Mexico Deforestation Vulnerability Final Report mwRL
Transcription
Mexico Deforestation Vulnerability Final Report mwRL
Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Environmental Defense Fund (Consortium Lead), Conservation International, and Center for Global Development September 11, 2014 ALIANZAMÉXICOPARALAREDUCCIÓNDE EMISIONESPORDEFORESTACIÓNYDEGRADACIÓN PolíticapúblicaDesarrollodecapacidadesArquitecturafinancieraMRVComunicación i www.alianza‐mredd.org.mx ThisreportwasmadepossiblebythegeneroussupportoftheAmericanpeoplethroughtheUnited StatesAgencyforInternationalDevelopment(USAID)underthetermsofitsCooperative AgreementNumberAID‐523‐A‐11‐00001(M‐REDDProgram)implementedbyprimerecipientThe NatureConservancyandpartners(RainforestAlliance,WoodshallResearchCenterandEspacios NaturalesyDesarrolloSustentable).Thecontentsandopinionsexpressedhereinarethe responsibilityoftheM‐REDDPROGRAManddonotnecessarilyreflecttheviewsofUSAID.Views expressedinthispaperdonotnecessarilyreflectthoseoftheanyoftheauthors’institutions.Any remainingerrorsaretheauthors’soleresponsibility. TheauthorsarealsothankfulforvaluableguidancefromBronsonGriscomandPeterEllisofTNC, helpfulcommentsfromYvesPaiz,JuanFranciscoTorresOrigel,andJoseCantoVergaraofTNC, earlyadviceandsupportfortheprojectfromLeticiaGutierrezLoranidiofTNC,aswellasvaluable inputfromparticipantsintheworkshopon“ModelingDeforestationintheYucatanandBeyond” convenedbyTNCandMREDDfromApril30toMay2,2014inMerida,Mexico.WealsothankJose CarlosFernandezofINECCforinspirationandinvaluablesupportfromthefirstinceptionofthe nationalanalysis.Inaddition,theauthorsaregratefulforimportantmodelingcontributionsfrom RuohongCaiofEDF,GISsupportfromJeremeyProvilleofEDF,andeditorialassistancefromPasha FeinbergofEDF.Theauthorsgratefullyacknowledgekeydataonmaximumcroprevenuesfrom JensEngelmannofCGDaswellasdataoncommunalpropertiesfromLeonardGoffandAllen BlackmanatRFF. ii Acknowledgments Authors RubenLubowski,MaxWright,KalifiFerretti‐Gallon,A.JavierMirandaArana,MarcSteininger,and JonahBusch Contactdetails: Projectlead RubenLubowski;[email protected] Literaturereviewandmeta‐analysis KalifiFerrettiGalon(lead);[email protected] JonahBusch;[email protected] Nationalmodeling RubenLubowski(lead) A.JavierMirandaArana(consultant);[email protected] Localmodeling MaxWright(lead);[email protected] MarcSteininger;[email protected] Organization Core Staff EnvironmentalDefenseFund RubenLubowski(ChiefNaturalResourceEconomist) A.JavierMirandaArana(Consultant) ConservationInternational MarcSteininger(ScientificDirector) MaxWright(RemoteSensingandGeospatialAnalyst) CenterforGlobalDevelopment JonahBusch(ResearchFellow)KalifiFerretti‐Gallon (ResearchAssistant) iii Contents 1.ExecutiveSummary 1.1.KeyFindings 2.Introduction 1 1 5 2.1.GlobalGreenhouseGasesandMexico’sForests 5 2.2.ReportOutline 5 3.LiteratureReviewofDriversofDeforestationinMexico 11 3.1.Introduction 11 3.2.Overviewofdeforestation 11 3.2.1.DeforestationinMexico 11 3.2.2.DeforestationintheYucatán 12 3.3.Overviewoflandtenure,ruralagriculturalsupport,andpaymentsfor ecosystemsservicesinMexico 12 3.3.1.LandTenure 12 3.3.1.1.Privatelands 12 3.3.1.2.PublicLands 12 3.3.1.3.CommunalLands 12 3.3.2.RuralAgriculturalSupport 14 3.3.3.PaymentsforEcosystemsServices 15 3.4.Databaseregressionresults 16 3.4.1.AMeta‐analysisofDriversofDeforestationinMexico:Methods 16 3.4.2.ResultsforMexicoandSEsub‐regions 17 4.Analysisofdeforestationatnationallevel/OSIRIS 21 4.1.Introduction 21 4.2.EmpiricalModel 21 iv 4.2.1.EconometricSpecification 21 4.2.1.1.Relationshipofdeforestationtoavailableforestareawithina900mgridcell 22 4.2.1.2.Observedandunobservedcomponentsofnetreturnsfromlandconversion 24 4.3.HistoricalSimulations 26 4.3.1.SimulationScenario 26 4.3.2.SimulationResults 28 4.3.2.1.ChangesinAgriculturalReturns 28 4.4.Futureprojections 32 4.4.1.1.“Business‐as‐usual”projection 33 4.4.1.2.CarbonIncentiveProjections 37 5.LocalModelingofDeforestation 46 5.1.Introduction 46 5.1.1.Overallapproach 46 5.1.2.Definitionofextents 46 5.2.DataandMethods 46 5.2.1.Deforestationdata 46 5.2.2.Otherdata 48 5.2.3.Spatialmodeling 50 5.3.Results 51 5.3.1.Deforestationsince2000 51 5.3.2.Modeleddeforestationbeyond2012 53 5.4.Predictingdeforestationinthefuture: 56 5.5.Conclusions 66 6.Conclusion 69 6.1.Summaryofreportfindingsanddirectionsforfutureresearch 69 6.1.1.Literaturereviewandmeta‐analysis 69 6.1.2.Nationalmodeling 70 6.1.3.LocalModeling 71 v 7.Workscited 73 Listoftables,figuresandmaps Tables Table3.4.1DriversofdeforestationinMexico,bydrivercategory 17 Table4.2.1.Principalexplanatoryvariablesusedinnationalregressions(900mcell) 25 Table4.3.1.Simulationscenariosoverhistoricalperiodindataset,2000‐2012 26 Table4.3.2.NationalSimulationResults 29 Table4.3.3.RegionalSimulationResultsforSensitivitytoAgriculturalReturns 31 Table4.4.1.Comparisonofhistoricalchangeandfuturepredictions,2014‐2024,byAATR referenceregionsandlandownershipcategory 35 Table4.4.2.Comparisonofhistoricalchangeandfuturepredictions,2014‐2024,bynational regionsandAATRReferenceRegions 36 Table4.4.3.FuturePredictions,2014‐2024,Business‐as‐Usualand$10/tonCO2PolicyCase, forAATRandnon‐AATRregions 40 Table5.2.1.Driverindependentvariablesusedforspatialmodelsatthelocallevel. 49 Table5.3.1.Summaryofforestcoverin2000anddeforestationfrom2000to2012among AATRs. 52 Table5.3.2.Relativeimportanceofthedifferentdrivervariablesformodelsrunineachof thelocalstudyareas.SeeTable5.3.1forthelistofvariables. 54 Table5.4.1.Predicteddeforestationfrom2012‐2022 58 Figures Figure2.2.1.ProjectFlowchart Figure3.4.1DriversofDeforestationinMexico:ResultsofMeta‐Analysis 9 18 Figure3.4.2.DriversofDeforestationintheYucatánPeninsulaasComparedtotheRestof Mexico:ResultsofMeta‐Analysis 20 Figure4.4.1.EstimatedcostcurvesforCO2emissionsreductionsfromabove‐groundforest 45 carbonlossesinMexico,byregion Figure4.4.2.Estimatedcostcurvesforreducingemissionsfromabove‐groundforestcarbon lossesinMexico,byAATRandnon‐AATRregions. 45 Figure5.4.1.Predicteddeforestation2012‐2022,OaxacaIstmo.AATRsitehighlightedin yellowthatching. 59 vi Figure5.4.2.Predicteddeforestation2012‐2022,OaxacaMixteca.AATRsitehighlightedin yellowthatching. 60 Figure5.4.3.Predicteddeforestation2012‐2022,OaxacaSierraNorte.AATRsite highlightedinyellowthatching. 60 Figure5.4.4.Predicteddeforestation2012‐2022,SierraChiapas.AATRsitehighlightedin yellowthatching. 62 Figure5.4.5.Predicteddeforestation2012‐2022,CutzmalaValleBravo.AATRsite highlightedinyellowthatching. 63 Figure5.4.6.Predicteddeforestation,SierraPUCC.AATRhighlightinyellowthatching 64 Figure5.4.7.Predicteddeforestation,SierraRaramuri.AATRsitehighlightinyellowthatch 65 Maps Map4.4.1.Projected“BusinessasUsual”(BAU)ForestLoss2014‐2024 41 Map4.4.2.ProjectedAvoidedForestLoss2014‐2024,with$10/tonCO2incentive 42 Map4.4.3.ProjectedRemainingForestLosswith$10/tonCO2incentive,2014‐2024 43 Map4.4.4.ProjectedAvoidedEmissions2014‐2024,with$10/tonCO2incentive 44 vii ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report 1. ExecutiveSummary In2010,Mexicoranked8thamongcountrieswiththelargestareaofprimaryforest(FAO 2010).Mexico’sforests,coveringaboutathirdofthenation,provideanumberofservicesincluding carbonsinks,highlevelsofendemismandspeciesrichness,andsubsistenceresourcesforlocal population.TheseservicesarebeingerodedasMexicocontinuestoexperienceforestcoverloss. Mexicohaslostabouthalfitsforestareasince1950.From2005‐2010,thecountrymaintainedan averagedeforestationrateof0.24%accordingtoFAO,reducingitscapacityforcarbon sequestrationandincreasinglandconversionrelatedemissions.Landuse,land‐usechangeand forestrywasrecentlyestimatedtoemitabout10%ofMexico’stotalGHGemissions. TheMexico‐REDDAlliance(MREDD)issupportingMexico’seffortstoreduceitsemissions fromdeforestationandforestdegradationandtoenhanceforestcarbonstocksarecurrently supportedby.TheprogramhasidentifiedEarlyActionAreas(ÁreasdeAcciónTempranaorAATR), orhighrisk–highrewardareaslocatedinMexicanstatesthatarerecognizedashavinghigh biodiversity,culturaldiversityaswellashighratesofdeforestation.Researchrelatedtoforest coverlossinMexicohassofarfocusedondriversofdeforestation,includingtheimpactofland ownershiptypesuniquetothecountry(communityforestry,protectedareas,andprivatelands). Missingfromthesizeableliteraturearetwotopicsofparticularimportancefortheidentificationof vulnerableregionsandthedesignofconservationstrategiesunderMREDD:thefirstisananalysis ofdriversofdeforestationthatisspecifictotheAATRs.Thesecondisananalysisoftheeffectof geographiccharacteristicsorpolicymeasuresthatisdisaggregatedbylandownershiptype. Tohelpaddressthesegaps,weconductaseriesofanalysesthatcombinebothnationaland localscalemodelingtoaidtheMREDDAlliancepartnersinassessingthevulnerabilityofMexico’s foreststodeforestation.TheseanalysesfocusonthevulnerabilityofforestedlandswithinMexico’s AATRs,accountingforMexico’suniqueforestmanagementdynamicsthroughdisaggregatingthe resultsbylandownershiptypes.Theseanalysesareultimatelymeanttoinformnationaland subnationalpolicy,pavingthewayforincentivebasedprograms,andultimatelyreduced deforestationvulnerabilityinMexico.Ourmethodologyincludesthreedifferentand complementaryapproaches:(i)reviewingtheexistingliterature,(ii)anationaleconometric analysisandassociatedscenariosimulationmodeling,and(iii)local‐levelspatialspatialmodeling foreachAATR.Keyfindingsfromeachofthesethreepartsofthereportaresummarizedbelow. 1.1.KeyFindings LiteratureReviewofDriversofDeforestationinMexico. Whiledeforestationhasdecreasedoverthepastdecades,forestlosscontinuesatabout 0.24%peryear,accoridingtoUN‐FAO,generatingabout6%ofthecountry’stotal greenhousegasemissionsin2010.Deforestationismostlyoccurringinthemoredensely forestedareasofsouth‐easternMexicandlargelyattributedintheliteraturetocropand cattledevelopment. 1 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Landtenure(communitylandmanagement,includingejidos),ruralagriculturalsupport, andpaymentsforecosystemsservicesaremajorfocusesoftheliterature.Conclusionson theroleofthemajorlandtenuretypeinMexico,communitylandmanagement,aremixed. Studiesarealsoindisagreementontheroleofsuchruralagriculturalsupportprogramsas PROCAMPO. Moststudiesagreethatpaymentsforecosystemsservicesdecreasedeforestationrisk,with somecaveatsrelatedtoregionaldifferencesandstartingdeforestationrisk. Theserelationshipsweremirroredinthemeta‐analysis:regressionresultsweremixedfor ejidosandruralincomesupport,whileresultsforPEStendedtobeassociatedwith decreaseddeforestation.Furthermore,resultsfromthemeta‐analysisrevealedother variableswithconsistentrelationshipstodeforestationinMexico.Thevariablesmost associatedwithreduceddeforestationinMexicowereassociatedwithprotectionmeasures (asproxiedbyprotectedareasandPES),reducedaccessibility(elevation),reducedresource competition(propertysize)andcommunityforestry. Thevariablesmostassociatedwithincreaseddeforestationwererelatedtoareaswhere economicreturnstoagriculturearehigher(proximitytoagricultureandagriculture returns),biophysicalconditionsforconversionarefavorable(soilsuitability),and competitionforresourcesarehigh(population). MostoftheserelationshipswererobustwhenresultsweredisaggregatedtotheYucatán Peninsula.Notablyhowever,atthenationallevel,povertyappearstobelinkedtoincreases indeforestation,whileintheYucatánPeninsulapovertyisassociatedwithdecreased deforestation.Conversely,indigenouspopulationisassociatedwithdecreased deforestation. NationalAnalysisofDeforestationinMexico. Thenationalanalysisrevealsthatacriticaldriverofdeforestationhasbeentheanticipated economicreturnsfromlandconversion,specificallyfromagricultureasproxiedbycrop productioninourstudy.Keyfactorsmodulatingdeforestationvulnerabilityincludeland ownershiptypeandinitialforestareawithinagridcell. Weestimatetheresponsivenessofgrossdeforestationtochangesinneteconomic incentivesforlandconversion.A1%decreaseinpotentialagriculturalreturnsover2000‐ 2012wouldhavedecreasedcumulativegrossdeforestationnationallyoverthisperiodby anestimated0.24%.Conversely,a1%increasewouldhaveboostedgrossdeforestationby anestimated0.26%.Similarly,a10%decreaseinpotentialagriculturalreturnsover2000‐ 2012wouldhavedecreasedcumulativegrossdeforestationnationallyoverthisperiodby anestimated2%.Conversely,a10%increasewouldhaveraisedgrossdeforestationbyan estimated3.3%. Apreliminaryexaminationsuggeststhatdecreasingpotentialcropreturns(orincreasing benefitstolowemissionsactivitiesthatavoiddeforestation)bytheamountofPROCAMPO subsidiesonejidosandagrariancommunitylandswouldhavedecreaseddeforestationby about5%over2000‐2012. 2 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Basedontheeconomicprofitabilityofagricultureandstartingforestcoverin2012,the modelpredictsanoverall27%“business‐as‐usual”increaseinannualdeforestationin Mexicooverthenexttenyears,relativeto2000‐2012. Ontheonehand,thereisrelativelyhighsensitivitytoagriculturalreturnsandhigh estimatedfuturevulnerabilitytodeforestationamongforestremantsinareaswith relativelysparserforestcover,includingintheNorthwestandBajioandNortheastregions. Comunidadesandprotectedareaswerethelandtypesprojectedtohavethebiggest proportionalincreaseinforestlossesoverthenext10yearsandarealsoestimatedtohave thegreatestpercentdeclinesinresponsetoapotentialcarbonincentive. Themostsensitiveareas,however,arenotthatimportantinabsoluteterms.Thegreatest amountofdeforestationisprojectedtooccurintheSouthandYucatanPeninsularegion,as wellaswithinejidosandprivatelandtypes.Theseareas,particularlytheYucatan Peninsula,holdthelion’sshareofestimatedpotentialforreducingdeforestationand emissions. ThesevenAATRsarenotallconcentratedintheareaswiththehighestprojectedfuture deforestation,andsomeofsitesarelocatedinareaswithlowhistoricalratesofforestloss, comparedtothenationalaverage.Nevertheless,overallasagroup,AATRsandtheir surroundingregionshavehigherprojecteddeforestationincreasesthanotherforested areasnationally,aswellasregionally,aswellasthemajorityofthepotentialtocost‐ effectivelyavoiddeforestation. Weuseourstatisticalparameterstoestimatenationalandregionalcarbonemissionscost curves,basedonahypotheticalcarbonincentivefocusingonlyonabove‐groundforest carbon.Wefindthatthereisrisingpotentialnationallytoreduceemissionsatcostsranging from$5to$100/tonCO2,atwhichpointabout90%oftheemissionsareavoided.About halfoftheestimatedreductionsavailableatpricesof$10/tonCO2orbelowandmorethan twothirdsoftheestimatedreductionsavailableatpricesof$20/tonCO2orbelow.The nationalandregionalcostcurvesarerisingatanincreasingrate,indicatingthatitcosts moreandmoretoavoiddeforestationonlandswithgreateragriculturalpotentials. LocalModelingofDeforestationinMexico. Judgingfromtheprojecteddeforestationscenarios,thegreatestbenefitsfrom implementingREDD+oranotherincentivebasedconservationactivitywouldbefeltin AATRsitesthatareprimarilyunfragmentedforest,meaningthattheystillcontainlarge areasofundisturbedcoreforest,andareexperiencingfrontierexpansion,usuallystemming frompopulationcentersoraccesspoints.SitessuchasSierraPUCCCheneandOaxaca IstmodisplaythesecharacteristicsascomparedtositeslikeOaxacaMixtecaorSierra Raramuriwhicharehighlyfragmentedandexperiencelowerratesofdeforestation. Variablesrelatedwithaccessibilityandmarketsweremostinfluentialintheless fragmentedreferenceregions,whilevariablesrelatedtobiophysicalsuitabilityweremost influentialinthefragmentedsites.Thevariable,distancetomegacites,wasimportantin 3 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report thetworegionsthatcontainedthem(SierraRararmurinearCuliacunandCutzemalaValle BravonearToluca). Theremaybemultiplepatternsofforestchangepresentinthereferenceregions;lossof primaryforest,lossofsecondaryforest,fallowrotationsandagro‐forestry.Modelscouldbe strengthenedbyaddressingtheseseparatelyorfocusingonaparticularpattern. Theinterpretationofthelocalmodelsshouldincludeboththesoftandhardpredictions underthevariousscenariosaswellasthegeneralpatternofthesofttransitionsurface. Futureworkcouldincludeamorethoroughexaminationoftheeffectsofland‐usepractices withincomunidadesandejidos,asthesedesignationshadsomeinfluenceoverthemodels, howevertheresultsweremixed. 