Piezoelectric Micromachined Ultrasonic Transducers P. GAUCHER
Transcription
Piezoelectric Micromachined Ultrasonic Transducers P. GAUCHER
Piezoelectric Micromachined Ultrasonic Transducers Philippe GAUCHER ([email protected]) - Ecole Centrale Paris Laboratoire Structures, Propriétés, Modélisation des Solides - Consultant at THALES Research & Technology Outline • Physical principles • Technology • Natural frequencies • Bandwidth and Admittance • Amplitude and Acoustic Power • Conclusion Physical principles Single Element Pulse-Echo acoustic transducer We need: - Power - Bandwidth - Sensitivity in switch Propagation medium out SONAR principle delay target Multi-elements Ultrasonic Transducers : towards 3D imaging 1D probe 1.5D probe Electronic Beam steering 2D probe Ultrasonic Transducers: integration into Silicon technology u.s u.s PZT Al Present: Piezo in thickness mode E Si n++ Adaptation PZT baking u.s SiNx Ps oxyde E Si C-MUT Concept: Capacitive P-MUT Concept: Piezo in Flexion (bimorph) C-MUT and p-MUT Piezoelectric material Small air gap VDC+vac V Force Force P-MUT: Material coupling C-MUT: Design coupling Electrical power : Pe = 1/2ε0εE2.ω Force S.(VDC+vac)2 1 F= ε0. 2 e2 = Cte+k.EDC.eac(t) In piezo-electricity : EDC=Pr/ε0 = local field in the material Vac Piezoelectric material specifications for a piezo-electric transducer • High coupling coefficient ---> high band width • High dielectric constant ----> low electrical impedance (coaxial: Ze=50Ω) • High d coefficients ---> large strain • Low elastic stiffness -----> acoustic impedance (ρ.c) matching (water: Zm=20 Mrayl) • High mechanical and electrical Q for materials ---> low losses • High speed of sound ---> high resonance frequency Technology Generic structure of a Piezoelectric MEMS Electrodes Membrane Piezoelectric material Barrier Etch stop (Cross section) Downscaling technologies for piezoelectric bimorphs Lateral dimensions Thickness Voltage Problems Solution STICKING (BULK CERAMICS) SCREEN PRINTING THIN FILMS DEPOSITION > 1cm > 1mm > 1µm > 100µm > 10µm > 0.1µm > 100V low coupling with substrate > 10V High temperature processing noble metal substrate > 1V Optimise glue layer Pb diffusion in Si barrier PARMENIDE Project MEMS technology: Bulk Silicon Micromachining Front side: Back side: Si wafer with ferroelectric structures Membrane machined by DRIE Thales TRT and Thales Microsonics, Cranfield Univ, EPFL, FhG IBMT, Protavic SOI (Silicon On Insulator) substrate TiPt-PZT-Pt stack 2.3µm SiO2 0.2 µm SOI 5µm SiO2 0.5 µm Silicium SEM Cross section of the layer stacking Interfacial stresses : Delaminations and cracking of layers Interfacial Shear stress τ L σ = .τ 4t Layer stress σ L σ σ couche τ substrat t τ •films with τ>0 Delamination •films with τ<0 Cracks Sensors and Actuators A89 (2001) Interfacial stress between film and substrate Intrinsic stress Thermal stress Td t tra s b α su α > f ilm α f ilm <α su bs tra t Tamb Tension, σ > 0 compression, σ < 0 Interfacial stress cancellation substrate Resultant stress : σ1<0 n σ= σ2>0 ≡σ ∑σ i =1 i ⋅ ei n ∑e i =1 i • σ < 0 compressive stress • σ > 0 tensile stress Buckling of structures due to compressive stresses L F F t Euler force: Y.I π 2 Ywt 3 F>π . 2 = . 