Linear Scaling DFT based on Daubechies Wavelets for Massively
Transcription
Linear Scaling DFT based on Daubechies Wavelets for Massively
Linear Scaling DFT based on Daubechies Wavelets for Massively Parallel Archiecture BigDFT BigDFT Wavelets Operations Performances O (N ) L Ratcliff1 , Stephan Mohr1,2 , Paul Boulanger1,3 , Luigi Genovese1 , Damien Caliste1 , Stefan Goedecker2 , Thierry Deutsch Minimal basis Performance Fragment Applications Perspectives Conclusions 1 Laboratoire de Simulation Atomistique (L Sim), CEA Grenoble 2 Institut für Physik, Universität Basel, Switzerland 3 Institut Néel, CNRS, Grenoble Centre Blaise Pascal, Lyon Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Outline 1 The machinery of BigDFT (cubic scaling version) Mathematics of the wavelets Main Operations MPI/OpenMP and GPU performances 2 O (N ) (linear scaling) BigDFT approach BigDFT BigDFT Wavelets Operations Minimal basis set approach Performance and Accuracy Fragment approach Applications Perspectives Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions 3 Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch A basis for nanosciences: the BigDFT project STREP European project: BigDFT(2005-2008) Four partners, 15 contributors: CEA-INAC Grenoble (T.Deutsch), U. Basel (S.Goedecker), U. Louvain-la-Neuve (X.Gonze), U. Kiel (R.Schneider) BigDFT BigDFT Wavelets Operations Performances O (N ) Aim: To develop an ab-initio DFT code based on Daubechies Wavelets, to be integrated in ABINIT, distributed under GNU-GPL license Minimal basis Performance Fragment Applications Perspectives Conclusions After six years, BigDFT project still alive and well BigDFT formalism from HPC perspective Wavelets for O (N ) DFT Resonant states of open quantum systems Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Why do we use wavelets in BigDFT? Adaptivity One grid, two resolution levels in BigDFT: • 1 scaling function (“coarse region”) BigDFT • 1 scaling function and 7 wavelets (“fine region”) BigDFT Wavelets Operations Performances O (N ) 1.5 Minimal basis Performance Fragment Applications Perspectives Conclusions φ(x) Ideal for big inhomogeneous systems 1 Efficient Poisson solver, capable of 0.5 handling different boundary conditions – 0 free, wire, surface, periodic Explicit treatment of charged systems -0.5 Established code with many capabilites-1 ψ(x) -1.5 -6 -4 -2 0 2 x Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch 4 6 8 A brief description of wavelet theory Two kind of basis functions A Multi-Resolution real space basis The functions can be classified following the resolution level they span. BigDFT BigDFT Wavelets Operations Performances O (N ) Scaling Functions The functions of low resolution level are a linear combination of high-resolution functions Minimal basis Performance = Fragment Applications + m Perspectives φ(x ) = Conclusions ∑ hj φ(2x − j ) j =−m Centered on a resolution-dependent grid: φj = φ0 (x − j ). Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch A brief description of wavelet theory Wavelets They contain the DoF needed to complete the information which is lacking due to the coarseness of the resolution. = BigDFT + 21 m BigDFT Wavelets 1 2 φ(2x ) = Operations ∑ m h̃j φ(x − j ) + j =−m Performances ∑ g̃j ψ(x − j ) j =−m O (N ) Minimal basis Performance Increase the resolution without modifying grid space Fragment Applications SF + W = same DoF of SF of higher resolution Perspectives Conclusions m ψ(x ) = ∑ gj φ(2x − j ) j =−m All functions have compact support, centered on grid points. Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Adaptivity of the mesh Atomic positions (H2 O) BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Adaptivity of the mesh Fine grid (high resolution) BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Adaptivity of the mesh Coarse grid (low resolution) BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Basis set features Orthogonality, scaling relation Z dx φk (x )φj (x ) = δkj BigDFT BigDFT 1 φ(x ) = √ m ∑ 2 j =−m hj φ(2x − j ) The hamiltonian-related quantities can be calculated up to machine precision in the given basis. Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Exact evaluation of kinetic energy Applications Perspectives Conclusions 14 The accuracy is only limited by the basis set (O hgrid ) Obtained by convolution with filters: f (x ) = c` φ` (x ) , ∇2 f (x ) = ∑ ` c̃` = ∑ c̃` φ` (x ) , ` ∑ cj a`−j , a` ≡ Z φ0 (x )∂2x φ` (x ) , j Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch version 1.7.x http://www.bigdft.org • Isolated, surfaces and 3D-periodic boundary conditions (k-points, symmetries) • All XC functionals of the ABINIT package (libXC library) • Hybrid functionals, Fock exchange operator BigDFT BigDFT • Direct Minimisation and Mixing routines (metals) • Local geometry optimizations (with constraints) Wavelets Operations • External electric fields (surfaces BC) Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions • Born-Oppenheimer MD • Vibrations • Unoccupied states • Empirical van der Waals interactions • Saddle point searches (NEB, Granot & Bear) • All these functionalities are GPU-compatible Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Optimal for isolated systems Test case: cinchonidine molecule (44 atoms) 101 BigDFT BigDFT Wavelets Operations Performances Absolute energy precision (Ha) Plane waves 0 10 Ec = 40 Ha 10-1 Ec = 90 Ha 10-2 h = 0.4bohr Ec = 125 Ha -3 10 h = 0.3bohr O (N ) Minimal basis Wavelets 10-4 Performance Fragment Applications 105 Number of degrees of freedom 106 Perspectives Conclusions Allows a systematic approach for molecules Considerably faster than Plane Waves codes. 10 (5) times faster than ABINIT (CPMD) Charged systems can be treated explicitly with the same time Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Systematic basis set Two parameters for tuning the basis The grid spacing hgrid The extension of the low resolution points crmult BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Massively parallel Two kinds of parallelisation By orbitals (Hamiltonian application, preconditioning) By components (overlap matrices, orthogonalisation) BigDFT BigDFT A few (but big) packets of data Wavelets Operations Performances O (N ) Minimal basis Performance More demanding in bandwidth than in latency No need of fast network Optimal speedup (eff. ∼ 85%), also for big systems Fragment Applications Perspectives Conclusions Cubic scaling code For systems bigger than 500 atomes (1500 orbitals) : orthonormalisation operation is predominant (N 3 ) Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Orbital distribution scheme Used for the application of the hamiltonian The hamiltonian (convolutions) is applied separately onto each wavefunction BigDFT BigDFT ψ1 Wavelets MPI 0 Operations Performances O (N ) ψ2 Minimal basis Performance Fragment ψ3 Applications MPI 1 Perspectives Conclusions ψ4 ψ5 Laboratoire de Simulation Atomistique MPI 2 http://inac.cea.fr/L Sim Thierry Deutsch Coefficient distribution scheme Used for scalar product & orthonormalisation BLAS routines (level 3) are called, then result is reduced MPI 0 BigDFT MPI 1 MPI 2 ψ1 BigDFT Wavelets Operations Performances ψ2 O (N ) Minimal basis Performance ψ3 Fragment Applications Perspectives Conclusions ψ4 ψ5 Communications are performed via MPI ALLTOALLV Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch OpenMP parallelisation Innermost parallelisation level (Almost) Any BigDFT operation is parallelised via OpenMP 4 Useful for memory demanding calculations BigDFT BigDFT 4 Allows further increase of speedups 4 Saves MPI processes and intra-node Message Passing Wavelets 4.5 2OMP 3OMP 6OMP Operations O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions 6 Less efficient than MPI 6 Compiler and system dependent 6 OpenMP sections should be regularly maintained Laboratoire de Simulation Atomistique 4 OMP Speedup Performances 3.5 3 2.5 2 1.5 0 http://inac.cea.fr/L Sim 20 40 60 80 No. of MPI procs Thierry Deutsch 100 120 High Performance Computing Localisation & Orthogonality → Data locality Principal code operations can be intensively optimised BigDFT BigDFT Optimal for application on supercomputers 100 2 Wavelets Little communication, big packets of data Performance Fragment Applications Perspectives No need of fast network Optimal speedup 4 Efficiency (%) Minimal basis 4 98 Performances O (N ) 2 16 Operations 96 8 94 44 1 1 4 22 92 11 5 (with orbitals/proc) Conclusions Efficiency of the order of 90%, up to thousands of processors 32 at 65 at 173 at 257 at 1025 at 90 88 1 Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim 2 3 10 100 Number of processors Thierry Deutsch 1 1000 Task repartition for a