4 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report 2. Introduction 2.1.GlobalGreenhouseGasesandMexico’sForests Greenhousegasemissionsfromagriculture,forestryandotherland‐useactivitiesaccount foranestimated24%ofglobalemissions,secondonlytoemissionsproducedbyfossilfuel combustion(IPCC5thAssessmentReport,2014).In1990,officialestimatesarethatdeforestation, forestdegradation,andotherland‐usechangesinMexicoproducedover100MtCO2eofemissions peryear,accountingfor18.2%ofnationalemissions.Morerecentlyin2010,forestsandland‐use changesproducedcloseto47MtCO2eorabout6.3%oftotalemissions(SEMARNAT/INECC, 2012).Mexicoiscurrentlyundertakingeffortstoreduceitsemissionsfromdeforestationand forestdegradationandtoincreasesequestrationbyenhancingforestcarbonstocks(REDD+), supportedbytheMexico‐REDD(MREDD)Allianceprogram.1Crucialtothesuccessofanti‐ deforestationpoliciesisanunderstandingofhowspatialvariationingeographiccharacteristics, landownership,economicprofitability,andpolicymeasuresaffectMexico’svulnerabilitytoforest coverloss.Itisalsoimportanttounderstandhowpotentialchangesinthesefactorsovertime mightaffectdeforestationinthefuture. Mexicohaslostroughlyhalfitsforestareasince1950.From2005to2010,thecountrylost 155,000hectaresofforestcover,anaveragedeforestationrateof0.24%(FAO,2010).Forest conservationinMexicoprovidesbiodiversityco‐benefitsbeyondclimate,asthecountryboasts bothhighlevelsofendemismandspeciesrichness(Barsimantov&Kendall,2012).While deforestationrateshavedecreasedandreforestationeffortsareevident(FAO,2010),widespread deforestationcontinuestothreatencommunitiesandecosystemsthatdependonforests.Thereisa needtobetterunderstanddeforestationinMexicotoidentifyvulnerabilitiesandinformpolicies thataimtoreduceforestloss. 2.2.ReportOutline Missingfromthesizeableliteratureonland‐usechangeinMexicoaretwotopicsof particularimportancefortheidentificationofvulnerableregionsandthedesignofandlow‐ emissionsdevelopmentstrategiesunderMREDD:thefirstisananalysisofdriversofdeforestation thatisspecifictotheREDD+earlyactionareas(AATRs)undertheMREDDprogram.2Thesecondis ananalysisoftheeffectofgeographiccharacteristicsorpolicymeasuresthatisdisaggregatedby landownershiptype(e.g.ejido,protectedarea,privatelands). 1TheAllianzaMREDD+isapartnershipofTheNatureConservancy,RainforestAlliance,theWoodsHole ResearchCenter,Mexico’sgovernment,andcivilsocietytohelplaythebasisforeffortstoreduceemissions fromdeforestation,forestdegradation,andotherforestryactivities(i.e.REDD+).(see:www.alianza‐ mredd.org) 2 ÁreasdeAcciónTemprana(AATR)areREDD+EarlyActionareaslocatedinMexicanstateswithhigh biodiversity,culturaldiversityandhighratesofdeforestation,butalsogreatREDD+potential.Lessons learnedinthesesubnationaltargetareascouldhelpscaleupbestpractices. 5 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Toaddressthesegaps,weconductaseriesofanalysesthatcombinebothnationalandlocal‐ scalemodelingtosupporttheMREDDAlliancepartnersinassessingthevulnerabilityofforested landstodeforestationinMexico,focusingonthevulnerabilityofforestedlandswithinMexico’s AATRs,withtheresultsdisaggregatedbylandownershiptypes.Thegoalistoinformnationaland subnationalpolicy,pavingthewayforincentivebasedprograms,andultimatelyreduced deforestationvulnerabilityinMexico.Ouranalysisonlyconsideredforestlosses,ratherthangains, duetodatalimitations.WhileincreasingforestgainscouldbeanimportantpieceofREDD+ programs,afocusonavoidingdeforestationshouldcapturethelargestnear‐termopportunitiesfor reducingnetemissionsfromforests. Thisprojectgeneratedseveralanalyticresultsaswellasdataproducts,including: Avulnerabilitydataset:aspatiallyexplicitrasterdatasetinwhicheachcellhasavalue indicatingtherelativeriskoffuturedeforestation,bothatthenationalandregionalscale. ‐ Afuturedeforestationprojection:aspatialdatasetprojectinglocationsoffuture deforestationasafunctionofthevulnerabilitydatasetandpredictedratesoffuture deforestation. ‐ Adatabaseofallvariablesinthemodelinganalyses. ‐ AdatabaseofeconometricstudiesofthedriversofdeforestationinMexico(andother countries. Thisreportdescribesourvulnerabilityanalysisandkeyfindings,alongwiththemethods usedtogeneratethe“soft”and“hard”deforestationprojections‐‐thevulnerabilitymapand deforestationprojections,respectively.Ourmethodologyincludesthreedifferentand complementaryapproaches:(i)reviewingtheexistingliterature,(ii)conductinganational econometricanalysisandbuildinganassociatedpolicysimulationmodel,and(iii)conductinglocal‐ levelspatialanalyses.TheflowdiagraminFigure2.2.1illustratestheroleofthedifferent projectcomponentsandassociatedinputsandoutputs. ‐ Wepresentanddiscussthemainresultsfromeachofthesethreeunderlyinganalyses.The modelingincludedtestingthepredictivepowerofaseriesofindividual“driver”datasets,which mayormaynotactuallycausedeforestation,butarepotentiallycorrelatedwithit.Wediscussthe relativepredictivepowerofthedifferentdriverdatasets,withspecialfocusontheircorrelation withthespatialdistributionofhistoricandprojecteddeforestationwitheachoftheseven identifiedAATRs.Wealsoseektounderstandhowdeforestationmightchangecausallyinthe futurewithchangesintheeconomicincentivesgoverningforestcoverloss. Thefirstapproachisaliteraturereviewandmeta‐analysisofexistingstudiesof deforestationandland‐usechangeinMexicoandelsewheregloballytoidentifytrends, contradictions,andtoprovidecontextonland‐usedecision‐makinginMexico,aswellasinother countries(Ferretti‐Gallon&Busch,2014).Thisreviewuncoversgapsintheliterature,informsthe selectionofdrivervariablesforthenationalandlocalmodelingdescribedbelow,andprovides contextforevaluatingthemodelingresults. 6 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Thesecondapproachmodelstheimpactofdifferentdriversofland‐usechangeatthe nationalscale,tocomplementandprovideinputstothelocalanalysesconductedusingtheIDRISI‐ SelvaLandChangeModeler(LCM).ThenationalanalysisforMexicoadaptstheapproachofthe OpenSourceImpactsofREDD+Incentives(OSIRIS)model,whichwasdevelopedforanalyzingthe impactofalternativeREDD+policiesinBolivia,Madagascar,PeruandIndonesia(Busch,etal., 2012).3OurnationalanalysisforMexicofocusesonidentifyingtheimpactofonevariablethatis arguablyofcausalimportancefordeforestation:theneteconomicreturnsperhectarefrom convertinglandfromforesttonon‐forestlanduses.Usingthislargergeographicscaleisespecially importanttocapturebroadervariationineconomicvariablesinordertoexplicitlymeasuretherole ofchangingeconomicreturnsfromcompetinglanduses.Inparticular,wemodeldeforestationin relationtovariationinestimatedgrossagriculturalrevenuesandproxiesforfixedandvariable costsusingobservablesitecharacteristics.Theestimatedresponsivenesstotheeconomic profitabilityofagriculturallanduseprovidesthebasisforsimulatingdeforestationunder alternativescenarioswithdifferenteconomicincentivesforforestprotection,includingtheeffectof potentialREDD+policies. Thenationalsimulationyieldsanestimateddeforestationvulnerabilitymapatthenational scaleata900mresolution.Weusethenationaleconometricmodeltoconductaseriesof simulationsthatyieldregionalpredictionsofdeforestationunderabusiness‐as‐usual(BAU) referencescenarioaswellasasetofhypotheticalpolicycases.Theseregionalpredictionsprovide aninputtothelocalscaleanalysestomakepredictionsonfuturedynamicsofforestcoveratseven AATRs. ThethirdapproachusesLCMinordertodrawonitspredictivespatialmodelingcapacityto morefinelydisaggregatetheregionalresultsacrossthelandscapeinthelocalstudyareas.Foreach ofthesevenAATRs,theLCMmodelsexaminetherelationshipbetweenpotentialdrivervariables andobservedpatternsofdeforestation.Thesemodelsgeneratea“soft”vulnerabilitymapaswellas a“hard”predictionofdeforestationunderaseriesofhistoricalandalternativescenarios,informed bythemoreaggregatepredictionsofthenationallevelmodel. TheempiricalanalysesinthisstudyuseanewglobaldatasetfromtheUniversityof Maryland,basedonLandsatsatelliteinformation,justreleasedinJanuaryofthisyear(Hansen,et al.,2013).Toourknowledge,thisstudyisthefirsteconometricstudytoexploittherichspatial detailandmultipletimeperiodsfromthesenewdata.Assuch,resultsfromouranalysisand approachforMexicocouldprovideinsightsforanalyzingdeforestationinothercountriesand regionsaswell. 3TheOpenSourceImpactsofREDD+Incentives(OSIRIS)modelisasuiteoffree,transparent,open‐source, spreadsheet‐baseddecisionsupporttools.OSIRISgoesbeyondpredictionsofthespatialdistributionandrate offuturedeforestationtoestimateandmaptheclimate,forestandrevenuebenefitsofalternativepolicy decisionsforREDD+.See:http://sp10.conservation.org/osiris/Pages/overview.aspx 7 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Thisreportisdividedinto6sections.Section3describestheliteraturereviewofdriversof deforestationinMexico.Section4discussesthenational‐scaleeconometricanalysis.Section5 presentsthelocalmodelingfortheAATRs.Section6concludes. 8 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report Figure2.2.1.ProjectFlowchart 9 ALIANZA MÉXICO PARA LA REDUCCIÓN DE EMISIONES POR DEFORESTACIÓN Y DEGRADACIÓN Mexico Deforestation Vulnerability Analysis and Capacity Building. Final Project Report 10 3. LiteratureReviewofDriversofDeforestationinMexico 3.1.Introduction Wecompiledadatabaseofeconometricstudiesofdeforestation,including117 studiesglobally,ofwhich23studiesfocusonMexico.AppendixTableA‐1providesan annotatedbibliographyoftheMexicostudies.Fromouranalysis,drivervariables associatedwithlowerratesofdeforestationinMexicoincludedprotectedareas,community forestry,andpaymentsforecosystemsservices.Drivervariablesassociatedwithhigher ratesofdeforestationinMexicoincludeagriculturalactivity,population,soilsuitabilityand proximitytourbanarea.Theseassociationsbetweendifferent“drivers”anddeforestation donotnecessarilyindicatecausalrelationships.CausalstudiesofprotectedareasinMexico havefoundtheseterritoriestobelinkedwithdecreaseddeforestation.Causalstudiesof ejidoshavenotbeenperformed,suggestingtheneedforfurtherstudy. 3.2.Overviewofdeforestation 3.2.1.DeforestationinMexico AllknowncategoriesofMexicanforestcover(tropicaldry,tropicalwet,and montaneforests)havebeensubjecttodeforestation(Vaca,etal.,2012).Deforestationis occurringmostlyinSouthernMexico,withthehighestratesoccurringinthestatesof CampecheandQuintanaRoo.Whilerecentstudiesobserveapatternofnetdeforestationin Mexico(Vaca,etal.,2012),recentlythenation’stotalannualdeforestationhasdecreased. Between1990and2000,Mexicolost354,000ha/year;from2000to2005,thearea deforestedannuallyhaddecreasedto235,000;and,from2005‐2010,Mexico’sforestloss furtherdeclinedto155,000haperyear(FAO,2010). ReforestationhasoccurredinsomeregionsofMexico(about178,000ha/yearfrom 1990‐2010)(FAO,2010).Thistrendhasbeenattributedtoplantedforestswithproduction astheirprimaryfunction(FAO,2010).Reforestationthroughtreeplantationsisaresultof increaseddemandforoilpalm,eucalyptus,andcitrusproducts.Regenerationofforest coverisalsoseenasaresultofpassivetransition,wherefarmersabandonlandandmigrate toareaswithbetterpaidfarmjobs.Itcanalsobearesultofactivetransition,inwhichthe growingscarcityofforestproductsencouragegovernmentsandlandownerstoplanttrees, i.e.sustainablecommunityforestmanagement(Vaca,etal.,2012).Thereislittleevidenceof naturalforestregeneration. AlthoughthedeforestationrateinMexicohasdeclined,widespreadforestcoverloss persists.Mostdeforestationprocessesareattributedtoagriculture(mainlycoffee,maize, beans,andsugarcane)andcattledevelopment.Otherhistoricdriversofdeforestationhave includedhumansettlement,monocultureforestry(inSouthernMexico)andnatural phenomena(e.g.,hurricanesandfiresintheYucatán)(Vaca,etal.,2012).Population growth,poverty,andphysiogeographicvariablesareclaimedtobesignificantdriversof forestlossinMexico(Barsimantov&Kendall,2012).However,literatureonthesubject rendersconflictingconclusionsontheeffectsondeforestationofotherdrivervariables, 11 includinglandownership,subsidyprograms,roaddensityandpercapitaincome (Barsimantov&Kendall,2012). 3.2.2.DeforestationintheYucatán InMexico,mostoftheGulfCoastlowlandshavealreadybeendeforested,and significantlandclearanceoccurredintheinteriorLacandonforestsofChiapas(TurnerII,et al.,2001).TheforestsofsouthernCampecheandQuintanaRoohavebeenconsideredthe lastfrontierinthe“westtoeastmovementoftropicallowlanddevelopment”inMexico (TurnerII,etal.,2001).TheSouthernYucatánhasbeenidentifiedasadeforestationhot spot(Rueda,2010).Itisconsideredtobeoneoftheworld’simportantforestedregions, characterizedbytheCalakmulBisophereReserveandtheMesoamericanBiological Corridor(Busch&Geoghegan,2010).Itisthereforecrucialtounderstanddriversofland‐ useandland‐coverchangeintheregion. 3.3.Overviewoflandtenure,ruralagriculturalsupport,andpaymentsfor ecosystemsservicesinMexico 3.3.1.LandTenure Mexicohasalonghistoryofpolicyreformsfocusedonpropertyrightsandtherole oflandtenureonlandcoverchange(Bonilla‐Moheno,etal.,2013).Therearethreetypesof landmanagementinMexico:Private,public(protectedareas,publicenterprises,etc.),and communal(comunidadesagrariasandejidos). 3.3.1.1.Privatelands Asof2011,privatelandsthatareownedand/ormanagedbycompanies, sharecroppers,andlandlessruralpopulationrepresent37%oftheMexicanagrarian landscape.Theseprivatelands,however,onlyencompass26%ofthecountry’sforests (Corbera,etal.,2010). 3.3.1.2.PublicLands Publiclands,inturn,belongtofederalorregionalpublicagencies,aswellasto publicenterprises.Theselandsrepresentjustover8%oftheagrarianlandscapeandcover only4%offorestedareas,primarilyincludingprotectedareasandbodiesofwater (Corbera,etal.,2010). 3.3.1.3.CommunalLands Landsundercommonmanagementisthemostcommontypeofmanagement, representing52%oftheMexicanagrarianlandscapeand70%oftheforests(Corbera,etal., 2010).Therearetwomaintypesoftenurearrangements:comunidadesagrarias(agrarian communities)andejidos.Comunidadesagrariasrefertorepatriatedindigenouslandsand ejidosarelandsgrantedbythepostrevolutiongovernment(Barsimantov&Kendall,2012). Botharecommunallyownedlands.NucleosAgrariosisageneraltermforejidosand comunidadesagrariasinMexico.CarrilloandMota‐Villanueva(2006)explainthatthis generalizationisbasedonsharedcharacteristicslikelegalstatusandlandownershipgiven byPresidentialActorbytheHighAgrarianCourtofJustice. 12 A.HistoryofCommunalLands A.aComunidadesagrarias TheSpanishCrowngrantedtheselandrightstogroupsconsideredoriginalsettlers. Thecommunitiesthatdeveloped,therefore,consistofpeoplewhohavehistorically inhabitedaregionandsharelanguage,traditionsandgoverninginstitutions.Landholder typesinthisformofmanagementconsistofagrariancommunitiesandindividualrights holders(comuneros).Forestregulationisgovernedbyacommunalassemblymadeupofall comuneros(someofwhommaybewomen).Acouncilofauthoritiesisrenewed periodically,normallyeverythreeyears(Corbera,2010). A.bEjidos Ejidos,ontheotherhand,areamorespecificformoflandmanagementthan comunidadesagrarias.Theywereestablishedwhenagroupoffamiliesclaimsrightsovera territory,andtheparceloflandgrantedtothesegroupsremainsundercommunal ownership.Anyrentalorlandsalesareprohibited.Landcanonlybegivenbyoneejido landholder(ejidatario)toasingledescendant.Forestandlandforpasture(forfuelwood collection,timberharvestingandgrazing)areusuallymanagedincommon.Forestfor timberharvesting,inparticular,isorganizedthroughcommunitymembersandgroups,or throughexternalconcessions.Ejidotimberconcessionsareorganizedthroughextraction quotasandcorrespondingbenefitsaredefinedanddistributedthroughtheejidoassembly and/orthecouncilofauthorities. Bothcomunidadesagrariasandejidoshavemembers(avecindados)whohavebeen givenaparceltofarmandanothertoliveon,butwhodonothaverightstobenefitsfrom theforest.Itisestimatedthatthereareover30,000agrariancommunitiesandejidosinthe country,occupyingover50%ofthetotalnationalterritory(PROCEDE,2010).Community landmanagementinMexicoisoftenclaimedtohavepositiveenvironmentaland socioeconomicoutcomes(Barsimantov&Kendall,2012). B.Historyofcommunallandmanagement Mexico’scurrentsystemoflandmanagementdevelopedfrompost‐revolution governmentlandmanagementreform.AftertheMexicanRevolutioninthe1910s,Article 27ofthe1917Constitutiondeclaredthatalllandsandwatersoriginallybelongedtothe nationandthatthenationwouldgrantprivatepropertyrightsundercertainconditions (CamaradeDiputados,2008).Article27limitedthesizeofprivateproperties,parceled largeprivatelandholdingsand,mostimportantly,grantedrightstoruralcommunitiesand groupsoffamiliestoownlandtomeettheirbasicneedsortorestorecustomaryrightsheld beforethe1800s(Corbera,etal.,2010).Theshareofcommunallandincreasedupuntilthe early1980s.Intheearly1990s,Article27wasreformed,legalizingtheformationofjoint venturesbetweencommunallandholdersandprivatecapital.Thisallowedcommunityland managementmembersandejidomemberstobecomeprivateowners,andtorentandsell landtothirdparties.Forests,however,couldnotbesubdividedandsold,excludingthem fromprivatization(Corbera,etal.,2010). 13 C.Impactofcommunityforestryondeforestation Amajorityofpublishedacademicstudieshaveconcludedthatcommunityforestry doesnotinfluencedeforestation.Forinstance,Perez‐Verdinconcludedthatdeforestationis drivenbyresource‐specificcharacteristics,suchaslocationandsoilproductivity,andnotby ejidos’attributes(Perez‐Verdin,etal.,2009).However,a2012studyreviewedevidence relatedtocommunityforestmanagementandforestcover,findingthatcommonproperty andcommunityforestryaresignificantlyrelatedtoreducedratesofdeforestationand increasedratesofforestrecoveryofconiferousforestsinMexico(Barsimantov&Kendall, 2012).Theirresultssuggestthatcommonpropertycanleadtogreaterforestconservation whenthereisaneconomicallyvaluableassettoprotect(coniferousforests)andwhenthere aremanagementplansinplacetoformalizetheextractionprocessandrevenue distribution.Anotherstudyconfirmedthatcommunitylandmanagementpracticeshave resultedinthemaintenanceofforestedlandscapeinsomeareasofMexico(Bray,etal., 2004).Butotherstudiesconcludedthatcommunitymanagementhasmixed,ifnota negativeeffectonforestcover(Vance&Iovanna,2006)(Alix‐Garcia,2007).Astudyin 2010demonstratedthatthecharacteristicsoftheejido,ratherthanthepresenceorabsence anejidalsystem,determinetheimpactondeforestation:populationdensity,agricultural productionandintensificationwithinejidosaffecteddeforestationrates(Rueda,2010). VanceandGeoghegan(2002)observedincreasingdeforestationasejidodemographics change,withageandpopulationdensitybeingsignificantlypositivelyrelatedto deforestation.Geogheganetal.