3 L2 L 2 Dimension ÷ 100 => F ÷ 104 Example: L=w=1mm t=10µm Y=100GPa σ = 30MPa only! Feynman: Lectures on Physics, Vol 2 Buckled Piezoelectric diaphragms Acoustic array of piezoelectric transducers Packaging Anodic bonding for via through interconnexions connectic wafer Via holes: 70 µm Hole isolation: PECVD oxide SOG 3.2 µm Acoustic wafer PECVD oxide TiPt electrodes barrier oxide Poling of PZT film Sol-gel films: Permittivity (1 kHz): 800 tanδ (1Vrms-1 kHz) : 1-3 % Surface capacitance : 12 nF/mm2 Coercive field: 11 V/µm Breakdown field: > 50 V/µm. Effective d33 up to 100pC/N Ferroelectric Hysteresis at 115 Hz for a 1.8 µm film Resonant frequencies Natural frequencies of generic structures f =0.162. t2 . Y L ρ Y f =0.615. t2 . L ρ(1−ν 2) Composite membranes: YÆ YD and rÆ ρequ Y f =1.654. t2 . L ρ(1−ν 2) Finite Elements Modelling for complex designs •Coventorware •Intellisense •ANSYS, ATTILA … Modal analysis (polytec laser interferometer) 108 kHz 39 kHz 98 kHz 57 kHz 58 kHz 153 kHz First natural frequency : experimental and modelling Résonance f0 (Hz) 1,E+07 1,E+06 1,E+05 1,E+04 1,E+03 0,10 1,00 10,00 Membrane dimension (mm) analytical model memcad model experimental Differences dues due non ideal geometry of the clamping Testing with water loading P-MUT Glass tube Sealing PCB Resonance frequency In air : 520 kHz f =0.243 t EEQ a² ρEQ One side water loaded : 181 kHz f =0.243 t a² EEQ ρEQ1+0.77 ρH O a ρEQ t 2 Electrical Admittance and Bandwidth Parametric analysis resonance Zr=ρ.c 2 k • Coupling k: N2= C0 Cm 1−k2 • Mechanical Q factor: Qm= LωR Zr • Resonance: L(C 0+Cm)ωr2=1 • Antiresonance: LCmωa2=1 • Impedance: Z=Zr + 1 jC0ωr • Electrical Q factor (at ωr): Qe= ZrC02ωr N • Mechanical Q factor: Qm= Lωr Zr Bandwidth and impedances matching Admittance Yi Yr(f0) Yi(f0) B -3 dB Yr fr f0 Qm = ≈1 B f0 fa Yr Qe = ≈1 Yi (with Yi=50Ω) Frequency Admittance in air : membrane 250 µm fr=2 MHz, Qm=80 Parasitic Capacitance reduces bandwidth C0 C1 R1 Co C1 R R1 Ro C L Element R C L C1 Ro Co Value 1.5E5 ohm 4.236E-14 F 1.24 H 8.5E-11 F 352.5 ohm 7.511E-11 F Bandwidth and acoustic impedance: Admittance measurement in air and in fluorinert 1.20E-05 1.40E-04 2.50E-05 1.20E-04 1.40E-04 1.20E-04 1.00E-05 2.00E-05 1.00E-04 1.00E-04 8.00E-06 1.50E-05 8.00E-05 B (S) G (S) B (S) G (S) 8.00E-05 6.00E-06 6.00E-05 6.00E-05 1.00E-05 4.00E-06 4.00E-05 4.00E-05 5.00E-06 2.00E-05 0.00E+00 4.00E+05 4.50E+05 5.00E+05 5.50E+05 6.00E+05 Frequency Disc transducer in air: fr=570 kHz Qm=142 0.00E+00 6.50E+05 2.00E-06 0.00E+00 1.00E+05 2.00E-05 1.50E+05 2.00E+05 2.50E+05 3.00E+05 3.50E+05 4.00E+05 4.50E+05 5.00E+05 Frequency Disc transducer loaded with Flurinert (front side): fr= 315 kHz Qm=1.26 5.50E+05 0.00E+00 6.00E+05 Amplitude and Acoustic Power Analytical modelling of cantilever Modal response and force z electrodes x PZT x+l t/2 zn 0 -ts /2 neutral plane Substrate Mode 1: 1.62 kHz Sensor response: Φ x2 2 (t+tp).Y Vs=δ. .g.tp.∫ ∂2Φ.dx 2l ∂x x1 Mode 2: 62.8 kHz Actuator force: Mode 3: 496 kHz 0 x (mm) 2.5 x2 2 (t+tp).Y F= .d.V.∫ ∂2Φ.dx 6+Ψ ∂x x1 Amplitude at resonance Déplacement (microns) 18 16 14 12 10 8 6 4 2 0 0 2 4 6 8 Tension (V) Membrane 4X4mm2 @ 30.9 kHz 10 12 Acoustic power - Displacement speed : V = A.ω = 3 m/s - Acoustic pressure in air : Za=0.2 103 Rayl P = Za.v = 6 kPa - Acoustic pressure in water : Za=1.5 106 Rayl but attenuation by a factor of 100 P = 3 MPa Testing in reception (in air) HV Acoustic burst generator (labo GPS Univ Paris VI) 1.2 ms Parmenide sensor 400 µs Reception signal of a 1.350 X 1.350 Reception signal of a 250 X 250 µm2 p-mut mm2 p-mut at a distance d=40cm. The at a distance d=10cm. The oscillations are at 700 kHz oscillations are at 30 kHz. Conclusion • p-MUTs technology is an alternative to c-MUTs for air or underwater acoustic transducers • Thin film PZT bimorphs can support high electric fields, but have low coupling factor • Large vibration amplitude is possible with p-MUTs • A compromise between bandwidth and sensitivity has to be found, by putting adaptive layers onto p-MUTs • p-MUTs Æ low frequency • c-MUTs Æ high frequency Work supported by 5th PCRDT of the European Commission: contract PARMENIDE