Symmetries and scattering amplitudes in N=4 sYM - rbi-t
Transcription
Symmetries and scattering amplitudes in N=4 sYM - rbi-t
Symmetries and scattering amplitudes in N=4 sYM Livia Ferro Ludwig-Maximilians-Universität München Theoretical Physics Divn, Ruđer Bošković Institute, Zagreb Scattering amplitudes Scattering amplitudes: central objects in GTs describe interactions between particles huge number of diagrams high complexity already at two loops symmetries and good formalism can help planar N=4 sYM N=4 sYM sYM massless massive (picture of L. Dixon) L. Ferro (LMU München) Zagreb, 05.02.2016 Scattering amplitudes in N=4 sYM Scattering amplitudes: central objects in GTs describe interactions between particles N=4 sYM: interacting 4d QFT with highest degree of symmetry Features: scale invariant hidden symmetries in planar limit - integrable structure triality ampls/Wilson loops/correlation fcs AdS/CFT correspondence L. Ferro (LMU München) Zagreb, 05.02.2016 Scattering amplitudes in N=4 sYM On-shell supermultiplet described by a superfield: = G+ + ⌘ A A+ p2 = 0 () p↵↵˙ = 1 A B 1 ⌘ ⌘ SAB + ⌘ A ⌘ B ⌘ C ✏ABCD 2! 3! ↵ ˜↵ ˙ q ↵A = , D + 1 A B C D ⌘ ⌘ ⌘ ⌘ ✏ABCD G 4! ↵ A ⌘ on-shell superspace: ( ↵ , ˜ ↵˙ , ⌘A ) An = h ( 1, ˜ 1 , ⌘1 ) ( 2, ˜ 2 , ⌘2 )... ( n, ˜ n , ⌘n )i Amplitudes labeled by two numbers: number of particles - n 4k ⌘ helicity L. Ferro (LMU München) Zagreb, 05.02.2016 Scattering amplitudes in N=4 sYM On-shell supermultiplet described by a superfield: = G+ + ⌘ A A+ p2 = 0 () p↵↵˙ = 1 A B 1 ⌘ ⌘ SAB + ⌘ A ⌘ B ⌘ C ✏ABCD 2! 3! ↵ ˜↵ ˙ , q ↵A = D + 1 A B C D ⌘ ⌘ ⌘ ⌘ ✏ABCD G 4! ↵ A ⌘ on-shell superspace: ( ↵ , ˜ ↵˙ , ⌘A ) Amplitudes labeled by two numbers: number of particles - n 4k helicity - ⌘ MHV tree level: [Parke-Taylor] L. Ferro (LMU München) Zagreb, 05.02.2016 Symmetries and ampls in N=4 sYM Important in discovering the characteristic of ampls Superconformal symm. expected Dual superconformal symm. hidden Yangian symmetry level-zero generators level—one generators superconformal dual superconformal + Serre relations for higher commutators The Yangian Y(g) of the Lie algebra g is generated by and Tree-level holomorphic anomalies, broken at loop level L. Ferro (LMU München) Zagreb, 05.02.2016 Symmetries and ampls in N=4 sYM Important in discovering the characteristic of ampls Superconformal symm. expected Dual superconformal symm. (planar) hidden Yangian symmetry ! Hallmark of integrability } Integrable deformation of amplitudes } Best formalism: Grassmannian (J. Drummond, LF) Infinite-dimensional algebra Present also in spin chains „Solvability“ of the theory (LF, T. Lukowski, C. Meneghelli, J. Plefka, M. Staudacher) L. Ferro (LMU München) Zagreb, 05.02.2016 Integrability Exact solvability of MSYM Infinite-dimensional algebra Yang-Baxter equation zi complex parameters R-matrix describes the „scattering“ of particles It is the essential ingredient for all integrable models Amplitudes and integrability: spectral parameter? L. Ferro (LMU München) Zagreb, 05.02.2016 Integrability Exact solvability of MSYM Infinite-dimensional algebra Yang-Baxter equation Solution for the (integral kernel) of R12 of a (specific) YBe: Spectral parameter deformation of scattering amplitude A4,2! Scattering in 4d <-> scattering in 2d! It can be used for