(2004)supportsthisconclusionandfurtherpositedthat deforestationprimarilyfollowsagriculturalexpansionbytheejidosector,thepredominate formoflandtenureinthesouthernYucatán. 3.3.2.RuralAgriculturalSupport TheroleofgovernmentagriculturalsubsidiesondeforestationinMexicoismixed. In1999,astudywasdonecontrastingtheeffectswhichtheBancodeDesarrolloRuralor RuralDevelopmentBank(BANRURAL)creditandtechnicalassistancehaveon deforestation.Itwasinitiallythoughtthatthistypeofaidwouldincreaseagricultural intensification,therebyrelievingpressureonnearbyforestsforfutureconversion.The studyrevealedthat“governmentsubsidizedcreditfailedtospuraprocessofagricultural intensificationthatcouldhavesubstitutedforcuttingdownforests”(Deininger&Minten, 1999).Thesameauthorsproducedanotherstudyafewyearslaterthatdeterminedthat BANRURALis,infact,associatedwithsignificantlyhigherlevelsofdeforestation,andthat thesecreditsubsidies“seemtohaveencouragedthecuttingdownofforests”(Deininger& Minten,2002). Asecondstudythatsameyearconfirmedthatanotherruralsubsidyprogram, ProgramadeApoyosDirectosalCampoorFamersDirectSupportProgram(PROCAMPO),is alsoassociatedwithhigherlevelsofdeforestation(Vance&Geoghegan,2002).PROCAMPO isaMexicanruralsupportprogramcreatedtoalleviatethefinancialimpactoftheNAFTA onagriculturalworkersin1994(Klepeis&Vance,2003).Theprogramwasalso implementedwiththeintentionofdecreasingenvironmentaldegradationthroughthe promotionofmoreefficientlanduse,usingfundstointensifyproductionanddecrease 14 pressureonremainingforests(Klepeis&Vance,2003).Theresultingincreasein deforestationputstheprogramatoddswithitsintent.VanceandGeoghegan(2002) suggestpoorintegrationoflandownersintomarketsthatwouldotherwiseencourageland‐ intensivechemicalinputsasareasonforincreasedagriculturalexpansionand, consequently,decreasedforestcover.Thesamestudyalsosuggeststhatthespecificterms oftheprogram,whichstipulatetheareaandlocationsupportedbyPROCAMPObe maintainedundercontinuousproduction,discouragesaforest/fallowagriculturalmethod thatmaintainsthefertilityofsoilsused.LaterstudiesofPROCAMPOreportedmixed results(Geoghegan,etal.,2004)orinsignificantrelationships(Chowdhury,2006). Alternatively,anotherstudyfoundthateachhectareregisteredinPROCAMPOactually decreasedthehazardofdeforestationby2.21%(Vance&Iovanna,2006). AthirdcreditprogramthatmayaffectdeforestationistheProgramaNacionalde SolidaridadorMexico’sNationalSolidarityProgram(PRONASOL).Themostrecentstudy onPRONASOLandforestcoverchangedeterminedthattheprogram’ssubsidiesinnorthern municipalitiesarecausingaconsiderableincreaseinforestloss,whilesubsidiesinthe southandeastarenot(Jaimes,2010).TheeffectofMexico’sruralagriculturalsupport programsondeforestationrequiresfurtherstudyofthetypesofruralagriculturalsubsidies andwhereandtowhatextenttheyarerelatedtodeforestation. 3.3.3.PaymentsforEcosystemsServices Mexicohasalreadydesignedandimplementedapaymentsforecosystemsservices (PES)program,apaymentsforhydrologicalservicesprogram(PSAH),whichisdesignedto incentivizetheincreasedproductionofhydrologicalservicesthroughforestconservation (Alix‐Garcia,etal.,2012).ThroughPSAH,theMexicanfederalgovernmentpays participatingforestownersforthebenefitsofwatershedprotectionandaquiferrechargein areaswherecommercialforestryisnotcurrentlycompetitive(Munoz‐Pina,2008).Most studieshavefoundthatthisapplicationofPESinMexicoreducesdeforestationtosome extent.Anumberofstudiesonprotectedforestsrevealthatacombinationoflegalforest protectionandfinancialincentiveshashelpedreducedeforestationinMexico(Honey‐ Roses,etal.,2011).In2011,astudyfoundthatacombinationoflegalprotectionandPES hashelpedprotectforesthabitatforthemonarchbutterflyinMexico.Thestudyestimated thatwithoutthejointconservationinitiative,lossesofforestwouldhavebeen3%and11% higherinareaswithjustaloggingbanorwithdensecanopy,respectively(Honey‐Roses,et al.,2011).In2012,inanotherstudyanalyzingPSAH,resultssuggestedPESinMexico reduceddeforestationthatwouldhaveoccurredunderBAUscenarios,butresultresults wereuneven.Itwasfurtherrevealedthattheprogramseemedtobemoreeffectivein generatingavoideddeforestationwherepovertyislowerandinthesouthernandnorth‐ easternstatesofMexico(Alix‐Garcia,etal.,2012).A2008studyrevealedthatwhilePSAH isassociatedwithreduceddeforestation,theprogram’spaymentshavebeeninareaswith lowdeforestationrisk,suggestingthattheselectioncriteriabemodifiedtobettertarget higherriskareas(Munoz‐Pina,2008).Thereisroomforfurtherstudyonsocio‐economics oftheareaunderPSAHaswellasotherpotentialPESprogramdesigns. 15 3.4.Databaseregressionresults 3.4.1.AMeta‐analysisofDriversofDeforestationinMexico:Methods Recenttechnologicalandmethodologicaladvancementshaveencouragedthe proliferationofeconometricstudiesofdeforestationgroundedinremotelysensedevidence offorestcoverloss.Wehavecompiledacomprehensivedatabaseof117econometric studiesofdeforestation,including23studiesinMexico,publishedbetween1996and2014. Tobeincludedinthedatabase,studieshadtomeetfivecriteria:(1)thedependentvariable mustmeasureforestcoverorforestcoverchange;(2)thedependentvariablemustbe remotelysensed;(3)thedependentvariablemusthaveresulted,inpart,from anthropogeniccauses;(4)thearticlemustincludeatableofmultivariateregression outputs;and,(5)thearticlemusthavebeenpublishedinapeer‐reviewedjournal.The databaseismeanttobeasinglesourceforalleconometricstudiesofdeforestation,allowing easyaccessandanalysisofdeforestation.Thisdatabasewascreatedtoprovidean overviewofcurrentscientificunderstandingofforestcoverloss,toimprovepolicy implementationaimedatdeforestationmitigation,andtoidentifygapsinscientific evidencerequiringfurtherresearch. Fromtheindividualstudieswecategorizeddrivervariables(n=1159)into“meta‐ variables”suchaselevation,proximitytoroad,oragriculturalactivity,ofwhich33were includedinthestudiesofdeforestationinMexico(Table3.4.1).Asinglemeta‐variableis thesumofallregressionresultsfromindicatorsmeasuringthesamephenomenon.For instance,themeta‐variableElevationiscomprisedofvariableslabelled“Elevation,”“Mean Elevation,”“Altitude”etc.WhileTable3.4.1presentsacomprehensivelistofdriver variablescollectedinthedatabasefromstudiesinMexico,somevariableshaveyettobe analyzedduetothecomplexityofinterpretingthevariable(e.g.SoilType). Foreachmeta‐variable,withineachstudy,wesummedthenumberofregression outputsormatchingoutputsthatfoundtheassociationbetweenthatmeta‐variableand deforestationtobenegativeandsignificant,notsignificant,orpositiveandsignificant. Theseresultswerethenorganizedintoadatabaseuponwhichwebasedouranalysis.We termedthemeta‐variabletobeconsistentlyassociatedwithlower(orhigher)deforestation iftheratioofpositiveandsignificantoutputstonegativeandsignificantoutputswas statisticallysignificantlylessthan(orgreaterthan)1:1inatwo‐tailedt‐testatthe95% confidencelevel.Wetermedthemeta‐variabletobenotconsistentlyassociatedwithlower orhigherdeforestationiftheratioofpositiveandsignificantoutputstonegativeand significantoutputswasnotstatisticallysignificantlydistinguishablefrom1:1. 16 Table3.4.1DriversofdeforestationinMexico,bydrivercategory Biophysical Elevation (n=15) Slope(n=16) Wetness(n=8) ForestArea (n=3) SoilSuitability (n=6) Proximityto Clearing(n=9) Proximityto Water(n=3) Built Infrastructure Proximityto Road(n=13) Proximityto UrbanArea (n=12) Agriculture,Pasture, andWorkingForests AgriculturalActivity (n=9) ProximitytoAgriculture (n=8) AgriculturalPrices(n=4) EconomicActivity(n=2) LivestockActivity(n=2) TimberActivity(n=1) TimberPrice(n=1) UseofFuelwood(n=1) Demographics, Poverty,and Income Population(n=10) Poverty(n=14) Education(n=8) Indigenous Population(n=8) Age(n=1) Presenceof Females:(n=1) PropertySize(n=7) RuralIncome Support(n=8) Off‐Farm Employment(n=3) Land Management TenureSecurity (n=6) ProtectedAreas (n=6) PlotSize(n=4) LandUse(n=4) Logging Activities(n=3) PES(n=2) Community Forestry/Ejidos (n=15) Note:“n”indicatesthenumberofstudiesthathaveanalyzedthemeta‐variableinrelationto deforestationinMexico,outofatotal23studies.Wecategorizedeveryregressionresultreportedin theincludedstudiesintooneofthreecategories.Regressionresultsshowinganegativeand significantrelationshipbetweenadrivervariableanddeforestationwerecodedas“‐“;regression resultsshowingapositiveandsignificantrelationshipbetweenadrivervariableanddeforestation werecodedas“+“;regressionresultsshowingnosignificantrelationshipbetweenadrivervariable anddeforestationwerecodedas“n.s.“ 3.4.2.ResultsforMexicoandSEsub‐regions Theresultsforhoweachmeta‐variableisassociatedwithdeforestationacross statisticalstudiesofdeforestation,areshowninFigures3.4.1and3.4.2attheendofthis sectionandFigureA‐1intheAppendix.Figure3.4.1presentsthedatabaseresultsforall studiesfocusedonMexico.InMexico,variablesmostassociatedwithdecreasesin deforestation,includeprotectedarea,propertysize,elevation,communityforestry,and paymentsforecosystemsservices(PES).Therearesomepredictableresults:thatprotected areasandPESareassociatedwithdecreaseddeforestationisnotsurprising.Forestsin areasofhigherelevationmaywellbemoreremoteandhavemorelimitedaccess.That increasedpropertysizeisassociatedwithlowerdeforestationcouldreflectthatbigger propertiesimplyfewerlandusers,andconsequentlyreducedcompetitionforforest resources. Variablesassociatedwithincreaseddeforestationincludeproximitytoagriculture, population,agriculturalactivityandsoilsuitability.Again,theserelationshipsareprobably notsurprising:deforestationinMexicooccurswhereeconomicreturnstoagricultureare higher(asproxiedbyproximitytoclearedlandandagriculturalactivity)andwhere biophysicalconditionsarefavourable(asindicatedbysoilsuitability).Populationisalso generallyassociatedwithincreaseddeforestation,asitsuggestsincreasedcompetitionfor forestresources. 17 Figure3.4.1DriversofDeforestationinMexico:ResultsofMeta‐Analysis Note:ThisgraphpresentsregressionresultsfromstudiesondeforestationinMexico.Resultsare orderedbyratioofnegativetopositiveassociationwithdeforestation. Mostvariablesthatarenotconsistentlysignificantareperhapsalsonotsurprising. Asexpected,resultsforruralincomesupportaremixed.Surprisingly,however,community forestryismoreconsistentlyassociatedwithlessdeforestation,whereastheeffectofejidos ondeforestationismixed.Weseparatedvariablesreferringspecificallytoejidosandthose referringtothebroadertermofcommunityforestry.Thisdiscrepancysuggestsmorestudy isneededofthedifferencesbetweenvariouscommunitylandtenuresinMexicoandtheir respectiverelationshipswithdeforestationrates.Alsosurprising,variablesindicating indigenousterritoryarenotsignificantlyrelatedtodeforestation,eitherpositiveor negative,inMexico.Inourglobalstudywefoundindigenouslandtenureiscommonly associatedwithdecreaseddeforestation(Ferretti‐Gallon&Busch,2014). 18 FigureA‐1intheAppendixcomparesresultsontherelationshipsbetweenthe variablesanddeforestationatthegloballevelandinMexico.Duetospacelimitations,the figureonlyincludesthe15topvariablesthathavebeenmostincludedinregression analysesattheMexicolevel.Still,thefiguresuggeststhatvariablesaffectingdeforestation aregenerallythesameinMexicoasatthegloballevel.Protectedareaextentandelevation arebothassociatedwithdecreasedratesofdeforestationandarerobustatbothlevelsof study.Ontheotherhand,globally,communalforestmanagementisassociatedwith increaseddeforestation,whileattheMexicolevel,thecommunityforestry(includingboth ejidosandothervariablesrelatedtocommunallandownership)isassociatedwithlower deforestation.Similarly,ruralincomesupportisassociatedwithincreasesindeforestation atthegloballevel,buttheresultsaremoremixedattheMexicolevel.Finally,attheglobal level,povertyisassociatedwithlowerdeforestation,whileinMexicoincreasedpoverty appearstobeassociatedwithhigherdeforestation. Figure3.4.2comparesresultsdisaggregatedfromtheMexicoleveltotheYucatán Peninsula(includingtheYucatán,QuintanaRoo,andCampeche,butexcludingTabasco). Duetospacelimitations,thegraphagainonlyincludesthe15topvariablesthathavebeen mostregressedattheYucatánlevel.Variablesassociatedwithlessdeforestation(property sizeandelevation)andvariablesassociatedwithmoredeforestation(population,proximity toagricultureandpopulation)arerobustatthislevelofdisaggregation.Notably,poverty againhasaninconsistentassociationwithdeforestation.Atthenationallevel,poverty appearslinkedtoincreasesindeforestation,whileintheYucatánPeninsulapovertyis associatedwithdecreaseddeforestation.Asimilarinconsistencyisnotedwithindigenous populations.WhileatthenationallevelIndigenousterritoryisassociatedwithdecreased deforestation,thesamevariableisassociatedwithincreaseddeforestationattheYucatan Peninsulalevel.TheseinconsistenciesperhapssupportthewidelyheldviewthatMexico’s landscapeandtherelateddriversofdeforestationvarygreatlybyregion. Itisimportanttoemphasizethedistinctionbetweencorrelation,orassociation,and causation.Toprovideonewell‐knownexample,ratesofdeforestationmightbelower withinprotectedareasbecauseprotectedareasarepreventingdeforestationfrom occurring(causality).Thisrelationshipmightalsobebecauseareasthathavelowratesof deforestationforotherreasonssuchasgeographicremotenesshavegreaterintact biodiversity,whichledtoprotectedareasbeingdesignatedinthoselocations(anexample ofreversecausality).Disentanglingtheseeffectsrequiresspecializedtechniquessuchas matchingmethods,whichhavebeenperformedinMexicoforprotectedareasandpayments forecosystemservices(Honey‐Roses2011),butnotyetforejidos,suggestinganavenuefor furtheranalysis. 19 Figure3.4.2.DriversofDeforestationintheYucatánPeninsulaasComparedtothe RestofMexico:ResultsofMeta‐Analysis Note:ThisgraphdisplaysregressionresultsfromstudiesfocusedontheYucatánPeninsula (includingCampeche,QuintanaRooandYucatán)ascomparedtoresultsfromthestudiesfocusedon therestofMexico.Foreachmeta‐variable,twosetsofresultsarereported:thefirstsetrepresents resultsfortheYucatánPeninsulainlightercolors,whilethesecondsetrepresentsresultsforMexico indarkercolors.Resultspermeta‐variableareorderedbyratioofaveragenegativetoaverage positiveassociationwithdeforestation. 20 4. Analysisofdeforestationatnationallevel/OSIRIS 4.1.Introduction WeconductedaneconometricanalysisofdeforestationinMexicoatthenational scaleinordertocalibrateasimulationmodeltoexploretheimpactofalternativeeconomic andpolicyscenarios.Inparticular,weanalyzeddetailedspatially‐explicitdataonannual forestcoverlossesacrossallofMexicoover2000‐2012.Oureconometricanalysisisbased ontheideathatlandowners4willchoose,fromasetofpotentiallanduses,theoptionthat bringsthehighestexpecteddiscountedreturnsThegoalistoexplicitlycapturethe influenceoftheeconomicnetbenefitsfromconvertinglandfromforesttonon‐forestuses forthepurposesofcalibratingapolicy‐simulationmodelthatcan,forexample,analyzethe impactofdifferentREDD+policystructures,orotherpotentialpaymentsforecosystem services. Thenationalmodelservesto1)measuretheimpactofdifferenthistoricaldriversof land‐usechange2)generateaspatialdistributionofprobabilityoffuturedeforestation underalternativepolicyandmarketscenarios,3)helptoidentifycost‐effectivemitigation opportunitiesandestimatetheopportunitycostsofabatingcarbonemissionsfrom deforestation,and4)provideabasisforexaminingpolicydesignelementssoastocreate economicincentivesfortheimplementationofREDD+inMexico.Inparticular,resultsfrom aneconometricanalysisservetocalibratethesimulationandestimationonthedistribution andtotalrateofdeforestationacrossMexicounderasetofeconomicandpolicyscenarios thataltertheeconomiccalculusforlandconversion,lookingretrospectivelyover2000‐12 aswellasoutintothefutureoverthenext10years.Thenationalmodelpredictssite‐level deforestationbasedonfittedvaluesfromtheeconometricmodel,estimatedusingobserved deforestation.Inparticular,wemodeldeforestationinrelationtovariationinestimated grossagriculturalrevenuesandproxiesforfixedandvariablecostsusingobservablesite characteristics.Theresultsfromthesimulationprovideregionaldeforestationratesasan inputtotheLCMmodelingofthesevenAATRs. 