TNETS edition
Transcription
TNETS edition
TNETS edition Susceptible Infectious Compartmental models Infectious Recovered Susceptible Infectious Contact patterns ID1 1 3 1 4 5 6 5 5 6 2 3 4 2 ID2 Time 2 34 4 55 5 56 2 70 4 77 1 102 6 110 7 122 7 130 5 198 4 205 2 210 7 230 PHYSICAL PROXIMITY y 0 . 6 = T , 2 3 50,6 n o = i t L , u 0 t 3 i 7 t , e s 6 c 1 n o e = r r h 9 e 5 f = P N T n , 8 1 o 8 , c 0 2 s = n L r , 3 1 e 1 t t = a N p o i c So y r e l l a h ) 1 ( 3 . 7 g = T , s ) 0 n 5 r 3 ( e 7 t t 2 a 0 , p 6 o i = c So N = 159(8), L g n i n i h m 6 . 8 y = t T i , 0 d l 6 2 , a 6 0 2 e 7 = R 5 L , , 3 6 3 = N = T , 3 8 m e 2 t , s y 5 s 2 l a 6 , t i 4 p 6 s Ho N = 293,878, L = ELECTRONIC COMMUNICATION l i a d m 0 . 2 1 e 1 = s ’ T t , d 2 l 6 1 , o 4 h 4 n 4 r = L o , d 9 B 6 . 1 N = 57,18 il 8 = a T m , e 4 s ’ n 8 n 6 a , m 15 1 k c = L E , 8 8 1 , y 1 3 6 . = 8 N = T , 1 m 0 u r 4 , o f 2 t 1 e 4 s , p 1 i t = L , 4 Film N = 7,08 y 7 2 . s e 8 g a = s s T e , m t 6 e 9 s 4 p , i t 2 7 4 Film = L , N = 35,624 s t s o p l l a d 1 w 9 k 5 1 o = o T b , 3 e 9 9 , 6 Fac 7 8 = L d , 8 7 0 . 8 , 3 2 1 5 N = 29 = g n T i , t a 0 d 9 m 8 a , r k 9 o s 2 Pus 5 = L , 2 7 9 , 8 N=2 d 7 . 3 6 g n i = t a T , QX d 3 0 2 , 7 3 3 , 4 = L , 3 N = 80,68 TEMPORAL TO STATIC time-slice networks 1 4 3 2 3 5 4 5 6 5 10 t tstop 0 tstart 6 15 20 2 1 ongoing networks 1 4 3 2 3 5 4 5 6 5 10 tstop 0 tstart 6 15 t 20 2 1 exponential-threshold networks 1 4 3 2 τ = 10 3 5 4 5 6 6 0 5 10 15 20 t Ω 4 5 6 3 2 1 = 5 . 2 2 1 degree 4 dynamic importance coreness 2 coreness 4 static importance optimal params. GOOD REPRESENTATION: RANKING OF IMPORTANT VERTICES CONSERVED coreness 3 coreness 0 Spearman rank correlation coefficent = Quality of representation FOR ALL PARAMETER VALUES: MEASURE AVG OUTBREAK SIZE FOR ALL PARAMETER VALUES: WHEN SPREADING MEASURE DEGREESTARTS CORENESS OFOF i i AT i Results, Degree E-mail 1 E-mail 2 Dating Gallery Conference Prostitution Time-slice Ongoing Exponential-threshold Accumulated Results, Coreness E-mail 1 E-mail 2 Dating Gallery Conference Prostitution Time-slice Ongoing Exponential-threshold Accumulated Performance & parameter values Degree Time slice E-mail 1 E-mail 2 Dating Gallery Conference Prostitution Ongoing Expo. threshold Acc. ρmax tstart tstop ρmax tstart tstop ρmax τ ΩΩ ρ 0.73 0.91 0.82 0.77 0.79 0.71 0 0 0 0 0 0 0.42 0.25 0.65 0.72 0.10 0.77 0.50 0.91 0.42 0.53 0.74 0.30 0.25 0.20 0.25 0.39 0.10 0.60 0.25 0.20 0.25 0.39 0.11 0.60 0.77 0.93 0.86 0.87 0.77 0.72 0.40 1.0 0.10 0.70 0.04 0.04 0.30 0.26 0.16 0.71 0.02 0.20 0.46 0.88 0.71 0.76 0.53 0.49 Parameter dependence of performance 1 0.7 0.6 0.8 0.5 0.4 0.3 ρ 0.4 tstop / T 0.6 0.2 0.2 0.1 Time slice 0 0 0.2 0.4 0.6 tstart/ T 0.8 1 0 Parameter dependence of performance 0.3 1 0.25 0.8 0.2 0.15 ρ tstop / T 0.6 0.4 0.1 0.2 0.05 Concurrency 0 0 0.2 0.4 0.6 tstart/ T 0.8 1 0 0.7 2 0.6 1.5 0.5 0.4 1 ρ τ/T Parameter dependence of performance 0.3 0.2 0.5 0 Exponential threshold 0 0.5 1 1.5 2 Ω 2.5 3 3.5 0.1 0 STEP 1 Assign stubs to vertices from a random number distribution. 5 1 4 3 2 6 STEP 2 Connect random pairs of stubs to form a simple graph. 4 5 6 3 2 1 STEP 3 Create active intervals for each edge. (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time STEP 4 Create a time series of contacts from some interevent-time distribution. time STEP 5 Split the time series into segments proportional to the intervals and impose the contacts of the segments to the intervals. (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time STEP 6 Forget the active intervals. (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time 0.7 0.6 ρ max 0.5 0.4 0.3 0.2 0.1 0.05 Time-slice Ongoing Exponential threshold Accumulated 0.1 1 0.5 µ break STATIC TO TEMPORAL (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) ONGOING LINK PICTURE S R KT SM M H RX KY V XI M I (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time LINK TURNOVER PICTURE X M IT M X YH X V RY V S ZI I V (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time (1,2) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (5,6) time