small system (ZnO, 128 atoms) 1 Th. OMP per core 100 1000 90 BigDFT Wavelets Percent 70 BigDFT 100 60 50 40 Operations Performances O (N ) Minimal basis Performance 10 30 Seconds (log. scale) 80 20 10 Fragment Applications Perspectives 0 16 24 32 48 64 96 144 192 288 576 1 Efficiency (%) Time (sec) Other CPU Conv LinAlg Comms No. of cores Conclusions Data repartition optimal for material accelerators (GPU) Graphic Processing Units can be used to speed up the computation Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Using GPUs in a Big systematic DFT code Nature of the operations Operators approach via convolutions Linear Algebra due to orthogonality of the basis Communications and calculations do not interfere BigDFT BigDFT * A number of operations which can be accelerated Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Evaluating GPU convenience Three levels of evaluation 1 Applications Does the operations are suitable for GPU? Perspectives Conclusions Bare speedups: GPU kernels vs. CPU routines 2 Full code speedup on one process Amdahl’s law: are there hot-spot operations? 3 Speedup in a (massively?) parallel environment The MPI layer adds an extra level of complexity Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Hybrid and Heterogeneous runs with OpenCL NVidia S2070 Connected each to a Nehalem Workstation ATI HD 6970 BigDFT may run on both BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Sample BigDFT run: Graphene, 4 C atoms, 52 kpts No. of Flop: 8.053 · 1012 MPI GPU Time (s) Speedup GFlop/s 1 NO 6020 1 1.34 1 NV 300 20.07 26.84 4 NV 160 37.62 50.33 1 ATI 347 17.35 23.2 4 ATI 197 30.55 40.87 8 NV + ATI 109 55.23 73.87 Next Step: handling of Load (un)balancing Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Configuration space of the cage-like boron clusters Stabilize the buckyball configuration of B80 systems PRB 83 081403(R), 2011 0.5 0.5 0 0 -0.5 -0.5 -1 -1 BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions -1.5 -1.5 14:6 B80 B12@B68 -2 Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch -2 Configuration space of the cage-like boron clusters Stabilize the buckyball configuration of B80 systems PRB 83 081403(R), 2011 Sc N 3 BigDFT 0.5 0.5 -12.76 eV BigDFT Wavelets Operations 0 0 -0.5 -0.5 Performances O (N ) Minimal basis Performance Fragment Applications Perspectives -1 on B12@B68 Conclusions -13.55 eV -1.5 -1 -1.5 8:12 -2 @ B80 Laboratoire de Simulation Atomistique -2 http://inac.cea.fr/L Sim Thierry Deutsch Outline 1 The machinery of BigDFT (cubic scaling version) Mathematics of the wavelets Main Operations MPI/OpenMP and GPU performances 2 O (N ) (linear scaling) BigDFT approach BigDFT BigDFT Wavelets Operations Minimal basis set approach Performance and Accuracy Fragment approach Applications Perspectives Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions 3 Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Scaling of BigDFT (I) We can reach systems containing up to a few hundred electrons thanks to wavelet properties and efficient parallelization: • MPI • OpenMP • GPU ported BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions But the various operations scale differently: O (N log N ): Poisson solver • O (N 2 ): convolutions • O (N 3 ): linear algebra • and have different prefactors: • cO (N 3 ) cO (N 2 ) cO (N log N ) 60 Time / iteration (s) BigDFT 50 40 30 20 10 0 0 1000 Number of atoms −→ for bigger systems the O (N 3 ) will dominate and so we need a new approach Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch 2000 Scaling of BigDFT (II) To improve the scaling and thus the scope of BigDFT, we must take advantage of the nearsightedness principle: • the behaviour of large systems is short-ranged, or near-sighted • the density matrix decays exponentially in insulating systems BigDFT BigDFT Wavelets Operations • can take advantage of this locality to create linear-scaling O (N ) DFT formalisms by having localized orbitals e.g. as in ONETEP , Conquest, SIESTA... Performances O (N ) • we want to adapt this formalism for BigDFT Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Minimal basis and density kernel Write the KS orbitals as linear combinations of minimal basis set φα (r): BigDFT BigDFT Ψi (r) = ∑ ciα φα (r) Define the density matrix ρ(r, r0 ) and kernel K αβ : ρ(r, r0 ) • localized ∑ Ψi (r)ihΨi (r0 ) = Performances