4.2.EmpiricalModel 4.2.1.EconometricSpecification Severalchallengesariseindevelopinganempiricallytractablespecificationto identifytheroleofeconomicreturnsindrivingdeforestationinMexico.Oureconometric approachfocusesonaddressingtwomainsetsofissues.Thefirstsetofissuesrelatestothe structureofourdependentvariable,whichisanaggregationofthenativedataatthe30m cellresolution.Theaggregationintroducesthechallengeofmodelingarangeofpotential changesinforestareawithinalargergridcell,wherethepotentialmagnitudeofchangesis 4InMexico,approximately70%offorestlandhasacommunalformofownership(Corbera,etal., 2010).Therefore,forouranalysisbothprivateindividualsandcommunitiesaretherelevantland ownersormanagers. 21 linkedtotheamountofforestareawithineachgrid.Thesecondsetofissuesrelatestothe factthatweonlyhaveimperfectobservationsofeconomicreturnsforourunitsof observation,asmentionedabove.Afulldiscussionofournationalmodel,econometric approach,data,andestimationresultsareprovidedinAppendixI. 4.2.1.1.Relationshipofdeforestationtoavailableforestareawithina900mgridcell Ourunderlyingdatasourcefordeforestation,ourdependentvariableinterest, providesbinaryinformationonthepresenceornon‐presenceofforestsatthe30mcelllevel foreachyearbetween2000and2012,providingatotalof11observedannualchanges (Hansen,etal.,2013).Whileweconductthelocalscaleanalysesatthismostdetailedlevel ofresolution,ananalysisatthislevelofdetailisnotcomputationallytractableforallof Mexicoasthiswouldinvolveover1billionpointsperyearoralmost13billiondatapoints acrossall11observedyearlychangeperiods.Tomakethenationalanalysis computationallyfeasible,weaggregateour30mx30mcellsintolarger900mx900mcells, eachofwhichcontain900potentiallyforestedsmallercellsatthe30mresolution.This procedurereducesthesizeofthedatasettoabout1.39millionobservationsannually,after eliminatingany900mgridcellsnotcontaininganyofthesmaller30mforestedcellsinthe year2000.5Atthisscale,ourpreferredspecificationstilltookabout24hourstorunonour mostpowerfulcomputerwith24GBofRAM. Ourconstructeddependentvariableisthustheannualchangeinforestcoverfrom 2000through2012oneach900mcellcontainingforests,spanningallthecontinentalland areaofMexico(i.e.,islandswereexcluded).Ourunitsofanalysisthusmeasure900mx 900mor810,000m2(equivalentto81haor0.81km2).Werestrictattentionto900mcells thatcontainatleastoneforested30mcell.Thechangewithineachoftheseunitsis measuredintermsofthenumberofconstituent30mcellsthatareforestedatthestartof theyearbutthenchangefromforesttonon‐forestcoverovertheyear.Whileweassignthe sameexplanatoryvariablestoallthesmaller30mcellswithineachofour900munits,we thusmodelchangesin30mcellincrements.Thesechangesmightrepresentdecisionsby oneormorelandownerswithineach900mcell.Wedonothavecomparableannualdata forpossibleforestgainsonthesecells,soonlyconsiderforestlossesinourmodel.6Thus,if a900mcelllosesallofitsforestcoverinaparticularyear,thatcelldoesnotenterintoour econometricanalysisinanysubsequentyears. 5Givenavailabledata,weonlyexaminelossesofforestcoverinareasthatwereforestedin2000. Thusourdeforestationanalysiscannotconsiderdeforestationonareasthatwerenotforestedin 2000butcouldhavesubsequentlygainedandlostforestbetween2000and2012.Thisis appropriategivenourfocusontheREDD+policyandthegreatercarbonandbiodiversityvalues associatedwithmorematureforests,ratherthanrecentlyregeneratingforests. 6While(Hansen,etal.,2013)doprovidedataoncumulativeforestgainsfrom2000to2012,an analysisofthesedatawouldhaverequiredaseparateanalysisandwasbeyondthescopeofthe currentstudy. 22 Thestructureofourdependentvariableraisesseveralissues.Thefirstissueisthat ourdatahasa“count”structure,asforestareaandchangesinareaaremeasuredindiscrete units,rangingfrom0upto900,themaximumnumberof30mcellswithinalarger900m gridcell.Giventhiscountstructure,oureconometricestimationmethodisaPoissonquasi‐ maximumlikelihoodestimator(QMLE)whichisconsistentwithestimatingacountvariable generatedbyindependent,binarydecisionsatthe30mcellresolution(Wooldridge,2002). Forrobustness,wealsoconducttheanalysisusinganegativebinomialmodel,which modifiesthePoissonregressionmodelwithamultiplicativerandomeffecttorepresent unobservedheterogeneity.Thisisawaytoaddresspotential“over‐dispersion,”whichisa commonsituationinanalysesofcountdata,wheretheobservedvarianceofthedependent variableexceedsthevarianceofthetheoreticalmodel,indicatingthemodelisnotagood representationoftheunderlyingphenomenon. Thereisanotherimportantissuetoconsiderwhenestimatingthemagnitudeof changesinforestareawithinarelativelysmallfixedgeographicboundary:theamountof deforestationoveragivenperiodiscloselylinkedtotheamountofforestavailabletobe deforestedwithineachcellatthebeginningoftheperiod.Oneissueisthatthereisasimple physicalconstraint.Theamountofforestthatcanbelostinanygivenyearislimitedbythe availabilityofforestwithinthegridcell.Givenourdatasetwithoutforestgains,moreforest cannotbelostoverayearthanexistsatthestartoftheyear.Rather,whendeforestation progressesovertime,theavailableforestdeclinesand,insomecases,iscompletely exhaustedwithina900mgridcell. Althoughthestartingforestcoversetsaphysicallimitonthepotential deforestationwithineach900mcell,therearealsoeconomicfactorsatwork.Thedifficulty ofaccessinganddeforestinga30mforestcellislikelytobegreaterthefartherawaythat cellisfromnon‐forestareas,includingpreviouslyforestedlandthathasalreadybeen cleared,givengreatercostsintermsoftraveltimeandefforttotransportpeopleand machinerythroughforestsascomparedtomoreopenareas.Asaresult,asacellis progressivelydeforested,moreandmoreofthecell’sforestedareasbecomeaccessibleand easier(lowercost)tocutdown.Thus,generallyspeaking,thecostsofconvertingahectare offorestwithina900mcellarelikelytobeinverselyrelatedtothetotalamountofforest areainthecell.Thisignores,forthetimebeing,thedispositionofthesurroundingcellsas wellasdifferencesinthespatialconfigurationoftheforestareaatthe30mresolution withinthe900mcell. Anothereconomicconsiderationisthefactthatforestlosswithina900mgridcellis notlikelytobedistributedinacompletelyrandommanner.Peopleshouldhavean incentivetopreferentiallydeforestthoseareasyieldingahighernetreturn,eitherbecause ofhighernetrevenuesorbecauseoflowercostsofconversion.Thus,onewouldexpect peopletotendtofirstcutthoseareasthataremosteasilyaccessibleorbestsuitedfor agriculture.Asaresult,thefactthatwhileacertainshareoftheforesthasbeencleared, anothershare(oneminusthedeforestedshare)stillremainsinforestcovermayconvey certaininformationabouttherelativeprofitabilityofconvertingthoseremainingforests. Forexample,iffivepercentoftheoriginalforestextent(e.g.45outof900possible30m 23 cells)remainsstanding,whiletheotherninety‐fivepercenthasbeencutdown,thismay indicatethatthelastfivepercentisrelativelydifficultorotherwiseunprofitabletoconvert. Thismayalsoprovidesomeinformationregardingthelikelydegradationandpotential timbervalueoftheremainingforestcover. Wetakethesedynamicsintoaccountinourmodelbydirectlycontrollingforthe startingforestareaineach900mgridcell.Inparticular,westratifythesampleinto20 startingforestareacategories,withthebinschosentocontainroughlysimilarnumbersof 900mgridcells(giventhattheseobservationsareourunitofanalysis).Thisincludesabin forcellswith100%forestcover(themaximum900countofforested30mcells).Wethen includedummyvariablesforeachofthesestartingforestareacategoriesaswellas additionalmultiplicativetermsthatcapturetheinteractionsbetweenthisinitialsetof dummyvariableandeachofourkeyexplanatoryvariablesintheregression.Thisallowsus toestimatehoweachofthesedifferentvariablesaffectthelikelihoodandscaleof deforestationwithinagridcell,dependingonthestartingareaoftheforest.Inthisway,we cancaptureboththephysicalconstraintsimposedbythedifferentavailablequantitiesof forestaswellasthedifferenteconomicdynamicsofforestclearingatdifferentstagesof deforestationwithina900mcell. Untilnow,thediscussionhasfocusedonhowdeforestationwithina900mcell dependsontheextentofforestclearancewithinthegridcellitself.Thesurroundingarea outsidethecellshouldmatterbothintermsofmakingthecellmoreorlessaccessibleand thusincreasingordecreasingthecostsofconversion,asdiscussedearlier.Wecontrolfor thesurroundinglandscapebycalculatingameasureoftheaveragedistanceofagridcellto allofthenon‐forest30mcellsinthesurroundingarea,withina2.5kmradius.Weusea “kerneldensity”tointerpolatetheinfluenceofthenon‐forestareaoverspace,assuming decreasing“gravity”oftheseareasasdistanceincreases,uptothechosen2.5kmradius,at whichpointtheinfluenceofnon‐forestareaisconsideredzero. 4.2.1.2.Observedandunobservedcomponentsofnetreturnsfromlandconversion Theprincipalchallengeindevelopingamodelforempiricalestimationisthatwe onlyhavepartialinformationonthepotentialnetreturnsthatlandownerscouldobtain fromthemostprofitablenon‐forestlanduse.Weproxyforsomedifferencesinthecostsof conversionandheterogeneousqualityofagriculturallandwithinagridcellbyaccounting forthestartingforestareaonitsownaswellasininteractionwithourkeyexplanatory variables.Ourmainexplanatoryvariableofinterestisanestimateofthepotential economicreturnsperhectarefromcropproduction,whichweconsiderasaproxyforthe potentialreturnsfromconvertingland.Wedonothavedataonthecostsofproducing cropsintermsoflabor,fertilizer,chemicals,andanyotherinputsnordowehavedataon thecostsoftransportinganyproductstothemarket.Wealsodonothavedataonthe(one‐ time)costsofconversion(aswellasanypotentialone‐timebenefitsofconversionsuch salesoftimber).Bothfixedandvariablecostsaswellasrevenueswilldeterminethe economicrationaleforconvertingforests. 24 Toaccountforthesedifferentcosts,ourapproachistointroduceadditionalcontrol variablesatthelevelofthe900mcellthatweexpectwillbecorrelatedwithproductionand conversioncosts.Alltime‐varyingexplanatoryvariablesarelaggedoneyearsoasnottobe contemporaneouswiththedependentvariable.Thestartingforestareacategories, describedabove,provideoneproxyforpotentialconversioncostsaswellaspotential differencesinagriculturalreturnswithinthegridcell.Aswiththestartingforest categories,eachoftheothercontrolvariablesinourmodelisincludedindependentlyandin interactionwithourmeasureofpotentialrevenuesforeachgridcell.Whenthesevariables areincludedindependently,theestimatedparametersontheseadditionalvariableswill adjusttheinterceptinthemodel,capturingpotentialone‐timeconversionorotherfixed costs(orbenefits).Whenthevariablesareincludedininteractionswiththeagricultural revenues,theestimatedeconometricparameterswillscaletheresponsetotheestimated economicreturnsbasedontheproxiesforadditionalcostfactors. OurprincipalvariablesarelistedinTable4.2.1.Whilethesevariableshelptoadjust thefixedcostsandtoscaletheeffectsoftheagriculturalreturns,theremaystillbe significantunobservedfactorsaffectingeconomicprofitabilityoflandconversion.Asa result,giventhespecificinterestoftheMREDDprogramintheYucatánandSouthern regions,wealsointroducedregionaldummyvariables,singlyandmultiplicatively(i.e.in interaction)withagriculturalreturns,toaccountforotherfactors,suchasgovernment policies,thatmayaffectagriculturalprofitabilityatthebroadregionallevel. Table4.2.1.Principalexplanatoryvariablesusedinnationalregressions(900mcell) Units VariationoverSpace Variationover Time MXN$/ha Yes Yes Startingforestareacategory 0/1 Yes Yes Non‐forestinfluence km2 Yes Yes Urbaninfluence km2 Yes No Protectedareaextent m2 Yes Yes Ejidoareaextent m2 Yes No Comunidadesareaextent m2 Yes No Slope % Yes No Lat/long Yes No Variable PotentialCropRevenue Spatialtrendsurface WecompileddetailedinformationonPROCAMPOpayments.However,wedidnot directlyincludePROCAMPOpaymentsinoureconometricmodelbecausereceiptof paymentsfromPROCAMPO(andothergovernmentprograms)isnotrandom.These paymentsareafixedamountperhectarebasedonthesizeoffarms,andpaymentsare concentratedinejidosandagrariancommunityareas.Asaresult,theconstanttermsinour modelandthevariableonejidosandagrariancommunitylandswithinagridcellsmay alreadycapturetheroleofthegovernmentpayments.Includingtheseexplicitlyislikelyto 25 capturecharacteristicsofthelandowners(notablyfarmsize)ratherthantheimpactofthe paymentsthemselves.EconometricallyidentifyingtheroleofPROCAMPOandother governmentpaymentswouldrequireadistinctempiricalstrategy,exploitingchangesinthe programcriteria,andwasbeyondthescopeofthisstudy.Nevertheless,weareableto simulatethepotentialroleofeliminatingagriculturalsubsidiesfromPROCAMPO,building ontheideathattheroleoftheseprogramsisalreadycapturedinourestimatedparameters. 4.3.HistoricalSimulations 4.3.1.SimulationScenario Weuseourestimatedmodelparameterstoconductaseriesofsimulationsto explorealternativescenarios,lookingbackretrospectivelyoverthe2000‐2012period.In thenextSection4.4,weconsiderforwardlookingscenariosover2014‐2024.Webegin withanalysesthatarewithinthesampleperiodtobeasconsistentaspossiblewiththedata usedtoestimatethemodel.Thegoalofthesescenariosistounderstandtherelativeeffect ofdifferentvariables,aswellastoexploresomealternativepolicyscenarios.Wethen conductaforward‐lookingsimulationtopredictdeforestationinthefutureinthenext section(Section3.6).Weconductsixsimulationsoverourhistoricalperiodofanalysis,as summarizedintable4.3.1.below. Table4.3.1.Simulationscenariosoverhistoricalperiodindataset,2000‐2012 Scenarioname Description 1)Factualsimulation Allvariablesheldathistoricallevelsfrom2000to2012. 2)99%PotentialAgricultural ReturnsonForestLands Potentialagriculturalrevenues fromconvertingforestlands reducedby1%relativetohistoricallevelsinallyears. 3)101%PotentialAgricultural ReturnsonForestLands Potentialagriculturalrevenuesfromconvertingforestlands increasedby1%relativetohistoricallevelsinallyears. 4)90%PotentialAgricultural ReturnsonForestLands Potnatialagriculturalrevenuesfromconvertingforestlands reducedby10%relativetohistoricallevelsinallyears. 5)110%PotentialAgricultural ReturnsonForestLands Potentialagriculturalrevenues fromconvertingforestlands increasedby10%relativetohistoricallevelsinallyears. 6)NoPROCAMPOpaymentson Potentialagriculturalreturnsfromconvertingforestlands forestedlandsinejidosoragrarian withinagrariancommunityandejidosreducedbyvalueof communities. PROCAMPOpaymentsperprogramhectareinmunicipality *Thesimulationsregardingchangestoagriculturalreturnsareaimedatrevealingtheestimated sensitivityofdeforestationtochangesinthenetbenefitsfromconvertingforeststoagriculturaluses. First,weestablishabaselineforcomparingoursimulationresultsbyconductinga “factual”simulationusingtheactualhistoricalvaluesofallthevariablesusedinthe estimation.Thenextfoursimulationsexaminetheimpactofourprimaryvariableof interest,theestimatedagriculturalreturns.Thisvariableisourbestguessofthepotential netbenefitsofconvertingforestlandstoanon‐forestuse.Theestimatedsensitivitytothis variablewillbeusedinourmodelingtoexaminethepossibleimpactsofalternativepolicies thatcouldchangethenetbenefitsfromconvertingforestedland.Suchchangesinthenet 26 benefitscouldcomethroughchangesintheprofitabilityofthenon‐forestuse(e.g.because ofchangesingovernmentagriculturalsubsidiesonconvertedforestlands),orthrough changesintherelativevalueofmaintaininglandinforestcover(e.g.becauseofdifferent otentialincentivesforforestprotection). Scenarios2and3explorethesensitivityofdeforestationtoourpotential agriculturalreturnsvariableby,respectively,decreasingandincreasingestimatedpotential agriculturalreturnsby1%relativetotheirfactualvalues.Thisprovidesanestimated elasticityforchangesindeforestationwithrespecttochangingeconomicincentives,as capturedbyourmodel.Thesesimulationsaregenerallymoreindicativeofthemodel findingsforsmallerchangesinthevariablesthatarewithintherangeofthedatausedinthe analysis.Nevertheless,inordertoseehowtheseresultsmightscalewithlargerchangesin returns,scenarios3and4repeattheexercisewithasomewhatlargerchangeinreturns, decreasingandincreasingestimatedagriculturalreturnsby10%relativetotheirfactual values. Thefourthscenariousestheestimatedparametersonagriculturalreturnsto simulatechangesintheeconomicincentivesforconvertinglands.Scenario4isa preliminaryexplorationofthepotentialinfluencehistoricalimpactsofthePROCAMPO agriculturalsupportprogramundertheassumptionsthatfarmersweighingthepotential benefitsofconvertinglandtocroplandrespondtoexpectedPROCAMPOpaymentsfromthe governmentinthesamewayastheyrespondtoexpectedcroprevenuesreceivedfromthe market.Inreality,farmersmayrespondtothesepotentialincomestreamsindifferent potentialwaysgivendifferentperceptionsovertheirrelativeuncertaintyandfuture evolution,forexample.Nevertheless,wemaintainthisassumptionasafirst approximation.WhilewedidnotexplicitlyincludePROCAMPOpaymentsinthemodel,the estimatedparametersimplicitlyreflecttheeffectsofthesepayments.Thus,reducing potentialagriculturalreturnsbytheamountofthesepaymentswillreflecttheeffectof reducingtheexpectedbenefitsfromcropproduction,takingintoaccountallofthepolicies inplacefrom2000‐2012. Aquestionisbywhatamounttoreducepotentialagriculturalreturnsgiventhatnot allcroplandareaswereeligibletoreceivePROCAMPOpayments.Approximately80%of currentlyplantedacresoverbothgrowingseasonsreceivedPROCAMPOsupportlastyear. Between2000and2012,thesepaymentswentlargelytolandsinejidooragrarian communitydesignations.FromouranalysisofthePROCAMPOdatafrom1999to2011, about85%oflandsreceivingpaymentsnationallywereclearlyidentifiedasbeingwithin ejidosoragrariancommunities,whileabout8%wereclearlyidentifiableasprivately owned.Therelevantissue,however,isnotwhatshareofcurrentcroplandiseligiblefor PROCAMPOpaymentsbutwhatshareofforestareasthatmightbeconvertedtocropswas eligibletoreceivepaymentsinthepastandwouldbeeligibletoreceivepaymentsinthe future.Theshareoflandseligibleforpaymentscouldbesignificantlyhigherinforested areasifpotentialfarmsizesaresmallerthaninotherareas,whichmightespeciallybecase onejdooragrariancommunitylands.Givenlackofadditionalinformation,asapreliminary exploration,ourscenario4assumesthatPROCAMPOpaymentsonlywenttolandsinejidos 27 andagrariancommunities,andthatallnewcroplandacresinthesedesignationswere entitledtofulllevelofpayments.Inparticular,wereducethepotentialagriculturalreturn onejidoandagrariancommunitylandsbytheaveragePROCAMPOpaymentreceivedonthe PROCAMPOprogramhectaresinthemunicipalityintheprioryear.7Whileitisnotthecase thatnoforestedlandsoutsideejidosandcomunidadeswouldhavebeeneligibletoreceive payments,itisalsolikelynotthecasethatalllandswithintheselandstypeswouldhave receivedpayments.Wesimulateascenariowherenolandsoutsideofejidosand comunidadesreceivedpaymentsinordertobeconservativeinnotoverstatingtheimpacts oftheprogram. RemovingthefullamountofPROCAMPOpaymentsperhectarerepresentsabouta 35%reductionintheestimatedpotentialagriculturalrevenuesonforestedlandsoverthe historicalperiodforthemediangridcellintheejidosandagrariancommunities.This scenariowilllikelyunderestimatetheeffectofPROCAMPOoutsideofcommunallandareas, asweareassumingzeroeffectatfirstapproximation,butwilllikelysomewhat overestimatetheprogram’seffectswithinthecommunalareasbyassumingallnew croplandsinthosedesignationsareeligibletoreceivePROCAMPOprogrampayments, despitethelimitsonpaymentsaccordingtothesizeoffields. Thesesimulationsexploretheeffectsofchangingjustonevariableinthemodel, holdingallothersconstant.Inreality,allothervariableswouldnothavebeenconstant, mostspecificallythestartingforestarea.Forexample,ifdeforestationin2000islower (higher)duetolower(higher)agriculturalreturns,thenstartingforestareawouldhave beenhigher(lower)inthesubsequentyear.Wedonottakethisintoaccountinour historicalsimulationssincethegoalisjusttoexaminethesensitivitytotheonevariable. Nevertheless,forthepurposesofthefuturepredictions,describedinthenextsection,we updatethestartingforestareaineachyeartoreflectthedeforestationinthepreviousyear. 