastener, and markers or crayons for this (and cereal box cardboard if you want to make the
spinner sturdy enough to last for a while).
Directions:
This game can be played with any number of players. Divide the players up so that you have four teams. If
you have only two or three players, the game will still work. Even one person can play it, although there won’t
be any competition, of course. (However, the satisfaction in having completed the task of photosynthesis might
be enough.) The number of players per team does not have to be equal. Being on the same team simply
means that all members of that team will receive the same spinner results on each round, and therefore will be
doing the same thing at the same time. This can actually be very beneficial for those students who have trouble
catching on to game formats. They can simply follow along with what their teammates are doing.
Each player/team is assigned a colored “arm” of the spinner. Each time the spinner is spun, the team (or
individual player) will read the results from that color. For example, if you are on the red team, whatever the
red arm lands on is your spin result. The blue arm is for all players on the blue team. Players on teams can
take turns spinning the spinner, but the spin will be for everyone. There is no “down time” waiting for turns. All
players do something each time the spinner is spun. (The exception being if you already have your slots filled
for that item. If you already have a light token and light is spun again, you can’t do anything on that turn.)
Each person decides what they will use to represent the atoms on their board: carbon, oxygen, and
hydrogen. They will also need just one token to represent light. Make sure they choose their “code” ahead of
time. For example: raisins for carbon atoms, Cheerios for oxygen atoms, small red candies for hydrogens, and
a dried banana for light. Whatever the spinner arm lands on is what you build on your game board. If you or
your team spins WATER, then you “build” one of the water molecules on the top portion of the board by putting
two hydrogen tokens and one oxygen token right on top of one of the water molecules. You only need one light
token, so if you land on LIGHT again, you just do nothing for that turn, since you already have light.
Once you have all the molecules filled up on the top half of the board, it then becomes a race (or a
cooperation) to see how fast you can rearrange all the atoms to form the molecules on the bottom half of the
board. Plants do this, too. They disassemble all the ingredient molecules and use them to form new molecules.
The advantage of using edible tokens is that whenever you have the bottom half of your board complete,
you can reward yourself by eating the glucose molecule (and the other molecules, too, if you are still hungry!).
During the course of the game you will certainly hear the following comments. Here are some responses
you could give.
“I keep spinning light. I don’t need any more light!” This is true for plants, as well. Plants living
outdoors almost always have enough light. In fact, most of the sun’s energy goes to waste. What limits
photosynthesis is usually the amount of water available.
“I don’t have enough water. I keep spinning carbon dioxide.” This happens sometimes in real life, too.
The weather can produce droughts. There is still plenty of carbon dioxide and light, but not enough water. If you
keep spinning you are guaranteed to land on water eventually.
“I have way too much water and not enough carbon dioxide.” Plants could possibly have this problem,
though it is less likely than a water problem. Some people claim that breathing on your house plants helps them
to grow faster since your breath contains carbon dioxide. There could also be atmospheric conditions in some
places that would make carbon dioxide less abundant. Plants submerged in water are not able to take in air.
62
63
Do not cut out circle. Simply cut across this line.
GLUE THIS SPINNER SQUARE TO CARDBOARD IF YOU WANT IT TO BE
STURDY ENOUGH TO LAST A WHILE. (CEREAL BOX CARDBOARD IS FINE.)
64
IF YOU WANT YOUR SPINNER
TO BE STURDY ENOUGH TO
LAST A WHILE, GLUE SPINNER
PARTS TO CARDBOARD BEFORE
CUTTING OUT
PAPER WASHERS
(You can use a paper punch
to cut out centers.)
65
3) Photosynthesis relay race
The goal of this game is to reinforce the photosynthesis formula:
WATER + CARBON DIOXIDE + LIGHT → OXYGEN + SUGAR + WATER
while at the same time allowing restless students to engage in active play.
You will need:
• Two pieces of green construction paper
• Four small (standard 3.5”x 6.5”) envelopes
• Glue stick or white glue
• Marker
• Copy of the card pattern page with pieces cut out
• A flashlight for each team
The reverse side of the
leaf will say “OUT.”
Directions for assembly:
Cut two large green leaves. Cut the flaps off the envelopes, then glue an envelope on each side of
each leaf, with the open side of the envelope facing out. Label the envelopes on opposite sides of the leaves
“IN” and “OUT.”
Photocopy the card pattern page onto card stock, if possible, to make the cards more durable.