DEFI NITI ONS 0 tB t1 t2 t3 t4t5 t6 t7 t8 tE Beginning time Interevent times End time time T Compensate for the size bias on intervals because of finite sampling time (t’ would only be recorded if it starts within [0,T–t’]) t’ 0 t T Compensate for the size bias on intervals because of finite sampling time (t’ would only be recorded if it starts within [0,T–t’]) t’ 0 t T Compensate for the chance an interevent time t is active at the start of the sampling is proportional to t t 0 Compensate for the size bias on intervals because of finite sampling time (t’ would only be recorded if it starts within [0,T–t’]) t’ 0 t T Compensate for the chance an interevent time t is active at the start of the sampling is proportional to t t 0 Sum up and normalize ti i: ti≥t T–ti ∑ /∑ i ti T–ti PROSTITUTION 1 predicted from interevent times end times beginning times 0.8 PB(t) 0.6 0.4 0.2 0 0 500 1000 1500 time t (days) 2000 Predictable 1 edges w.r.t. 0.75 beginning / end times 0.5 1 1 1 1 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 Beginning Times End Times E-mail 1 E-mail 2 Dating 1 Conference 1 1 1 1 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0 0 Dating 2 Film Facebook Forum Gallery Hospital Prostitution (1,2) (1,3) (1,4) (2,3) reference networks (1,2) (1,3) (1,4) (2,3) (1,2) (1,3) (1,4) (2,3) reference network: identical interevent times (1,2) (1,3) (1,4) (2,3) (1,2) (1,3) (1,4) (2,3) reference network: identical beginning times (1,2) (1,3) (1,4) (2,3) (1,2) (1,3) (1,4) (2,3) reference network: identical end times Original data SIR 1 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 fraction of infectives duration of infective stage 0.3 Interevent times SIR 1 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 fraction of infectives duration of infective stage 0.3 Beginning times SIR 1 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 fraction of infectives duration of infective stage 0.3 End times SIR 1 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 fraction of infectives duration of infective stage 0.3 end times beginning times interevent times 0.06 0.06 0.3 0.06 0.1 0.04 0.04 0.02 0.02 0 0 0.05 E-mail 2 E-mail 1 0.2 0.04 0 Dating 1 0.02 0.1 0 0 Conference 0.04 0.08 0.1 0.08 0.2 0.1 0.03 0.06 0.06 0.15 0.02 0.05 0.05 0.04 0 0 0 Dating 2 Film Hospital Facebook 0.02 0.1 0.04 0.05 0.02 0.01 0 0 0 Forum Gallery Prostitution Original data SIS 1 0.3 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 average number of infections duration of infective stage 0.4 Interevent times SIS 1 0.3 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 average number of infections duration of infective stage 0.4 Beginning times SIS 1 0.3 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 average number of infections duration of infective stage 0.4 End times SIS 1 0.3 0.1 0.2 0.01 0.001 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 per-contact transmission probability 0 average number of infections duration of infective stage 0.4 end times beginning times interevent times 0.04 0.02 0.0015 0.001 0.1 0.03 0.001 0.02 0.01 0.0005 0.05 0.0005 0 E-mail 1 0 0.01 E-mail 2 0 Dating 1 Conference Hospital 0.2 0.1 0.03 0.06 0.15 0.001 0.0005 0 0.04 0.08 0.0015 0.001 0 0.04 0.02 0.05 0.02 0.01 0 0 0 0.1 0.05 0.0005 0 0 0 Dating 2 Film Facebook Forum Gallery Prostitution Science by: Petter Holme Fredrik Liljeros Illustrations by: Mi Jin Lee P Holme, 2013, PLoS Comp. Biol. 9:e1003142. P Holme, F Liljeros, 2013, arxiv:1307.6436. 0.8 0.4 0.8 0.8 0.6 end times beginning times interevent times 0.6 0.6 0.3 0.4 0.4 0.4 0.2 0.6 0.2 0.4 0.2 0.2 0.1 0 0 0.2 –0.2 0 E-mail 1 0 E-mail 2 Dating 1 –0.4 Conference 0 Gallery 0.6 0.8 0.8 0.2 0.4 0.6 0.4 0.4 0.6 0.1 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 Dating 2 Film 0 Facebook Forum Hospital Prostitution end times beginning times interevent times 0.4 0.8 0.6 0.6 0.3 0.5 0.4 0.6 0.4 0.2 0.4 0.2 0 0.2 0.1 0.2 0 0 0 E-mail 2 E-mail 1 –0.5 Dating 1 Conference 0 Gallery 0.8 0.5 0.005 0.01 0.4 0.2 0 0.1 –0.001 0 0.4 0.3 0 0.001 0.005 0.2 0.2 0.1 –0.005 0 0 Dating 2 Film 0 Facebook Forum Hospital Prostitution