4.3.2.SimulationResults 4.3.2.1.ChangesinAgriculturalReturns ResultsfromthesimulationatthenationallevelaresummarizedinTable4.3.2 below.Wepresentresultsfromourpreferredmodel(the“negativebinomial”),butinclude resultsfromouralternativemodel(the“poisson”withoutfixedeffects)intheAppendix.8 7Whena900mcellwasonlypartiallyincommunallandownership,weestimatedaweighted averageofthePROCAMPOpaymentassumingtheejidoandagrariancommunityportionswere eligibleforthefullpayment,whiletheremainderwasnot. 8Forthepurposesofevaluatingchangesinresponsetoparticularvariables,wepreferthenegative binomialspecificationasPearsontestindicatesthedataarenotagoodfittothepoissonmodel,even thoughthelatterhasabetterfittothehistoricaldata.Wereportresultswithbothmodelsfor comparison.Weonlyreportresultsforthepoissonmodelwithoutfixedeffectsasweareunableto conductsimulationswiththe“fixedeffects”modelgiventhatwewereonlyabletoestimate “conditional”fixedeffectsmodel,whichdoesnotactuallyestimatethefixedeffectsforeachofthe 900mcells.Estimatesoftheseeffectsarenecessarytomakeabsolutepredictionsofthedependent 28 Ouralternativemodel(the“poisson”modelwithoutfixedeffects)replicatestheobserved quantityofdeforestationpreciselyatthenationalaswellasregionallevels.Ourpreferred modelhasasomewhatlessprecisefit,overestimatingnationaldeforestationoverthe2000‐ 2012periodbyabout120thousandhectaresor6.8%,withapredictedtotalforestlossof 1.88millionhectaresversusanobservedlossof1.76million.9Althoughthismodel providesasomewhatlessprecisefittothedatainabsoluteterms,wefocusonresultsfrom thismodelasitisourpreferredspecificationforestimatingrelativechangesinforestlossin responsetochangesinparticularvariables. Table4.3.2.NationalSimulationResults Observed(within sample)* 1)Factualsimulation 2)99%agricultural returns 3)101%agricultural returns 4)90%agricultural returns 5)110%agricultural returns 6)NoPROCAMPO payments Totalforestloss, 2000‐12 (Ha) Differencefrom factualsimulation (Ha) Differencefrom factualsimulation (%) 1,762,854 ‐120,624 ‐6.4% 1,883,478 0 0.0% 1,878,961 ‐4,517 ‐0.24% 1,888,360 4,882 0.26% 1,845,771 ‐37,707 ‐2.0% 1,946,100 62,623 3.3% 1,789,400 94,078 ‐5.0% *This“observed”forestlossfigurerepresentstheobserveddeforestationfor900mcellswithinthe sampleusedforourestimation.Actualdeforestationwas1,997,765haor13%higher,aswecould notusealltheobservationsduetomissingdataforsomeofthevariables.Note:2000‐12forestlossis throughtheendof2011butdoesnotincludedeforestationoccurringin2012.Resultsinthistable arefromthepreferred“negativebinomial”model.Forcomparison,wereportresultsfromthe alternative“poisson”model(withoutfixedeffects)inAppendixTableA‐10. Attheregionallevel,thepreferredmodelcapturesthegeneraldistributionofforest loss,byregion,aswellasareaswithinandoutsidetheAATRreferenceregions.A comparisonoftheobservedversusmodeledforestloss(the“factualsimulation”)for differentregionsandlandtypesisshownintables4.4.1and4.4.2.Themodelvariesinits precisionbyregion,underestimatingdeforestationbyalmost10%intheYucatánPeninsula (region6),byabout4%intheSouthandWest(regions5and3),by7‐8%intheNorthwest variable.Estimatingactualfixedeffectsprovedcomputationallyimpossibleevenwithdistrict‐level fixedeffects. 9 Forthepurposesofcomparingtotheestimatesfromourmodels,the“observed”forestlossfigure representstheobserveddeforestationfor900mcellswithinthesampleusedforourestimation. Actualdeforestationwas1,997,765haor13%higher,aswecouldnotusealltheobservationsdueto missingdataforsomeofthevariables. 29 (region1)andBajioandNortheast(region2),andbyjust1%intheCenterandEast(region 4).Suchvariationsarenotsurprisinggiventhatwearepredictingregionalandsub‐ regionalforestlossesbasedonanempiricalestimationofdeforestationresponsesacross thewholecountry,withonlyafewregion‐specificdummiestocaptureregion‐specific particularities. Theresultsexaminingthesensitivityofdeforestationtothepotentialnetbenefits fromconvertingforeststocroplanduseconfirmthatgreaterexpectedpotentialagricultural returnswereassociatedwithincreasesinannualdeforestation,asexpectedbytheory.The simulationsbasedonourpreferredmodelindicatethata1%decreaseinpotential agriculturalreturnsover2000‐2012wouldhavedecreasedcumulativedeforestation nationallyoverthisperiodby0.24%.Conversely,a1%increasewouldhaveboosted deforestationby0.26%.Thesimulationsfromthealternativemodelsuggestaverysimilar deforestationresponse,withdeforestationdecreasing0.26%fora1%fallinagricultural returns,andincreasing0.27%fora1%increaseinreturns(seeAppendixtableA‐10). Resultsforthe10%changesinreturnsareroughlyproportional,butshowamore asymmetricresponse,withforestlossesdecreasing2.0%forat10%decreasein agriculturalreturnsandincreasingby3.3%fora10%increase. Ourfinalsimulationsuggeststhatdecreasingcropreturnsbytheamountof PROCAMPOsubsidiesonejidosandagrariancommunitylandswouldhavedecreased deforestationbyabout5%.Giventhatthisrepresentsarounda35%decreaseinreturns, thisisabitlessthanproportionaltoourfindingthata10%decreasewouldhavereduced deforestationbyabout2%.Mostoftheestimatedreductionsfromeliminatingthe PROCAMPOpaymentsoncommunallandcategoriesoccurintheYucatánPeninsulaand Southregions.About46%ofthereductionsoccurintheYucatánPeninsulaandabout 25%intheSouth. Thefindingthatdeforestationincreasesmorethanitdecreasesforanequivalent percentincreaseanddecreaseinagriculturalreturns,respectively,isperhapssurprisingif oneimaginesthatprogressivelymoreandmoremarginalagriculturallandisentering production,makingitmoreandmoredifficultforlandtocomein.Inpart,thisresult reflectsthefactthatoureconometricmodelsarenon‐linearcountdatamodels,wherethe coefficientsarecontributionstoaratesuchthattheydonothaveasimplelinear interpretationintermsofabsoluteimpacts. Thesensitivitytomarginalchangesinagriculturalreturnsvariesbyregion,as showninTable4.3.3.ThemostsensitiveregionsaretheNorthwestandBajioand Northeast,withtheleastsensitiveregionsbeingtheCenterandEastandtheYucatan Peninsula.Whiletheformerregionsareestimatedtorespondabout0.5‐0.6%and0.8‐ 1.0%,respectively,forevery1%changeinagriculturalreturns,thelatterregionisonly estimatedtorespondabout0.08%.Inpartthisreflectsthenatureofoursimulations,which consideredpercentageratherthanabsolutechanges.Asaresult,areaswithlargerabsolute levelsofreturns,experiencelargerchangesinabsolutereturns,forthesamepercentage change.Thelargerresponseinregions1and2reflectsthefactthattheseregionshave higherpotentialagriculturalreturnsandthuslargerabsoluteincreasesanddecreasesin 30 deforestationunderthesescenarios(whichsimulatedpercentage,ratherthanabsolute changes)and,consequently,havemorenon‐linearchangesinthedeforestationratefora givenpercentageincreaseinnetreturns. Theseregionalresultsshouldnotbetakentooliterallygiventhatthemodelismost appropriatetoreflectnational‐averageresponses.However,themodelisalsopickingup somedifferencesintheresponsivenesstodeforestationassociatedwithforestcategories. Thelargerpercentresponseforanincreaseinreturnsinregions1and2alsoreflectsthe factthatregionscontainmoresmallareasofforest.Breakingoutthesimulationresultsby startingforestcategorywithineachregionindicatesthattheresponsivenessto1%changes inagriculturalreturnsgenerallyincreasesasforestcoverdeclines.Thismightindicate loweraccesscoststothesegridcells,makingthemmoresensitivetochangesingross revenues.However,insomeregions,notablytheSouth,West,andYucatanPeninsula,there isaU‐shapepattern,withthegreatestsensitivityoccurringatboththehighestandlowest forestcategories. Table4.3.3.RegionalSimulationResultsforSensitivitytoAgriculturalReturns Region TotalCountry Factual simulation (scenario1) Totalforest loss, 2000‐12 (Ha) 1,883,478 99%agriculturalreturns (scenario2) Totalforest loss,2000‐ 12 (Ha) 1,878,961 Difference fromfactual simulation (%) ‐0.24% 101%agriculturalreturns (scenario3) Total Difference forestloss, fromfactual simulation 2000‐12 (%) (Ha) 1,888,360 0.26% Northwest 68,975 68,629 ‐0.50% 69,382 0.59% (Region 1) Bajio & Northeast 179,624 178,142 ‐0.83% 181,373 0.97% (Region 2) West 57,165 56,916 ‐0.44% 57,419 0.44% (Region 3) Center and East 247,089 246,899 ‐0.08% 247,303 0.09% (Region 4) South 456,810 455,280 ‐0.33% 458,346 0.34% (Region 5) Yucatan Peninsula 873,816 873,096 ‐0.08% 874,538 0.08% (Region 6) Note:Resultsinthistablearefromthepreferred“negativebinomial”model.2000‐12forestlossis throughtheendof2011butdoesnotincludedeforestationoccurringin2012. Theseresultssuggestthatrelativelysmallerpatchesofforestscouldcontribute disproportionatelytomarginalchangesinincentives,giventhattheyalreadyaccountfora disproportionateshareofdeforestationrelativetotheforestarea(seenationalmodeling appendixformorediscussionofthisissue).Atthesametime,relativelymoreintactforests insomeregionsappeartobeatapotentialeconomictippingpointfordeforestation,where changesinnetreturnswillcausethemtobeginadeforestationprocess,producingajumpin 31 annualdeforestation,andperhapsevenmorecumulativedeforestationoverthelonger term. Asnotedabove,oursimulationsconsideredvariationsinonevariable,holdingall elseconstant,includingthestartingforestarea.Tofullycapturetheeffectsonthe dynamicsofdeforestation,wewouldalsowanttosimulatetherepercussionsof deforestationinoneyearonforestcoveranditseffectondeforestationinthesubsequent years.Webegintoexploretheseissuesinthenextsectionwhereweconsideraforward‐ lookingsimulationbasedonanincreaseinagriculturalreturnsaswellaspotentialcarbon paymentsforavoideddeforestation. 4.4.Futureprojections Weconductafuture‐orientedsimulationundera“businessasusual”scenarioas wellasaseriesofpolicycaseswhereweintroduceahypotheticalcomprehensiveincentive tomaintainforestcarbon.Asdiscussedfurtherbelow,avarietyofpolicyapproachescould beusedtocapturepotentialfinancialflowsforREDD+andimplementlow‐emissions practicesinMexico.Ourprojectionsservetoquantifyandmapthepotentialreductions availableforfutureREDD+policyinMexico,ratherthantomodelaparticularREDD+ implementationstrategyinparticular.Thesesimulationsalsoprovideaninputforlocal modelingfuturedeforestationatthelevelofeachofthesevenAATRs,asdiscussedin Section4. Thefuturesimulationsaccountfortherepercussionsofdeforestationfromone yeartothenextbymodelingdeforestationateach900mcellandaccountingforitseffecton startingforestcoverareaandcategoryatthestartofthesubsequentyear.Whileour alternative(“poisson”model)couldprovidebetterpredictions,wefocusonourmainmodel (the“negativebionomial”)whichshouldbemoreappropriateforexaminingtherelative changesbetweentheBAUandpolicycases.Wepresentresultsfromthealternativemodel intheAppendixforcomparisonpurposes. Forthebusiness‐as‐usual(BAU)scenario,westartwithobservedforestcoverin 2012(thelastyearofourdatafromtheUniversityofMaryland)andthenmodelits evolutionforeach900mcellatanannualtimestepthrough2024.Wealsostartwith agriculturalreturnsasof2012andholdtheseconstantforthescenario.Thisinvolves almostatriplingofmeanandmedianagriculturalreturnsrelativecomparedtothe2000‐ 2012period,thoughthisvariesoverspace.Combiningthedataoveralltheyearsand900m cells,theaveragepotentialreturnsrisefrom4,003to15,464MXN$/hawhilemedian returnsrisefrom2,470to9,346MXN$/ha.Theincreaseinmedian(andusuallyaverage returns)islargerintheNorthwest,BajioandNortheast,andWestregions,relativetointhe CenterandEast,SouthandYucatanPeninsula. Duetomissingdataonsomeofthevariables,ourestimationandhistorical scenarioswerebasedonasub‐sampleofthedatathatcapture87%ofthehistorical deforestationover2000‐2012.Nevertheless,thereisfewermissingdatainthelateryears ofthedatabase.Thesampleusedforourfuturepredictionscaptured98%oftheobserved 32 deforestationin2011.Giventhatourdataisthusclosetocomplete,wedidnotmakeany additionaladjustmentstothefutureforestlossprojectionsforthismissinginformation. Forthepolicyscenarios,weconductaseriesofsimulationswhereweintroducea comprehensivecarbonincentivepertonofCO2,startingatUSD$5andrisingprogressively to$100(assuminganexchangerateofMXN$13/USD).Specifically,weconsider“prices”of $5,$10,$20,$30,$50,$60,$70,$80,and$100pertonofCO2,soastotraceouta“marginal cost”curvebasedonestimatedemissionsreductionsfromavoideddeforestationat differentpricepoints. Wesimulateaneconomicallyidealormostcomprehensiveincentivewhichcan,in theory,beviewedasonewherealllandownerseitherreceiveasubsidyforland preservationorpayataxforlandconversionforinstantaneouslyreleasingthecarbon contentofallabove‐groundlivebiomass.Morepractically,onecanthinkofthisasapolicy thatreducesthe“business‐as‐usual”agriculturalbenefits(e.g.byreducinggovernment subsidies)andtranslatingthemintoeconomicbenefitsforlow‐emissionspracticesthat avoiddeforestation.Thisisimplementedinoursimulationsbyreducingtheagricultural returnsbytheamountoftheforegonecarbonrevenueifforestsweretobedeforested.We donotmodelanypotentialshiftsor“leakage”ofdeforestationinresponsetopossible inducedchangesinagriculturalreturnsorothereffects.Webaseouranalysisonthe above‐groundcarbondensitydatafromWHRC/MREDD(Cartus,etal.,2014).For simplicity,thisinitialanalysisdidnotconsiderbelow‐groundorsoilcarbonlosses. Whilethisanalysisconsidersanotionalcarbonincentivethatcanbetranslatedinto aparticular“price”andthoughtaboutasataxorsubsidyforeachlandownerorotherland user,asalreadynote,theresultsdonotpresupposeaparticularREDD+policybasedon directpaymentstolandowners,suchasatraditionalpaymentsforenvironmentalservices (PES)program.Rather,ouranalysisservestoidentifythecost‐effectivepotential emissionsreductions,andtheirspatialdistribution,giventhe“price”intermsofforegone agriculturalrevenuesonthelandsnotbeingdeforested.Thisanalysisservestoquantify andspatiallyidentifythemostcost‐effectivereductionsthatcouldbepotentiallytargeted underavarietyofpotentialpolicyinterventionsandapproachesforpromotinglow‐ emissionsruraldevelopmentandreduceddeforestationemissionsinMexico.Moreover, whileagriculturalproductionmightbeforegoneontheparticularlandsnotbeing deforested,agriculturecouldbeintensifiedandexpandedonnon‐forestlandsunderalow‐ emissionsagriculturaldevelopmentstrategy.Thismeansthatagriculturalproductioncould bemaintainedorincreasedoverallatthesametimethatexpansionofagricultureintoforest areasisdecreased. 4.4.1.1.