loop amplitudes: new regularization method? L. Ferro (LMU München) Zagreb, 05.02.2016 Grassmannian (Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Cheung, Goncharov, Hodges, Kaplan,Postnikov,Trnka)(Mason,Skinner) In twistor space: Grassmannian: space of k-planes in n dim.s Integration over complex parameters It computes all tree-level amplitudes Yangian symmetry nice geometric interpretation L. Ferro (LMU München) Zagreb, 05.02.2016 Grassmannian (Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Cheung, Goncharov, Hodges, Kaplan,Postnikov,Trnka)(Mason,Skinner) In twistor space: Example: MHV tree-level four points = I dc13 dc14 dc23 dc24 c13 c24 (c13 c24 c14 c23 ) ⇥ L. Ferro (LMU München) 2 Y k=1 2 2 ( ⇣ 3 c13 1 c23 2) ˜ k + ck3 ˜ 3 + ck4 ˜ 4 ⌘ 2 ( 4 (⌘k + ck3 ⌘3 + ck4 ⌘4 ) 4 c14 1 c24 2) Zagreb, 05.02.2016 Grassmannian In twistor space: Example: MHV tree-level four points L. Ferro (LMU München) Zagreb, 05.02.2016 Grassmannian In momentum twistor space: MHV part factored out space associated to Wilson loop L. Ferro (LMU München) Zagreb, 05.02.2016 Amplituhedron (picture of A. Gilmore) Conjecture the volume of the amplituhedron = amplitude in planar N=4 sYM (N. Arkani-Hamed, J. Trnka) Geometric interpretation of amplitudes! Idea: NMHV tree-level amplitudes = volume of polytope in dual momentum twistor space (Hodges) Related to (positive) Grassmannian L. Ferro (LMU München) Zagreb, 05.02.2016 Amplituhedron In a nutshell ~x3 center of mass of 3 points in 2d ·~x ~x2 ~x1 c1 ~x1 + c2 ~x2 + c3 ~x3 ~x = c1 + c2 + c3 Interior: ranging over all positive c1, c2, c3 L. Ferro (LMU München) Zagreb, 05.02.2016 Amplituhedron In a nutshell Z3 triangle in Zi = ✓ 1 ~xi ·Y projective space Z2 Z1 I Y = I c1 Z1 + I c2 Z2 + ◆ I c3 Z3 I = 1, 2, 3 Interior: ranging over all positive c1, c2, c3 (GL(1)) L. Ferro (LMU München) Zagreb, 05.02.2016 Amplituhedron In a nutshell Generalizations: triangles in 2d -> polygons + higher dimensions most general at tree level: I Y↵ = X a Geometric requirements { I c↵a Za I = 1, 2, ..., k + m a = 1, ...n „Internal" positivity (c) = interior „External" positivity (Z) = convexity Volume = amplitude in planar N=4 sYM L. Ferro (LMU München) Zagreb, 05.02.2016 Amplituhedron In a nutshell Generalizations: Positive grassmannian -> tree amplituhedron Ωn,k,L I Y↵ = X I c↵a Za a G(k, k + m) G+ (k + m, n) G+ (k, n) physics: m=4 tree: k=1 polytope, k>1 more complicated object loops: similar, more complicated formulae L. Ferro (LMU München) Zagreb, 05.02.2016 Amplituhedron In a nutshell Generalizations: Positive grassmannian -> tree amplituhedron Ωn,k,L I Y↵ = X I c↵a Za a G(k, k + m) „Amplitude coords" 0 B B B Z=B B B @ za 'A 1 ⌘aA . . . 'A k ⌘aA L. Ferro (LMU München) 1 C C C C C C A G+ (k + m, n) G+ (k, n) Bosonized momentum twistors Zagreb, 05.02.2016 Amplituhedron ( Integral representation: (Some) Open questions ⌦tree n,k which symmetries are preserved? how to evaluate volume for k>1 and for loops? how to perform the integral (prescription)? (LF, T. Lukowski, A. Orta, M. Parisi) L. Ferro (LMU München) Zagreb, 05.02.2016 Conclusions N=4 super Yang-Mills has a lot of good properties „harmonic oscillator" of 21st century Driving force: symmetries! A lot of work still has to be done! L. Ferro (LMU München) Zagreb, 05.02.2016