Diffusion and Macromolecular Movement
Transcription
Diffusion and Macromolecular Movement
Diffusion and Macromolecular Movement • • • • • Diffusion: in dead and living Role of diffusion Microscopic and continuum descriptions FRAP Receptors and signalling: physical limits Ion Channel Opening • Flow of ions into cell • Distribution of ions within cell Diffusion times L2 t≈ D Diffusion vs. Directed Motion Protein in water D=100 µm2/s Scales of E. coli Swimming Diffusion Times D=100 µm2/s Passive vs. Active Transport Kinesin transport rates ~ 1 µm/s Single myosin speeds ~ 10 nm/s FRAP FRAP of KDEL-GFP White & Stelzer (1999) FLIP of KDEL-GFP White & Stelzer (1999) FCS Concept Macroscopic Diffusion: Concentration Field ΔV small volume c(r,t) Conc. Profile Flux Deriving Fick’s Law Fick’s Law First Equation 1D (along x) concentration profile ∂c j = −D ∂x j = current density per unit time D = diffusion coefficient € Fick’s Law Second Equation 2 ∂C ∂C =D 2 ∂t ∂x € Fick’s Law In 3D J = −D∇C € € ∂C 2 = D∇ C ∂t Micro-Trajectories in Simple Diffusion a = Lattice spacing Particle Displacement Mean Total steps N=t/Δt Displacement Δxi , i=1,2,…N Total displacement Δxtot=Δx1+Δx2+…ΔxN <Δx>=a*kΔt+(-a)*kΔt+(0)*(1-2kΔt)=0 Variance (avg. sq. displacement) <Δx2>=a2*kΔt+(-a)2*kΔt+(0)2*(1-2kΔt) = 2(a2k)Δt Total displacement for N=t/Δt, <Δx2tot> = 2(a2k)t D=a2k Probability density p(x,t) can be calculated P(x,t+Δt)=(1-2kΔt)*p(x,t) + Stay put kΔt*p(x-a,t) + Jump right Jump left kΔt*p(x+a,t)+ Markov Process Can be used to arrive at Ficks Equations Solutions of Fick’s Law • Carslaw and Jaeger (1959) • Crank (1975) • Jost (1960) Pipette Experiment Zigmond et al. (2001) Curr. Prot. Cell. Biol. Point Source Spike of concentration at origin at time t=0 C(r,t) = N −r 2 4 Dt e 4 πDt Gaussian distribution Eg. Micropipette experiment € Concentration Profile FRAP of GFP in Bacterium Mullineaux et al. (2006) First Postbleach image t = 4s Difference = IPostbleach-IPrebleach Time Evolution of FRAP a=L/2, setting different t values Solution to FRAP FRAP curve Normalized by 2c 0 a(1− a L) Nf in the bleached area in the long time limit Predictions Recovery is fastest when 2a = L/2 Recovery curves are identical for bleached regions of fractional size a/L and (1-a/L)