“Business‐as‐usual”projection Table4.4.1showsour“businessasusual”projectionsfor2014‐2024relativetothe observedandmodeleddeforestationinannualizedtermsduringthehistoricalperiod (2000‐2012).ResultsarepresentednationallyaswellasbyAATRreferenceregionsand differentlandownershipcategories.Basedontheeconomicprofitabilityofagricultureand startingforestcoverin2012,themodelpredictsanoverall27%increaseinannual 33 deforestationinMexicooverthenexttenyears,relativetotherecentpast.Estimated changesreportedarerelativetothemodeleddeforestation(the“factualsimulation”)for 2000‐2012.Mostofthisincreaseisduetoasignificantincreaseindeforestationinthe SouthandYucatanPeninsularegions,whichassumesanevengreatershareofnational deforestation,assomeotherregions(WestandCenter/Eastregions)experienceadecrease inannualdeforestation.Thehigheragriculturalprofitsin2012relativetothehistorical periodaccountsfortheoverallincreaseindeforestationnationwideandinthemore forestedareas. Despitethesignificantincreaseintheaverageandmedianagriculturalreturns comparedtothehistoricalperiod,theoverallincreaseindeforestationissmallerthan suggestedbyoursimulationsofsmallermarginalchangesinagriculturalreturnsinsection 2.Thisislikelyduetothefactthatwearecomparingresultsacrossawholehistorical periodwithawiderangeinreturns,includingreturnssimilartoourprojectedonesatthe endoftheperiod.Wearealsonowaccountingforthedecliningforestareaswithineach gridcell,whichfurtherreducespotentialdeforestation.Theprojecteddecreaseinsome regionsrelativetothehistoricalperiodislikelyduetosmallerremainingareasofforestin 2012relativetothehistoricalperiod. Asnotedbefore,ourmodelsareintendedfornationalanalysisbutgenerallycapture regionaldistributions.Map4.4.1showsthespatialdistributionofprojectedaggregate forestlossunderthebusiness‐as‐usualscenarioforthenext10years(2014untilthestart of2024).Themapshowsthatthegreatestamountofdeforestationisprojectedtooccur intheSouthandYucatanPeninsularegions.Table4.4.2showshowtheseregionsarenot onlyprojectedtocontributethemostdeforestationinabsoluteterms,butarealsoprojected toexperiencethegreatestpercentageincreasesindeforestation,withprojected deforestationrisingby72%intheSouthandby26%intheYucatanPeninsula.Incontrast, deforestationincreasesby17%intheNorthwest,3%intheBajioandNortheastand percentdecreasesintheWestandCenter/Eastregions.Ouralternativemodel(the “poisson”)alsopredictsanincreaseinnationaldeforestationof27%,withthegreatest proportionalincreasesoccurringintheSouthandYucatanPeninsula(AppendixtableA‐11). Thebreakdownacrossregionsisabitdifferentinabsoluteterms,butthequalitativeresults arestillgenerallythesame.Thisalternativemodel,whichmaybemoreprecisefor predictivepurposes,showsrelativelysmallerincreasesintheSouthandYucatan(41and 48%,respectively)andlargerincreases(smallerdecreases)intherestofthecountry. TherelativelygreaterprojectedincreasesindeforestationintheSouthandYucatan comparedtotherestofthecountrycontrastwiththehistoricalsimulationresultsinTable 4.3.3formarginalchangesinreturnsofplusorminus1%.Whileotherregionsappear moresensitivetosmallchangesinreturns,thegreatercumulativedeforestationinthe SouthandYucataninthefutureprojectionsmaybedueinpartbythemuchlargerchanges inreturnsbeingconsideredinthebusiness‐as‐usualprojection,whichelicitsalarger responsefromallforestareas.Theotherpartofthestoryisthatwearenowaccountingfor howforestareasevolveovertime.Thus,areaswithsmallinitialforestcovermightrespond 34 withalargeproportionalchangesindeforestationintheshortrunbutthenhavelittle forestcoverremainingtocontinuehavingforestlosses. Table4.4.1.Comparisonofhistoricalchangeandfuturepredictions,2014‐2024,by AATRreferenceregionsandlandownershipcategory %change inannual forestloss, projected BAUvs. modeled 2000‐12 (%) 27% Observed forestloss (insample), 2000‐12 (Ha/yr)* TotalCountry 160,259 171,225 217,963 Changein annualforest loss, projected BAUvs. modeled 2000‐12 (Ha/yr) 46,738 Non‐AATR 110,299 113,679 131,434 17,755 16% AATRregions 49,960 57,546 86,528 28,982 50% Mixteca 1,298 1,902 3,180 1,278 67% SierraNorte 1,827 1,055 1,920 865 82% SierraPucc 35,471 41,078 57,863 16,785 41% Chiapas 4,546 7,165 12,847 5,682 79% Raramuri 1,725 2,107 2,556 449 21% ValledeBravo 481 498 417 ‐81 ‐16% Itsmo 4,613 3,739 7,745 4,006 107% Comunidades 10,531 10,288 21,255 10,967 107% Ejidos 89,613 92,800 113,070 20,269 22% Protectedareas 4,778 6,529 11,542 5,013 77% 55,337 61,608 72,096 10,488 17% Region/Land Category Otherlands Modeled forestloss (factual simulation), 2000‐12 (Ha/yr) Business‐ as‐usual (BAU) forest loss, 2014‐24 (Ha/yr) *This“observed”forestlossfigurerepresentstheobserveddeforestationfor900mcellswithinthe sampleusedforourestimation.Actualnationaldeforestationwas1,997,765haor13%higherthan thein‐sampleamountasallobservationscouldnotbeusedduetomissingdataonsomevariables. Note:TheAATRregionsinthistablearetheAATR“referenceregions”usedinthelocalmodeling discussedinsection4.ThereferenceregionsincludetheAATRsiteplusa50kmbuffer.Resultsin thistablearefromthepreferred“negativebinomial”model.Forcomparison,wereportresultsfrom thealternative“poisson”modelinAppendixTableA‐11.Protectedareasarethefederallyprotected areasconsideredinthisanalysis.2000‐12forestlossisthroughtheendof2011butdoesnotinclude deforestationoccurringin2012.Similarly,2014‐24forestlossisthroughtheendof2023butdoes notincludedeforestationoccurringin2024. 35 Table4.4.2.Comparisonofhistoricalchangeandfuturepredictions,2014‐2024,by nationalregionsandAATRReferenceRegions Observed forestloss (in sample), 2000‐12 (Ha/yr)* Region/Land Category Modeled forestloss (factual simulation), 2000‐12 (Ha/yr) Business‐ as‐usual (BAU) forestloss, 2014‐24 (Ha/yr) Northwest(Region1) Changein annualforest loss, projected BAUvs. modeled 2000‐12 (Ha/yr) %changein annualforest loss, projected BAUvs. modeled 2000‐12 (%) Total 5,751 6,270 7,187 917 15% Non‐AATR 4,025 4,163 4,632 469 11% 1,725 2,107 2,556 449 21% AATRregions Bajio&Northeast(Region2) Total 15,125 16,329 18,154 1,825 11% Non‐AATR 15,120 16,320 18,151 1,831 11% AATRregions 4 10 3 ‐7 ‐70% West(Region3) Total 4,969 5,197 5,267 70 1% Non‐AATR 4,630 4,973 5,048 75 2% AATRregions 339 224 219 ‐5 ‐2% CenterandEast(Region4) Total 22,777 22,463 15,833 ‐6,630 ‐30% Non‐AATR 21,684 21,176 14,799 ‐6,377 ‐30% AATRregions 1,093 1,286 1,034 ‐252 ‐20% South(Region5) Total 39,863 41,528 71,262 29,734 72% Non‐AATR 28,535 28,688 46,408 17,720 62% AATRregions 11,328 12,840 24,854 12,014 94% YucatanPeninsula(Region6) Total 71,776 79,438 100,260 20,822 26% Non‐AATR 36,304 38,359 42,397 4,038 11% AATRregions 35,472 41,078 57,863 16,785 41% *This“observed”forestlossfigurerepresentstheobserveddeforestationfor900mcellswithinthe sampleusedforourestimation.Actualnationaldeforestationwas1,997,765haor13%higherthan thein‐sampleamountasallobservationscouldnotbeusedduetomissingdataonsomevariables. Note:TheAATRregionsinthistablearetheAATR“referenceregions”usedinthelocalmodeling discussedinsection4.ThereferenceregionsincludetheAATRsiteplusa50kmbuffer.Resultsin thistablearefromthepreferred“negativebinomial”model.Forcomparison,wereportresultsfrom thealternative“poisson”modelinAppendixTableA‐12.2000‐12forestlossisthroughtheendof 36 2011butdoesnotincludedeforestationoccurringin2012.Similarly,2014‐24forestlossisthrough theendof2023butdoesnotincludedeforestationoccurringin2024. Themodelpredictsthatmostnewdeforestationinabsoluteterms,aswellasmost absoluteincreasesindeforestation,willoccuronejidolands(Table4.4.2).Inpercentage terms,however,forestlosseswithinejidosareprojectedtoincreaseby22%orlessthan thenationalaverage.Incontrast,agrariancommunities(comunidades)areprojectedto experiencethelargestincrease,followedbydeforestationwithinprotectedareas,with projectedincreasesof107%and77%,respectively.Ouralternativemodelprojectssimilar qualitativepatterns,thoughtherelativedifferencesamonglandtypesaresmaller. Map4.4.1indicatesthattheAATRsarenotalllocatedintheareaswiththehighest projectedfuturedeforestation.Nevertheless,asshowninTable4.4.1,overalltheAATR referenceregionshavehigherprojecteddeforestationincreasesthanotherforestedareas (50%versus16%forthelandsoutsidethesereferenceareas).TheAATRreferenceregions discussedherearethoseusedinthelocalmodeling(section4),andincludethespecific REDD+earlyactionareasites,aswellasasurrounding50kmbuffer.Giventhenational scaleofthemodeling,resultsaremoreappropriateatlargerscalesofanalysis,dictatingour focusonlargerversussmallerareassurroundingtheAATRs. LookingspecificallyattheAATRreferenceregions,themodelpredictsthegreatest increaseintheItsmoandSierraNorteregionandthesmallestincreasesintheRaramuri andValledeBravoregions,withthelatterregionactuallyexperiencingadeclinein deforestation.Thealternativemodelgeneratessimilarqualitativeresults,thoughit predictsasmallerrelativeincreaseindeforestationintheChiapasAATRreferenceregion (26%versus79%increaseinourpreferredmodel). TheAATRreferenceregionsnotonlyhavehigherprojecteddeforestationversus otherlandsonaggregatenationally,buttheyalsogenerallyhavehigherprojected deforestationrelativetootherlandswithineachregion.ThecomparisonofAATRvs.non‐ AATRlandswithineachregionisshownintable4.4.2.TheAATRreferenceregions generallyhavehigherprojectedincreasesindeforestation(orsmallerprojecteddecreases inthecaseoftheCenterandEast),relativetootherforestedlandsinthesameregion.The exceptionsaretheBajioandNortheast(Region2)andWest(Region3),buttheseresults arenotindicativegiventhattheseregionscontainedtrivialamountsoflandswithinanyof theAATRsreferenceareas.Ouralternativemodelgeneratessimilarfindings(TableA‐12). 4.4.1.2.CarbonIncentiveProjections Asanexampleofourcarbonincentiveresults,wepresentresultsforahypothetical carbonincentiveofUSD$10/tCO2intable4.4.3.Thiscarbonincnetivetranslatesintoa median(average)subsidy/taxofabout4700(5200)MXN$/ha,comparedtomedian (average)agriculturalreturnsofabout9,300(15,400)MXN$/ha.Thisrepresentsa medianreductioninagriculturalreturnsof25%,withmorethana100%reductionon average.Underthissimulatedcarbonincentiveof$10/tC,deforestationfallsnationallyby anestimated35%.Map4.4.2showsthespatialdistributioninthereductioninforestloss 37 underthe$10carbonincentive(relativetotheBAUcaseshowninmap4.4.1)whilemap 4.4.3showstheremainingdeforestation.Theresultsforthealternativemodelandatthe levelofeachAATRreferenceregionareshownintheAppendixinmapsA‐15toA‐24. Ingeneral,theregionsprojectedtohavethegreatestincreasesindeforestationover thenextdecadearealsoestimatedtobethemostresponsivetoreducingdeforestation underacarbonincentive.Overall,AATRreferenceregionsareestimatedtoreduce deforestationby41%comparedtoareductionof32%fornon‐AATRlands.Theanalysis suggestssignificantreductionsinthespecificAATRs,rangingfrom35%inRaramurito58% inSierraNorte.AlloftheAATRdemonstrategreaterpotentialreductionsthanthenon‐ AATRregionsofthecountry.However,thegreatestpotentialreductionsoccurinthe YucatánPeninsulaandSouthasseeninmap4.4.2.Similarly,mostoftheremaining deforestationisdistributedintheseregions(map4.4.3). Comunidadesandprotectedareaswerethelandtypesprojectedtohavethebiggest proportionalincreaseinforestlossesoverthenext10yearsandarealsoestimatedtohave thegreatestpercentdeclinesinresponsetoacarbonincentive.Inabsoluteterms, however,thegreatesttotalestimatedreductionsoccuronejidos,aswellasprivateand otherlandtypesapartfromcomunidadesornationalprotectedareas. Inadditiontoconsideringchangesinforestareaasaresultofacarbonprice,we alsoconsiderchangesincarbondioxideemissionsfromlossesinabove‐groundbiomass. Map4.4.4showsthespatialdistributionofreducedemissionsfromabove‐groundforest biomass,associatedwiththereducedforestlossscenarioata$10priceshowninmap4.4.2. Estimatedemissionsreductionsforthe$10carbonincentivearealsocombinedwiththose fromtheothercarbonincentivesimulationsandareusedtoconstructcostcurvesshownin Figures4.4.1and4.4.2.Thesefiguresshowtheestimatedabove‐groundforestcarbon emissionsavoidedannuallyundereachofourcarbonincentivescenarios,relativetothe business‐as‐usualprojectionoverthe10yearsstartingin2014. Underthebusiness‐as‐usualscenario,representedbyacarbonincentiveofzero, averageannualCO2emissionsfromdeforestationareapproximately17milliontonsofCO2 atthenationallevel.Despitereflectingincreasesinfuturedeforestation,theseareabout 37%ofthe45.3MtCO2for2010reportedforland‐usechangeemissionsinthefifthnational communicationstotheUnitedNationsFrameworkConventiononClimateChange (SEMARNAT/INECC,2012).Thereareseveralpossibleexplanations.Ourestimatesare basedonnewsourcesofinformationonbothforestloss,aswellasonabove‐groundforest carbondensities.Also,thenumbersinthenationalcommunicationsincludeconversionof grasslands(pastizales),whichwerenotconsideredinouranalysis.Furthermore,our analysisonlyconsideredemissionsfromabove‐groundforestcarbonstocks,without consideringpotentiallossesofbelow‐groundforestcarbonorsoilcarbon.Estimatesof aboveandbelow‐groundforestcarbonstocksinMexicofromFAO(2005)andRueschand Gibbs(2008)areapproximately95and113tonsofCperhectare.Incontrast,themeanand medianforesthectarein2012hadanestimated23.6and21.8tonsofC/ha,respectively, accordingtotheestimatesusedinourstudy(Cartus,etal.,2014).Thecarbondensitiesfor thedeforestedhectaresinourprojectionsfrom2014‐2024wereabitlower,withameanof 38 21.7andmedianof19.8tC/ha.Adetailedcomparisonofthesenumberswasbeyondthe scopeofouranalysis. Focusingonlyontheabove‐groundcarbon,wefindthatthereisrisingpotential nationallytoreduceemissionsatcarbonincentivesrangingfrom$5to$100,atwhichpoint about90%oftheemissionsareavoided.Closetohalfoftheestimatedreductionsavailable atpricesof$10/tonorbelowandmorethantwothirdsoftheestimatedreductions availableatpricesof$20/tonorbelow.Thenationalandregionalcostcurvesarerisingat anincreasingrate,indicatingthatitcostsmoreandmoretoavoiddeforestationonlands withgreateragriculturalpotentials. Whiletherearepotentialreductionsavailablefromallregionsatpricesupto$20‐ $30,thebulkofestimatedreductionsisfromtheSouthandYucatanPeninsula,which accountforabout35%and60%ofthetotalpotentialupto$100.Reductionsfromthe otherregionscollectivelyrisesteeplyandareexhaustedatpricesof$20and$30,atwhich pointthecostcurvesturnvertical,withabout1milliontonsofemissionsavoidedintotal. Thisreflectsthehigheragriculturalreturnsintheseregionsaswellassmallertotalamount offorestlossesandcarbonemissionsthatcanbeavoided.Incontrast,thecostcurvesfor theSouthandYucatanPeninsuladonotbegintoturnupwardssharplyuntilabout$50.At pricesof$5,theSouthandYucatanPeninsulaaccountfor43%and50%ofthecost‐effective potential,respectively.ThecostofreductionsintheSouthrisessomewhatfasterthanin theYucatanPeninsula,withtheSouthrepresentingasmallershareofthecost‐effective potentialatprogressivelyhigherprices(e.g.37%versus56%fortheYucatanatapriceof $50). Figure4.4.2breaksoutthecostcurvesaccordingtolandswithinandoutsideofthe AATRreferenceregions.TheseshowthatthebroadAATRregionsonaggregatecontain morethanhalfofthecost‐effectivepotentialreductionsinemissionsateachpricepoint, withabout55%ofthetotalmodeledpotentialforallofMexico.Asalreadynoted,our exercisedidnotpresupposetheimplementationofanactualcarbonpriceorpayment system.Rather,weconsiderahypotheticalcarbonincentivesoastoestimatethemost cost‐effectivereductionspotentialavailableforagivenreductioninforegoneagricultural revenuesontheparticularlandsnotbeingdeforested(thoughofcourseagricultural productionmightstillincreaseonotherlands).Thesecost‐effectivereductionscouldbe achievedinpracticethroughavarietyofpolicyapproaches.Also,whileouranalysis consideredanidealizedpolicycase,whichisindicativeofthepotentialforREDD+policies, additionalanalysiswouldbeneededtoconsiderimpactsondeforestation,including possible“leakage,”aswellasothereconomicimplicationsundermorerealisticandlikely lesscomprehensivepolicyapproaches. 39 Table4.4.3.FuturePredictions,2014‐2024,Business‐as‐Usualand$10/tonCO2 PolicyCase,forAATRandnon‐AATRregions Region/Land category TotalCountry Business‐ as‐usual (BAU) forestloss, 2014‐24 (Ha/yr) 217,963 Forestloss, 2014‐24 with $10/tCO2 (Ha/yr) 141,106 Changein annual forestloss, $10/tCO2 vs.BAU (Ha/yr) ‐76,856 %changein annual forestloss, $10/tCO2 vs.BAU (%) ‐35% Non‐AATR 131,434 89,727 ‐41,707 ‐32% AATRregions 86,528 51,379 ‐35,149 ‐41% Mixteca 3,180 1,466 ‐1,714 ‐54% SierraNorte 1,920 802 ‐1,118 ‐58% SierraPucc 57,863 37,082 ‐20,781 ‐36% Chiapas 12,847 6,324 ‐6,523 ‐51% Raramuri 2,556 1,668 ‐887 ‐35% ValledeBravo 417 242 ‐175 ‐42% Itsmo 7,745 3,795 ‐3,950 ‐51% Comunidades 21,255 9,837 ‐11,418 ‐54% Ejidos 113,070 77,174 ‐35,895 ‐32% Protectedareas 11,542 5,804 ‐5,738 ‐50% Otherlands 72,096 48,290 ‐23,805 ‐33% Note:TheAATRregionsinthistablearetheAATR“referenceregions”usedinthelocalmodeling discussedinsection4.ThereferenceregionsincludetheAATRsiteplusa50kmbuffer.Resultsin thistablearefromthepreferred“negativebinomial”model.Forcomparison,wereportresultsfrom thealternative“poisson”modelinAppendixTableA‐13.Protectedareasarethefederallyprotected areasconsideredinthisanalysis.2014‐24forestlossisthroughtheendof2023butdoesnotinclude deforestationoccurringin2024. 