However, plain paper can be used as well. Cut out all the cards.
Optional: Decorate or color the cards to make them more readable at a quick glance. For instance, put
a raindrop on the water cards.
How to set up the game:
You will need to prepare the leaves ahead of time by putting cards for WATER, OXYGEN and
GLUCOSE in the OUT pocket of the leaves. Put WATER and CARBON DIOXIDE cards in neat piles at the start
line. Put the leaves at a distance from the start line. (If your students need to stretch their legs, put the leaves
really far away!) Put the flashlights next to the leaves.
How to play the game:
On the word GO, the first member of the team takes either a CARBON DIOXIDE or a WATER card,
runs to the leaf, and puts it into the IN pocket of their leaf. They run back, tag the next player. The second
player takes the other card (whatever the first player didn’t take, either water or carbon dioxide) and runs to the
leaf. He puts this into the IN pocket, then runs back. The third player runs to the leaf, turns on the flashlight,
shines it on the leaf briefly, turns it off (leaves the flashlight there), and then runs back. Now the leaf has had
all the necessary ingredients for photosynthesis! The fourth player runs to the leaf and takes out just one of
the cards in the OUT pocket and runs (taking the token with him) back to team. The fifth player runs to the leaf,
takes another card out of the OUT pocket and runs with it back to the team. The sixth player runs to the leaf
and takes out the last card in the OUT pocket. When the last player gets back to his team with the last product
of photosynthesis, the team is done. First team to accomplish all this wins the game.
Variations: This game is a lot of fun to play again and again if you change the method of locomotion to
and from the leaf. Have them hop, skip, walk backwards, crawl, carry a ball between their knees, etc. This way
they get the repetition of the photosynthesis formula without making them bored with the game. Even middle
school and high school ages like the game when it is played with creative variations like this! It brings a lot of
laughs, as well as a lot of learning.
66
WATER
WATER
WATER
WATER
CARBON
DIOXIDE
CARBON
DIOXIDE
OXYGEN
OXYGEN
GLUCOSE
GLUCOSE
(SUGAR)
(SUGAR)
67
4) Streaming chloroplasts “flip book”
You will need:
• Scissors
• White glue
• Copies of the pattern pages printed onto white card stock
• Optional: colored pencils or crayons, fine sandpaper
Directions:
Do any coloring you want to do before you cut apart the pages or assemble the booklet. (However,
coloring is still possible after the pages are cut and after the booklet is assembled, as long as the glue is dry
enough so that the pages will not come apart.) The most important coloring is to make the chloroplasts green
so that they will show up nicely when the pages are flipped. If you want to color other parts of the cell, you may
do so, as long as you are consistent and do the same thing on every cell.
Cut out all the pages. Glue will be applied right where the numbers are. Use glue sparingly. Half a drop
is enough if it is spread out! No oozing glue! Stack the pages, putting 1 on the bottom and working upward
until the cover (which would be number 24) is on the top.
IMPORTANT: Match the edges on the right side of the book--the side away from the numbers. Don’t
worry if the number sides match up evenly. You want the side you will flip to be smooth. You can even take
a piece of fine sandpaper to smooth the flipping edge once the booklet is dry. Hold that edge tightly, put the
sandpaper on the table, and rub the booklet across the sand paper. The table will give you a firm surface on
which to rub the edge of the booklet.
Let the book dry completely before sanding or flipping the pages.
PAGE 1 GOES ON THE BOTTOM.
WORK YOUR WAY UP TO 23 ON THE TOP, THEN THE COVER.
4) Look at real plant cells under a microscope
If you have a microscope available (100x or greater) you can easily observe plant cells by using the thin
membrane layer of an onion. Peel the tough, yellowish-tan layers off the outside of the onion. Before you get
into the white layers, you will find an incredibly thin membrane--so thin you can easily see through it. This layer
is perfect for viewing under a microscope. Put a small piece of this membrane onto a microscope slide and put
it under 100x. You should be able to see rows and rows of cells.
5) Extra reading material about photosynthesis
If reading forms a large part of your educational program, you may want to consider purchasing a copy
of the book How Did We Find Out About Photosynthesis? by Isaac Asimov. This book is written for ages 9-13
and tells the story of how scientists across the centuries (starting back in the 1700s) have gradually learned
more and more about how plants work.
68
COPY ONTO WHITE CARD STOCK
69
70
COPY ONTO WHITE CARD STOCK