O (N ) • expanded in wavelets Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim ∑ φα (r)iK αβ hφβ (r0 ) α,β • atom-centred i α Wavelets Operations = Thierry Deutsch The algorithm Minimal basis set Initial Guess: Atomic Orbitals Basis optim ization: • Minimize the ‘trace’, band structure energy or a combination at fixed potential or • SD or DIIS with k.e. preconditioning BigDFT BigDFT Wavelets Operations • Initialized to atomic orbitals, optimized using a quartic confining potential subject to an orthogonality constraint Performances O (N ) Density kernel Minimal basis Performance Fragment Applications Perspectives Kernel Optim ization : Diagonalize Hamiltonian Update potential Three methods for self-consistent optimization: • Diagonalization Conclusions • Direct minimization Forces Laboratoire de Simulation Atomistique • Fermi operator expansion (linear-scaling) http://inac.cea.fr/L Sim Thierry Deutsch Scaling 60 3 40 30 20 Cubic Dmin FOE 10 BigDFT Wavelets Operations Performances 12 Memory (GB) Time / iteration (s) BigDFT 2 ax + bx + cx: 1.0e+00; 3.0e+03; 1.5e+06 4.6e-02; 2.2e+02; 1.4e+06 7.6e-03; 4.3e-03; 1.4e+06 50 10 8 6 4 2 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Number of atoms O (N ) Minimal basis Performance Fragment Improved time and memory scaling Applications Perspectives Conclusions • 301 MPI, 8 OpenMP for above results • ∼ O (N ) for FOE • need sparse matrix algebra for direct minimisation → O (N ) Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch 0 4000 8000 Number of atoms BigDFT BigDFT Wavelets Speedup wrt 160 cores 20 15 10 Speedup Ideal speedup Amdahl’s law, P=0.97 Efficiency 5 Operations Performances O (N ) Minimal basis Performance 0 0 500 1000 1500 2000 2500 3000 3500 Number of cores (MPI tasks x 4 OMP threads) 100 90 80 70 60 50 40 30 20 10 0 4000 Efficiency (%) Parallelization – MPI Fragment Applications Perspectives Conclusions Efficient parallelization for 1000s of CPUs • ∼ 97% of code parallelized with MPI • ∼ 93% of code parallelized with OpenMP 960 atoms Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Accuracy: Total energies and forces Several systems 44 – 450 atoms • compared with standard BigDFT • total energies accuracy: ∼ 1 meV/atom • forces accuracy: ∼ a few meV/bohr BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Geometry optimization 1e+00 Time (min.) RMS F (eV/Å) 10 1e−01 1e−02 5 BigDFT 1e−03 BigDFT 0 Wavelets Cum. time (min.) 100 Operations Performances Minimal basis Performance Fragment 0.10 ∆ R (Å) O (N ) 0.05 Applications 80 288 atoms 60 40 Cubic Reset Reformat 20 Perspectives Conclusions 0.00 0 0 5 10 15 0 5 10 15 Further savings through support function reuse • Pulay forces not needed Laboratoire de Simulation Atomistique • lower prefactor than single point http://inac.cea.fr/L Sim Thierry Deutsch Energy differences Silicon cluster with a vacancy defect • 291 atoms BigDFT BigDFT Wavelets • need 9 support functions per Si • accuracy in defect energy of 12 meV Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions cubic 4/1 (sp-like) 9/1 (spd-like) pristine eV −20674.2 −20667.6 −20672.9 Laboratoire de Simulation Atomistique vacancy eV −20563.1 −20556.5 −20561.7 http://inac.cea.fr/L Sim ∆ ∆-∆cubic eV 111.167 111.038 111.155 meV – 129 12 Thierry Deutsch Fragment approach • By dividing a system into fragments, we can avoid optimizing the support functions entirely for large systems • Substantially reduces the cost (need an efficient reformatting) BigDFT BigDFT Wavelets Operations • Many useful applications, including the explicit treatment of solvents Performances O (N ) Minimal basis Performance Fragment Applications Perspectives • A necessary first step towards a tight-binding like approach, with each atom as a fragment Conclusions Reformatting the minimal basis set in the same grid Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Support function reuse As we have seen, the reuse of support functions lends itself to some interesting applications, e.g. geometry optimizations, charged systems For this, we need an accurate and efficient reformatting scheme BigDFT 100 BigDFT 10 Performances O (N ) Minimal basis Performance Fragment Applications E - Ecubic (meV / atom) Wavelets Operations Cubic eggbox Linear eggbox Linear template 1 0.1 0.01 Perspectives Conclusions 0.001 Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Transfer