40 Map4.4.1.Projected“BusinessasUsual”(BAU)ForestLoss2014‐2024 Note:Thismapshowsprojecteddeforestationatthe900m(81ha)resolutionover10yearsstarting in2014,basedoninformationonforestcoverin2012,estimatedmodelparametersfrom2000‐12, andholdingconstantagriculturalprofitsat2012levels.Projectionsarefromthepreferred“negative binomial”model.Forcomparison,wereportresultsfromthealternative“poisson”modelin AppendixMapA‐11.Greenareasindicatenolossofforestcover.Progressivelyredderareasindicate greateramountsofforestloss.Greyareasarethosewithoutanyforestcoverin2012andhenceno projectedforestloss.2014‐24forestlossisthroughtheendof2023butdoesnotinclude deforestationoccurringin2024. 41 Map4.4.2.ProjectedAvoidedForestLoss2014‐2024,with$10/tonCO2incentive Note:Thismapshowsprojectedreductionsindeforestationatthe900m(81ha)resolutionover10 yearsstartingin2014,basedonintroducinganeconomicallyidealcomprehensivecarbonpriceof $10t/CO2onforestcarbonlosses.Reductionsarerelativetothe“business‐as‐usual”(BAU)scenario inMap4.4.1.Thisanalysisdoesnotconsiderpotentialpriceadjustmentsorotherpossiblesourcesof inducedshiftsindeforestationandemissions(i.e.“leakage”).Projectionsarefromthepreferred “negativebinomial”model.Forcomparison,wereportresultsfromthealternative“poisson”model inAppendixMapA‐12.Whitecolorareasindicatenoreductioninforestlossasaresultofthecarbon price.Lighttodarkyellow,followedbylighttodarkgreen,areasindicateprogressivelygreater amountsofavoideddeforestationunderthecarbonpricerelativetotheBAUcase.Greyareasare thosewithoutanyforestcoverin2012andhencenoprojectedreductioninforestloss.2014‐24 forestlossisthroughtheendof2023butdoesnotincludedeforestationoccurringin2024. 42 Map4.4.3.ProjectedRemainingForestLosswith$10/tonCO2incentive,2014‐2024 Note:Thismapshowstheprojectedforestlossatthe900m(81ha)resolutionover10yearsstarting in2014thatisestimatedtoremainaftertheintroductionofthe$10t/CO2onforestcarbonlosses (i.e.thismapshowstheremainingforestlossstartingfromtheforestlossinmap4.4.1and subtractingouttheavoidedforestlossinmap34.4.2).Projectionsarefromthepreferred“negative binomial”model.Forcomparison,wereportresultsfromthealternative“poisson”modelin AppendixTableA‐13.Greenareasindicatenolossofforestcover.Progressivelyredderareasindicate greateramountsofforestloss.Greyareasarethosewithoutanyforestcoverin2012andhenceno projectedforestloss.2014‐24forestlossisthroughtheendof2023butdoesnotinclude deforestationoccurringin2024. 43 Map4.4.4.ProjectedAvoidedEmissions2014‐2024,with$10/tonCO2incentive Note:Thismapshowsprojectedreductionsinabove‐groundcarbonlossesatthe900m(81ha) resolutionover10yearsstartingin2014,basedonintroducinganeconomicallyidealcomprehensive carbonpriceof$10t/CO2onforestcarbonlosses.Reductionsarerelativetotheforestlossesinthe “business‐as‐usual”(BAU)scenarioinMap4.4.1.Thisanalysisdoesnotconsiderpotentialprice adjustmentsorotherpossiblesourcesofinducedshiftsindeforestationandemissions(i.e. “leakage”).Projectionsarefromthepreferred“negativebinomial”model.Forcomparison,we reportresultsfromthealternative“poisson”modelinAppendixMapA‐14.Whitecolorareas indicatenoreductioninforestlossesandassociatedcarbonemissionsasaresultofthecarbonprice. Lighttodarkyellow,followedbylighttodarkgreen,areasindicateprogressivelygreateramountsof avoideddeforestationandassociatedemissionsunderthecarbonpricerelativetotheBAUcase. Greyareasarethosewithoutanyforestcoverin2012andhencenoprojectedreductioninforest lossesandassociatedemissions.2014‐24forestlossisthroughtheendof2023butdoesnotinclude deforestationoccurringin2024. 44 Figure4.4.1.EstimatedcostcurvesforCO2emissionsreductionsfromabove‐ground forestcarbonlossesinMexico,byregion Figure4.4.2.Estimatedcostcurvesforreducingemissionsfromabove‐groundforest carbonlossesinMexico,byAATRandnon‐AATRregions. 45 5. LocalModelingofDeforestation 5.1.Introduction 5.1.1.Overallapproach Thenational‐levelmodelingcapturesdriversandpossibledeforestationoutcomes atonescalethatisonlyarguablyveryrelevanttothelocalscale.Onecouldalsoclaimthat dynamicsatthelocalscalehavealocalcharacter,andthatamodeloftheselocaldynamics shouldbeindependentofrelationshipsderivedfromdistantlands.Thus,weadda componenttothisstudythatmodelsdeforestationbasedsolelyonlocaldata.Wedothis forthesevenfocusareasselectedbyTNC.Also,whileboththenational‐andlocal‐level analysesarebasedonspatialmodeling,thenational‐leveloneisviamodelingeconomic incentivesthatvarywithspatialpatternsofopportunitycost.Atthelocallevel, opportunitycostislessvariableandinformationisscarcer.Forthesereasons,wetakea differentapproachtospatialmodelinginthelocalcasestudies. Theoverallapproachwetakeistofollowthefundamentalstepsfoundinthemost‐ widelyusedmethodologiesforestimatingreferenceemissionslevels(RELs)forREDD+ initiativesapprovedbytheVoluntaryCarbonStandardsgroup(VCS).Howeveritis importanttonotethatthiswasnotareferencelevelsettingexercise.Wedonotconduct themethodtothelevelofdetailthatwouldbeexpectedforaVCSProjectDescription(PD) document,sincethatwouldrequirelocalfielddataonbiomassandlocalimprovementof GISdatausedinmodels.NonethelesswefollowtheoveralllogicoftheVCSmethodologies andtheirfundamentalstepsinspatialmodeling. 5.1.2.Definitionofextents First,somespatialextentsaredefined.Thisincludesthesiteitself,whichineachof thesevencasesisanexistingprotectedarea(PA).EachPAisoneofMexico’sREDD+early actionsites(ÁreasdeÁccionTempranaREDD+;AATR).WeusedtheofficialPAboundary filesprovidedtousbyTNC.Secondisthedefinitionofareferenceareaformodelingland useinsideandaroundeachsite. Eachreferenceareawasdefinedbyfirstcreatinga50kmbufferaroundtheAATR site.Thisbufferwascombinedwithmunicipalityboundaries,andtheentireextentofany municipalitythatintersectedthebufferwasincludedinthereferenceregion. 5.2.DataandMethods 5.2.1.Deforestationdata Withineachsite’sreferencearea,weobtaineddataonforestcoverand deforestationfrom2000to2012.Weusedthesamedatathatwereusedforthenational‐ levelanalysesfromthelatestUniversityofMaryland(UMD)assessment.Correspondingly, thesedataarebasedontheanalysisofLandsatimagesandhaveaspatialresolutionof 30m.However,wedidnotconductanyspatialdegradation(coarseningofspatial resolution),aswasdoneforthenational‐levelanalyses,sinceeachreferenceisnot prohibitivelylargetoconductanalysesatfullresolution. 46 TheUMDsourcedatacanbeseenascomposedoftwoparts.Firstisamapoftree‐ coverpercentforeach30mcellinyear2000.Treecoverisnotthesameasforestcover. Onecanassumethattreecoveraspresentedinthisproductisrelatedtocrowncoveras estimatedinthefieldandusedinnationaldefinitions.However,thetwoconceptsarenot theexactsame,andsuchanassumptioncanleadtoproblems.Forboththenationaland local‐levelmodelingweusedthisassumptionforsimplicity. Thenationaldefinitionofforesthas,ascriteria,aminimumcrown‐coverof25 percent.Weappliedthisvalueasathresholdtothepercenttree‐covermapfromUMDto createamapofforestin2000.Thisleadstoagenerousestimateofthedistributionof forestinthemodelingareas.Webelievethatmostsecondaryforestfallowsandshrub fallowsassociatedwithrotationalagricultureorrecently‐abandonedfarmlandisincluded intheestimationofforestextentin2000.Themappedandmodeledpatternsofforest coveranddeforestationlikelyincludesiteswithsignificanttreecoverandareasof clearanceoftreecoverthatarenotmatureforestortheclearanceof“mature”forest.We believethatplantationsandselectively‐loggedforestarealsoincludedintheforestclass. Thusthisdefinitionshouldbekeptinmindwheninterpretingresultsofthisstudy. ThesecondpartoftheUMDdatafocusesonestimatesofthelocationsoflossof treecoverforeachyearfrom2001to2012.Webelievethattheseshouldberobustdata, sincethetemporal‐spectralsignalofsuchclearingeventsisstrong,andthemethodsof UMDmaximizethepotentialfortheirdetectionbyminingtheentireLandsatarchiveover thestudyperiodandemployaneffectivedecision‐treestatisticalapproach.Thus,we expectthatthemajorityofdeforestationiscaptured,aswellasmuchoftheotherformsof clearanceoftreecover,becauseofthegenerousdefinitionofforestextentin2000,as notedabove. Incontrasttothenationalanalysisthatconsideredforestlossesonanannualbasis, forthelocalanalyses,theannuallossdataweregroupedtocreatemapsofforestlossover twotimeperiods:2000to2006and2007to2012.Wethencombinedthemapsoflossfor thesetwoperiodswiththatofderivedforestextentin2000tocreateathree‐dateproduct. Inanefforttolimittheeffectofsmall‐scalechangesintreecoverthatmightnottruly representforestlosses,wefilteredtheoutputtominimizeverysmallartifactsandtoseta minimumpatchsizeforboththebaselineforestdistributionandpatternsofloss.First,a three‐by‐threecellmajorityfilterwasappliedtothemergedproduct.Second,wefiltered theoutputusingaone‐hectaresieve.Thiseliminatesanypatchofforestorforestlossthat issmallerthanonehectareandreplacesthecellswiththedominantclassborderingthe eliminatedpatchofcells.10 10Webelievedthisfilteringwasprudentinthelocalanalyses,butnotnecessaryinthenational analysis,asthelattercontrolledforstartingforestareaintheeconometricprocedure.Inaddition, themuchlargeramountofdatausedforthenationalstudyreducesthepotentialinfluenceof spuriousforestlossobservations. 47 5.2.2.Otherdata WeobtainedasuiteofdatafromTNCandpartnerstoexplorethespatialrelationships betweenpossible“drivers”anddeforestation.Thedataaremoreaccuratelydescribedas geographicalparametersratherthandrivers.Theseparametersareindicativeofwherethe driversoccurandaremostlikelytobelinkedtodeforestationpatterns.Forexample,roads themselvesarenotdrivers,buttheirdistributionindicateswherepeoplehaveeasier accesstoforestsandcanrapidlymovetotheirhomesormarkets.Thus,roadsarea geographicalparameterthatallowsustounderstandwheretheinteractionsamong people,forestsandmarketsoccur,andtheythustypicallyarevaluableinpredictingwhere deforestationwillmostlikelyoccur.However,theterm“driver”iscommonlyusedinsuch modelingcontextstorefertodataonsuchgeographicalparameters,andwewilldosohere forsimplicity. Thespatialdataondriversweobtainedareofthreedatatypes.Firsttypeisraster dataoncontinuousvariables,suchasdistancetoroadsandelevation.Thesecondtypeis polygondatathatwereusedasclassvariables.Theseincludesoiltype,community,etc. Thethirdtypeisadatasetcreatedspecificallyforthismodelingexercise.Torepresenthow “marginal”acommunityis,i.e.howisolatedandlackinginresourcesand/orsubsidies,we assignedathree‐classvariablebasedona“marginalization”indextoamapoflocationsof communitycenters.Wethencreatedamapofdistancetoeachclassofcommunity. Allofthesedatawererasterizedandcreatedorresampledtomatchthe30mcell arrayofthedeforestationmap.Thefulllistofpotentialdriverdatatouseinthelocal modelsisreportedinTable5.2.1. 48 Table5.2.1.Driverindependentvariablesusedforspatialmodelsatthelocallevel. Variable label Variablename Datasource Notes Themarginalizationindex isasummaryfor differentiatingcensus townsinthecountry, accordingtotheglobal impactofdeficienciesthat affectthepopulationasa resultoflackofaccessto education,residencein inadequatehousingand lackofassets. Var1 var_dist_hi_marginalized_villages Conabio Var2 var_dist_low_margin_villages Conabio Var3 var_dist_medium_margin_villages Conabio Var4 var_dist_primary_road Conabio Var5 var_dist_railroad Conabio Var6 var_dist_rivers Conabio Var7 var_dist_secondary_road Conabio Var8 var_dist_small_medium_cities Conabio Var9 var_dist_trail Conabio Var10 var_elev_30_30m INEGI Originalresolutionof60 meters Var11 var_slope_30m INEGI Derivedfromthedigital elevationmodel(DEM) Var12 var_pop_dens GlobalRural Urban Mapping Project (GRUMP) Thisvariablewasnot inlcudedintheSierra Ramarurimodel Var13 var_protected_areas_dummy Conabio Presenceorabsenceof Federalprotectedareas Var14 var_dist_non_forest_2006 UMD/Hansen DerivedfromtheinputLC data maps Var15 var_dist_megacities Conabio Regionallyimportant urbancenters,including statecapitals Thisvariablewasnot includedinmodelsfor AATRswithoutamegacity (populationGT75,000) withinthereferenceregion 49 5.2.3.Spatialmodeling WeusedtheIDRISILandChangeModelertool(LCM)forallspatialmodelingatthe locallevel.ThisisdevelopedbyClarkLabsandoneofthestrongermodelingtools availableforland‐usemodeling.Documentationonthetoolandtermsusedinthis descriptioncanbefoundat:http://www.clarklabs.org/products/Land‐Change‐Modeling‐ IDRISI.cfm. Theyearlydeforestationdatafrom2001to2012weregroupedintothreedates andtwotimeperiods:2001‐2005‐2012.Thefirsttimeperiodisusedtocalibrateeach localmodel.Thecalibratedmodelisthenusedtopredictdeforestationoverthefollowing timeperiod.Sincedataonactualobservationsofdeforestationforthelatterperiodexist,a validationofthemodelispossiblebycomparingthemodeledtoactualpatternsof deforestation. Forclassvariables,wecreated“evidencelikelihood”mapsforinputintomodels. Theseassigntheproportionalimportanceofaparticularpolygontothestudyarea’s overalldeforestationrate.Thisisthenusedasapotentialweightingfactorinthemodeling algorithm. TheLCMtoolandmethodsapprovedbytheVCScomparethespatialpatternsof drivervariableswiththoseofhistoricaldeforestation.Statisticalrelationshipsarethen usedtoproduceestimatesofthe“potential”fordeforestationineachmodelcell.These valuesofpotentialcouldbere‐scaledtobevaluesoflikelihood,wheretheirsumequalsa definedtotalrateforthemodeledperiod.Ifthisisdone,thentheoutputwouldbesimilar tothenationalmodelinthatcellsareassignedacontinuousvalue.Thelikelihoodvalues, rangingfromzerotoone,couldbeusedasiftheywereestimatesoftheproportionofthe cellthatisdeforested.Thiscouldbecalleda“continuous”approach. Anotherapproachistoassigncompletedeforestationtothecellswiththehighest valuesofpotential,whichcouldbecalleda“discrete”approach.Thisproducesamap wherecellsareeitherdeforestedornot.Thisassumesthatdeforestationentirelyoccursin thesitesofgreatestpotentialorrisk.Whilethiscouldbearguedarealisticapproach, thereareproblemswithitsassumptions,i.e.thatthereisnofinerscalevariationinrisk duetounobservablereal‐worldfactors.Thus,highrisksitesarefullydeforestedandzero deforestationhappensinallplacesotherthanthestrictlymostthreatenedsites. Regardless,themethodsapprovedbyVCSallrequirethisdiscreteapproach,andthisisthe approachthatweappliedinthelocalmodels.Wedo,however,maintainthecontinuous dataondeforestationpotential,andfurtherstudycouldexplorethedifferencesbetween theresultsofthetwoapproaches. Theapproachofthistool,andofmostothersusedinsuchapplications,isto calibratewithasubsetofthedata,whetherselectingaparticulartimeperiodorspatial subset,thentorunthemodelandvalidateitwithalatertimeperiodorseparatespatial subset.Weusedonetimeperiodinordertoallowtheoptionofvalidationoverthesecond timeperiod.Differentalgorithmsformodelingtherelationshipsbetweendriversand deforestationexist.WeselectedtheMulti‐LayeredPerceptron(MLP)algorithmwithin 50 IDRISI’sLCMbecauseofitsefficiencyandrelativelystrongperformancecomparedtoother algorithms,suchasmultipleregression,etc.(Eastman,2005).TheMLPisaformofa neuralnetworkthatcantakecontinuousandclassvariablesasinputsandisnotdependent onassumptionsofnormaldatadistributions. Weranmultiplemodelsforeachstudyareatogetageneralsenseofperformance andimpactsofdifferenttypeofdataondrivers.Wetriedexcludingdifferentindividual driversorsetsofdrivers.Amongthesevensites,wefoundthatthedataintheformof polygonsalmostalwaysledtoresultswithconspicuousartifacts.Thesewerebothinthe formofsharpchangesinthevaluesofpotentialalongboundariesofpolygons.Also,subtle differencesamongpolygonshadexaggeratedimpactsontheresultingdiscretemapsof predicteddeforestation.Ingeneral,wefoundthatthemodel,especiallythediscrete predictionsoflocationsofdeforestation,werehighlysensitivetotheclassvariables. Becauseofthis,ourfinalmodelsexcludedallpolygon‐typeclassvariablesotherthan protectedareas.Thelatterwaskeptsincethisdatalayeryieldedrealisticimpactson outputs,consideringthetrendsindeforestationratesinprotectedversusnon‐protected landevidencedbythehistoricaldeforestationmaps.Asaresult,themostimportantsocio‐ economicparameterusedasaninputtothefinalmodelsisthedistancetocommunities stratifiedbylevelofmarginalization. Withtheselectionoffinalmodels,wehaveoutputsofestimatesofthepotentialfor deforestation.Tocreatemapsofdiscretelocationsofpredicteddeforestation,werequired asourceforthetotalrateofeachreferencearea.Weusedtheratesderivedfromthe nationalmodelswithineachreferencearea.Therateforthereferenceregionisthen appliedtothevalueofpotentialgeneratedbytheLCMmodel,assigningdeforestationto thehighestpotentialcellsuntilthetotalchangeareaobtainedfromthenationalmodelis reached.Wedidthisforthreedifferentscenarios:thealternative(Poisson)regression modelofthe“business‐as‐usual”ornon‐REDD+scenario(AlternativeBAU),theratefrom thepreferred(negative‐binomial)modelofthenon‐REDD+scenario(PreferredBAU),and theratefromthepreferredmodeloftheREDD+scenario(PreferredBAU).Modelswere runtosimulatedeforestationfrom2012through2022andoutputsweretabulatedfor eachsiteandeachreferencearea. 