integrals and site energies −1.50 DZ J12 LUMO TZP J12 LUMO TMB J12 LUMO 0.80 0.60 Energy (eV) Energy (eV) 1.00 0.40 0.20 0.00 Operations Performances O (N ) Minimal basis Performance Fragment 30 60 Rotation angle −3.00 −3.50 90 DZ J12 HOMO TZP J12 HOMO TMB J12 HOMO 0.80 0.60 0 30 60 Rotation angle 90 DZ e1,2 HOMO TZP e1,2 HOMO −4.50 TMB e1,2 HOMO −4.00 Energy (eV) Wavelets 1.00 Energy (eV) BigDFT −2.50 −4.00 0 BigDFT DZ e1,2 LUMO TZP e1,2 LUMO TMB e1,2 LUMO −2.00 0.40 0.20 −5.00 −5.50 −6.00 0.00 0 30 60 Rotation angle 90 0 30 60 Rotation angle 90 Applications Perspectives Conclusions BigDFT compared to ADF fragment approach • support functions from molecules reused in dimers • Application to OLED (Organic Light-Emitting Diode) Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Transfer integrals for OLEDs (I) We want to consider environment effects in realistic ‘host-guest’ morphologies: 6192 atoms, 100 molecules BigDFT BigDFT Wavelets Host molecule Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Guest molecule Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Transfer integrals for OLEDs (II) Transfer integrals (left) and site energies (right) calculated with (bottom) and without (top) constrained DFT host-host BigDFT guest-guest BigDFT Wavelets Operations -5.5 -5.4 -5.3 -5.2 -5.1 -5 -4.9 -4.8 -4.7 -4.6 -4.5 host-guest Performances host guest O (N ) Minimal basis Performance all Fragment Applications Perspectives Conclusions -0.06 -0.04 -0.02 0 0.02 Energy (eV) 0.04 0.06 -7.3 -7.2 -7.1 -7 -6.9 -6.8 -6.7 -6.6 -6.5 -6.4 -6.3 Energy (eV) Generate good statistics. Then use of Markus model to calculate the efficiency of OLEDS. Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Perspectives of linear scaling Combination of wavelets and localized basis functions • Highly accurate (energies and forces) and efficient • Linear scaling – Thousands of atoms BigDFT BigDFT Wavelets Operations • Ideal for massively parallel calculations • Flexible e.g. reuse of support functions to accelerate geometry optimizations and for charged systems Performances O (N ) Minimal basis Fragment approach Performance Fragment Applications Perspectives Conclusions • Accurate reformatting scheme – can accelerate calculations on large systems e.g. explicit treatment of solvents • Wide range of applications: constrained DFT, transfer integrals • Crucial for future developments e.g. tight-binding, embedded systems (QM/QM) Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Outline 1 The machinery of BigDFT (cubic scaling version) Mathematics of the wavelets Main Operations MPI/OpenMP and GPU performances 2 O (N ) (linear scaling) BigDFT approach BigDFT BigDFT Wavelets Operations Minimal basis set approach Performance and Accuracy Fragment approach Applications Perspectives Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions 3 Conclusions Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Conclusions Wavelets: Powerful formalism • Linear scaling – Thousands of atoms BigDFT BigDFT • Accurate reformatting scheme – can accelerate calculations on large systems e.g. explicit treatment of solvents • Wide range of applications: constrained DFT, transfer integrals Wavelets Operations • Towards multi-scale approach (embedded systems) Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Beyond DFT • Resonant states are the way to describe fully a system • Give a compact description (few states) of the systems Conclusions • Linear-response, TD-DFT, ... • Many-body perturbation theory (GW, ...) Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch Acknowledgments Main maintainer Luigi Genovese Group of Stefan Goedecker A. Ghazemi, A. Willand, S. De, A. Sadeghi, N. Dugan (Basel University) BigDFT BigDFT Wavelets Operations Performances O (N ) Minimal basis Performance Fragment Applications Perspectives Conclusions Link with ABINIT and bindings Damien Caliste (CEA-Grenoble) Order N methods S. Mohr, L. Ratcliff, P. Boulanger (Néel Institute, CNRS) Exploring the PES N. Mousseau (Montreal University) Resonant states A. Cerioni, A. Mirone (ESRF, Grenoble), I. Duchemin (CEA) M. Morinière (CEA) Optimized convolutions B. Videau (LIG, computer scientist, Grenoble) Applications P. Pochet, E. Machado, S. Krishnan, D. Timerkaeva (CEA-Grenoble) Laboratoire de Simulation Atomistique http://inac.cea.fr/L Sim Thierry Deutsch