5.3.Results 5.3.1.Deforestationsince2000 Deforestation,asdefinedbya25%thresholdappliedtotheUMDforestcoverin 2000andyearlytreecoverlosssincethen,hasbeensignificantinmostsites,especiallythe Yucatánsite.Forestcoverin2000andaggregateddeforestationfrom2000to2012are reportedinTable4.2.Annualizedratesarehighlyvariableamongsites.Twosites, ComunidadesForestalesdeOaxacaMixtecaandSierraRaramuri,haveratesnearzero. Twoothersites,ComunidadesForestalesdeOaxacaIstmoandSierraPucclosCheneshave relativelyhighratesthatinareasapproach0.5percentperyear.Inmostcasesejidoshad higherdeforestationratesthantherestofthelocalreferencearea,howeverinSierra 51 Rairumiprotectedareascategoryhadthehighestrate,andinsierraPucclosChenesthe AATRhadthehighestrate. PatternsofhistoricaldeforestationareshowninMapsA‐25throughA‐31inthe Appendix.Inallthefigures,forestcoverisdefinedbya25%thresholdappliedtothe Hansen,etal.(2014)data,anddeforestationisasumofalllossdatawithinthatdefined forestarea. Table5.3.1.Summaryofforestcoverin2000anddeforestationfrom2000to2012 amongAATRs. Totalland area(ha) Forest area, 2000(ha) Forested fraction (2000) Forest area, 2012(ha) Defor Defor 00‐12 (ha/yr) 00‐12 (%/yr) ComunidadesForestalesdeOaxacaIstmo AATRsite 265,382 213,844 Land‐use:Ejidos 784,033 383,469 Land‐use: Comunidades 1,755,724 1,334,791 Land‐use:Protected Areas(federal) na na Comunidades_ForestalesdeOaxacaMixteca AATRsite Land‐use:Ejidos Land‐use: Comunidades Land‐use:Protected Areas(federal) 0.81 206,217 636 0.30% 0.49 362,324 1,762 0.46% 0.76 1,308,087 2,225 0.17% na na na na 471,624 203,659 0.43 203,555 9 0.00% 1,090,966 418,825 0.38 415,866 247 0.06% 2,696,932 1,148,990 0.43 1,145,713 273 0.02% 435,452 67,044 0.15 67,021 2 0.00% 0.93 383,997 210 0.05% 0.45 389,478 1,108 0.28% 0.65 1,237,395 1,349 0.11% 0.30 55,456 12 0.02% 0.62 2,966,421 4,017 0.13% ComunidadesForestalesdeOaxacaSierraNorte AATRsite 417,588 386,522 Land‐use:Ejidos 903,043 402,775 Land‐use: Comunidades 1,932,267 1,253,583 Land‐use:Protected Areas(federal) 187,212 55,597 CuencasInterioresdelaSierradeChiapas Referenceregion 4,897,982 AATRsite 1,058,629 3,014,625 611,574 0.58 606,088 457 0.07% Land‐use:Ejidos 1,975,301 Land‐use: Comunidades 775,639 Land‐use:Protected Areas(federal) 639,767 CutzamalaValledeBravo 1,174,757 0.59 1,157,540 1,435 0.12% 637,955 0.82 630,996 580 0.09% 526,698 0.82 523,044 304 0.06% Referenceregion 3,008,360 1,011,168 0.34 1,007,582 299 0.03% 263,333 117,204 0.45 116,480 60 0.05% 1,219,455 320,089 0.26 319,202 74 0.02% 229,479 111,390 0.49 110,940 38 0.03% 273,411 151,909 0.56 150,921 82 0.05% AATRsite Land‐use:Ejidos Land‐use: Comunidades Land‐use:Protected Areas(federal) 52 SierraPuccLosChenes AATRsite 1,535 1,429 0.93 1,332 8 0.57% Land‐use:Ejidos Land‐use: Comunidades Land‐use:Protected Areas(federal) 7,109 6,480 0.91 6,091 32 0.50% 1 1 0.59 1 0 0.55% 1,608 1,252 0.78 1,241 1 0.08% SierraRaramuri AATRsite 1,883,875 984,941 0.52 984,242 58 0.01% Land‐use:Ejidos Land‐use: Comunidades Land‐use:Protected Areas(federal) 5,933,054 2,783,030 0.47 2,776,926 509 0.02% 1,560,860 871,818 0.56 870,021 150 0.02% 70,206 47,239 0.67 46,935 25 0.05% Note:Forestcoverisdefinedbya25%thresholdappliedtotheHansen,etal(2014)data,and deforestationisasumofalllossdatawithinthatdefinedforestarea.Notethatdeforestationvalues differfromthoseintheglobalanalysissincethehistorical‐deforestationmapswerefilteredforthe localanalysis.Thefilteringremovedanypatchesofforest,non‐forestordeforestationforagiven timeperiodsmallerthanonehectare. 5.3.2.Modeleddeforestationbeyond2012 Weranmultiplemodelswithdifferentcombinationsofdrivervariables.Among these,thegenerallyconsistentresultwasthatthebestperformingmodelsweretheones usingall15inputvariables.Also,wefoundthattheinclusionofdistancetoanon‐forested edgedidnotimprovemodels.Thisparametertendedtoleadtoanover‐fittingof deforestationalongexistingedges,andexclusionofthisparameterdidnotresultinun‐ realisticallyremotedeforestationinthemodeloutputs. Thus,ourfinalmodelsallwerebasedontheMLPmodelsusingallinputsexcept distancetoanon‐forestededge.Finally,MLPrandomlyselects“seedcells”tobeginmodel calibration,andmodeloutputsmayvarymodestlyinarandommannerdependingonthe selectionoftheseseeds.Thus,wereporttwomodeliterationsforeachfinalmodel.We appliedthesensitivityanalysisincludedinIDRISI’sMLPtooltoestimatetherelative importanceofdifferentinputvariables.ImportancevaluesarereportedinTable5.3.2. Inputvariablesmostimportanttothemodelvariedamongthestudyareas. Distancetomega‐citieswashighlyimportantforthestudyareaswheretheyoccurred, CutzamalaValledeBravoandSierraRaramuri.Forregionsthatareexemplaryoffrontier areas,accessibility,i.e.distancetoroads,trailsandrivers,wasmostimportant.Forregions thatareexemplaryofheavily‐fragmentedforest,biophysicalvariables,e.g.slope,were mostimportant.Therewasoverallnoconsistenttrendontheimportanceofthevariable distancetohighly‐marginalizedvillages.Insomeareassitesnearhighly‐marginalized villageshadhigherdeforestationrateswhileinotherareasthetrendwasreversed.Inall butonestudyarea,includingdistancetonon‐forestlandincreasedmodelskill.Only CutzamalaValledeBravo,whichishighlyfragmentedforest,didn’thavethiseffect. 53 Table5.3.2.Relativeimportanceofthedifferentdrivervariablesformodelsrunineachofthelocalstudyareas.SeeTable5.3.1for thelistofvariables. Region Comunida des Forestales deOaxaca (Istmo) Comunida des Forestales deOaxaca (Mixteca) Comunida des Forestales deOaxaca (Sierra Norte) Cuencas Interiores dela Sierrade Chiapas Cutzamala Vallede Bravo var1 var2 var3 var4 Dist.hi margin alized villages Dist. low margin. villages Dist. medium margin. villages Dist primar yroad MLPrun1 12 8 5 10 1 MLPrun2 11 7 13 4 3 MLPrun w/odist.to non‐forest 8 10 5 9 MLPrun1 11 4 13 MLPrun2 13 4 10 Model Run MLPrun without distanceto non‐forest MLPrun1 MLPrun2 var5 var8 Dist. Second ary road Dist. small/ medium cities 13 2 3 9 4 7 11 n/a 6 n/a 0.4935 8 6 1 9 12 5 10 n/a 2 n/a 0.5348 2 11 3 1 6 4 7 12 n/a n/a n/a 0.4931 8 5 14 7 3 2 1 12 10 12 9 n/a 0.7419 11 5 9 7 2 3 1 14 12 14 8 n/a 0.7405 10 n/a n/a 0.6802 12 4 n/a 0.5593 9 1 n/a 0.5958 9 n/a n/a 0.5351 Dist. rivers var9 Dist. trail var10 var11 var12 Elev30 30m Slope 30m Pop density var7 Dist. railroa d var6 var13 var14 var15 Protect ed areas dummy Dist nonfor est: 2006 Dist Megacit ies Skill 11 4 12 8 6 7 13 2 3 1 10 9 14 6 7 2 5 13 11 5 10 1 3 8 14 5 13 2 5 12 8 6 10 4 3 7 MLPrun w/odist.to non‐forest 13 5 4 3 6 7 11 8 12 1 2 10 MLPrun1 13 5 9 6 3 10 12 4 11 2 1 13 7 8 n/a 0.4124 MLPrun2 11 14 7 10 6 13 8 4 12 2 1 9 3 5 n/a 0.4504 7 n/a n/a 0.4006 MLPrun w/odist.to non‐forest 12 4 8 MLPrun1 8 6 MLPrun2 6 5 MLPrun w/odist.to non‐forest 9 7 5 3 13 10 6 9 2 1 11 10 9 12 7 3 4 15 2 13 14 5 11 1 0.6282 15 10 13 8 3 4 14 2 11 12 9 7 1 0.677 11 6 10 8 2 5 13 4 12 14 3 n/a 1 0.71 54 Sierra PuccLos Chenes Sierra Raramuri MLPrun1 9 11 10 4 2 12 8 3 7 14 6 5 MLPrun2 9 2 14 3 11 4 5 5 10 12 7 6 13 1 n/a 0.5661 13 1 n/a 0.5715 10 n/a n/a 0.3906 MLPrun w/odist.to non‐forest 6 2 1 8 5 3 13 7 9 4 12 11 MLPrun1 13 12 5 14 6 8 7 2 9 1 4 n/a 11 10 3 0.6178 MLPrun2 14 12 5 13 9 8 11 2 7 1 4 n/a 10 6 3 0.6115 13 n/a 2 0.6224 MLPrun w/odist.to non‐forest 11 10 6 7 8 9 5 3 12 1 4 n/a Note:Lownumericalvaluesindicatehigherimportancelevels,i.e.thesearerankscores.Themostimportantthreevariablesforeachmodelarehighlighted inyellow. 55 5.4.Predictingdeforestationinthefuture: Thepatternsofpotentialfordeforestationvariedamongthesites,althoughare understandablegiventhedifferingimportanceofdrivervariablesinthedifferentstudyareas.Itis thususefultorefertoTable5.3.2wheninterpretingthepatternsofpotential.Mapsofpotential deforestationor“soft”deforestationtransitionpotentialareshowninthemapsinfigures5.4.1b‐ 5.4.7bbelow.Onealsoseesthatthereismoreinformationinthesemapsthanthehard classificationsshownaboveeachmap(5.4.1a‐5.4.7a),andonecaninterpretthepatternsofrelative potentialbeyondconsideringonlythesitesofstrictlygreatestpotential,asisthecaseinthehard classificationspresentedlaterinthissection. ThehardclassificationoffuturedeforestationforeachAATRwasbasedonthetransition potentialsurfacescreatedcombinedwiththetotalratesforeachreferenceregionaccordingthethe differentscenariosofthenationalmodels.Theseharddeforestationpredictionsareshowninmaps in5.4.1a‐5.4.7a.Thetransitionpotentialchosenforthefinalpredictionwerebasedonthemodels withthehighestskillmeasure(shownintable5.3.2).Theratesoftransitionthatwereappliedto thetransitionpotentialsurfacesareshownbelowinTable5.4.1,aswellasthetotalamountof deforestationpredictedforeachreferenceregionandAATRsite.Thequantityofdeforestation predictedwithineachreferenceregionswasbasedontheinputratesshownbelow,andthe allocationofthedeforestationwasdeterminedbyselectingtheforestcellswiththehighestvalues inthetransitionpotentialsurfacescreatedinLCM.Thismethodfordeforestationallocationhasthe advantageofbeingabletocreatethematicland‐covermapsatthenativeresolutionoftheinput dataset,howeveritalsoassumesthatdeforestingagentknowwhichpixelsareoptimalfor deforestationandthereforeonlythemosthighlyvulnerablepixelswillbetransitioned. RatesfortransitionwerederivedfromboththeobservedhistoricalrateintheLCMmodel andthemodelednationalratesfromthenationalmodel.Thetransitionsshownrepresentthetotal transitionsfrom2012to2022,andinthecaseofthenationalmodels,wepresentresultsforbotha businessasusualscenario(BAU)andREDD+scenarioassuminga$10/tCprice.Thehistoricalrate fromderivedfrom2000‐2012isalsoshowandprojectedlinearlyto2022,however,oneshould notethatthehistoricalratecannotbedirectlycomparedwiththemodeledratesfromthenational modeldueinparttothefilteringprocessthatwasusedontheforestcoveranddeforestationdata fromHansenetal.2013.ThereforethehistoricalrateisconsistentlylowerthantheBAUscenarios. Thehistoricalratesalsodonottakeintoaccountlargernationaltrendwhichwouldhaveaneffect onboththemodeledratesandthefuturerates(seetable4.4.1).Thereforethehistoricalratesare providedascontextonhowmuchdeforestationmightbepredictedwithouttheuseofanexternal model,usingthemostsimplisticapproach.Amoreusefulcomparisonforunderstandingtheeffect ofnationalpolicyonthelocalmodelsisthedifferencebetweenthepreferred(NegativeBinomial) BAUscenarioandthepreferred(NegativeBinomial)REDDscenario.Comparingthetwonegative binomialscenariosshowsthatatthereferenceregionscalethereweredecreasesbetween23– 58%,whichisconsistentwiththenationallevelpredictionsshowninTable4.4.3. AttheAATRsitescaletherangeismuchmorevariationintheamountofdeforestation predictedbetween2012and2022.InthecaseoftwoAATRsites,OaxacaMixtecaandSierra Raramuri,therewasnodeforestationpredictedwithinthesite,regardlessofthescenario.The reasonthatthiswasthecaseisduetothemethodwhichwasusedtoassignchange.Asdescribed 56 above,becauseonlythehighestrankedpixelsaretransitionedandthesesiteshaveverylow deforestationrates(rangingfrom0.23%–2.12%overthe10yearperiod).Similarly,the extremelyhighreductionindeforestationintheOaxacaSierraNorteAATRsitecanalsobe attributedtothemethodofallocation.InthecaseofthesethreeAATRsites,REDD+initiatives wouldhaveaminimaleffectbecausethebaselineratesunderallscenariosareverylow.The remainingfourAATRsitesobservedareductionindeforestationrangingfrom20%‐67%,andin mostcasesthesereductionsweresimilartothoseexperiencewithinthereferenceregions. Thehardclassificationsofpredicteddeforestationindicatedifferentconclusionsamongthe differentstudyareas(Table5.4.1).Forexample,forthreestudyareas,Mixteca,Chiapasand Raramuri,bothBAUmodelspredictedratesofdeforestationofovertwicethehistoricalrates.The remainingsiteshadpredictedratesofwithin50percentofthehistoricalrates.Inalmostallcases, modeledfutureratesfortheBAUscenariosweregreaterthanhistoricalrates.Mostofthepredicted ratesforthestudyareasweresimilarforbothBAUmodels,althoughChiapasandValleBravo modelsdidproducequitedifferenttotalrates. OneresultcommontoallstudyareaswasthattheREDDscenarioyieldedlowerratesthan bothBAUscenarios.Thisdifferencewasuptotwo‐foldforfourofthesevenareas.ValleBravohad thesmallestdifference,andactuallyhadarateforthePoissonBAUscenarioslightlylowerthanthe REDDscenario.Likewise,inmostcasestherateswithintheAATRsiteswerelowerintheREDD scenariothanineitherBAUscenario.InChiapastheREDD‐scenarioratewasclosetothePoisson BAUrateandinValleBravotheREDDratewasslightlyhigherthanthePoissonBAUrate.However, itissafesttocomparetheREDDscenario,basedonthenegative‐binarymodel,withthesimilarly‐ modeledBAUscenario.Forthese,allREDDscenarios’rateswerelowerthanthoseoftheBAU scenarios,thepercentreductionsreportedinthelastcolumninTable5.4.1.Thisisexcludingthe twocaseswithnear‐zeroratesinanyscenariowithintheAATRsite,MixtecaandRaramuri. Figures5.4.1a‐5.4.7.ashowthepatternsofdeforestationfromthehardclassificationsofthe predictions.Inthesefigures,redareasareplaceswheretheBAUmodelpredictsdeforestation whiletheREDDmodeldoesnot;blueareasarewherebothmodelspredictdeforestation. Twositeshadclosetozerohistoricaldeforestationandnodeforestationinmodeled scenarios,MixtecaandRaramuri.OaxacaSierraNorteandSierraChiapasdohavedeforestationthat enterstheAATRsitesinbothscenariosmodeled,howeverthepatternisverydisperse.Atthescale ofpresentationinthisreport,theserelativelysmallpatchesofdeforestationdonotappear. However,explorationofthefull‐resolutiondigitalrasterfilesofthemodeloutputswillshow deforestationinsidethesesites,especiallyinthelowervalleys.Thepatternofmodeled deforestationinCutzmalaValleBravoisratherunique.Allofthedeforestationinthesiteis concentratedinonelargepatch.Thispatternissuspicious,andofallthespatialmodelsinthis study,thisoneappearsthemostsuspectandworthyofre‐assessment. ThemodelsforboththeBAUandREDDscenariosforOaxacaIstmoandPuccpredict relativelyhighratesofdeforestationinsidetheAATRsites.InOaxacaIstmo,thisisalmostentirely inthenorth‐eastofthesite,fromwheretheroadsprovideaccessibilityandtheelevationnois favourable.InPuccthepredicteddeforestationinbothscenariosisgreatestamongallAATRsites. Predicteddeforestationisalsoverywelldistributedthoughoutthesite.Thesesitesstandout 57 amongthegroupbothintermsofBAUdeforestationandthepotentialforreductionsin deforestationunderREDD. Table5.4.1.Predicteddeforestationfrom2012‐2022 Deforestationperscenario2012‐2022 Historical Rate* Alternative (BAU) Preferred (BAU) 12‐24 12‐24 Preferred (REDD) 12‐24 AATR_RT1‐Mixteca Decreasein deforestation between BAUand REDD(%) Referenceregion 0.36% 2.10% 2.12% 0.98% GrossDeforestationperRR,2012‐2022(ha) 6,672 38,779 39,138 18,132 54% ‐ ‐ ‐ ‐ 0% Referenceregion 1.83% 1.94% 1.72% 0.72% GrossDeforestationperRR,2012‐2022(ha) 42,428 44,938 39,787 16,699 58% 226 269 180 3 98% 5.78% 8.50% 7.63% 5.01% GrossDeforestationperRR,2012‐2022(ha) 448,446 659,371 591,949 388,716 34% GrossDeforestationinthesite,2012‐2022(ha) 101,249 140,439 128,215 89,539 30% Referenceregion 1.60% 4.40% 7.83% 3.90% GrossDeforestationperRR,2012‐2022(ha) 47,433 130,466 232,207 115,629 50% GrossDeforestationinthesite,2012‐2022(ha) 5,101 22,180 43,245 19,139 56% 0.23% 0.58% 0.57% 0.38% 996 2,510 2,493 1,628 35% ‐ ‐ ‐ ‐ 0% Referenceregion 0.35% 0.39% 0.52% 0.40% GrossDeforestationperRR,2012‐2022(ha) 3,573 3,963 5,219 4,032 23% GrossDeforestationinthesite,2012‐2022(ha) 2,223 2,441 3,087 2,481 20% Referenceregion 3.13% 4.57% 4.19% 2.10% GrossDeforestationperRR,2012‐2022(ha) 73,122 106,819 97,975 49,128 50% GrossDeforestationinthesite,2012‐2022(ha) 3,779 6,429 5,729 1,912 67% GrossDeforestationinthesite,2012‐2022(ha) AATR_RT2‐SierraNorte GrossDeforestationinthesite,2012‐2022(ha) AATR_RT3‐SierraPucc Referenceregion AATR_RT4‐Chiapas AATR_RT5‐Raramuri Referenceregion GrossDeforestationperRR,2012‐2022(ha) GrossDeforestationinthesite,2012‐2022(ha) AATR_RT6‐ValledeBravo AATR_RT7‐Itsmo Note:Allratesaregrossoverthe10yearperiod,percentwhereindicatedotherwisehectares.Alternative(BAU)isthe rateofdeforestationfromthealternative(negativebinomial)regressionmodelofthe“business‐as‐usual”ornon‐REDD+ scenario;Preferred(BAU)istheratefromthepreferred(negativebinomial)modelofthenon‐REDD+scenario;Preferred (REDD)istheratefromthepreferredmodeloftheREDD+scenario.Notethathistoricaldeforestationvaluesdifferfrom thoseintheglobalanalysissincethehistorical‐deforestationmapswerefilteredforthelocalanalysis.Thefiltering removedanypatchesofforest,non‐forestordeforestationforagiventimeperiodsmallerthanonehectare. 58 Figure5.4.1a.“Hard”predictionofdeforestation,2012‐2022,OaxacaIstmo.AATRsitehighlightedin yellowthatching.Theredareasindicatethepredicteddeforestationthatwouldoccurinabusiness‐as‐usual scenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbonincentive.Areas thatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblackareasfalloutsidethe boundaryofthereferenceregion. Figure5.4.2b.“Soft”transitionpotentialsurface,OaxacaIstmoAATRsiteandreferenceregion.Areas inbluerepresentlowertransitionpotential,orareaslesslikelytotransition,andareasinredindicatehigh transitionpotential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutsidetheboundary ofthereferenceregion. 59 Figure5.4.3a.“Hard”predictionofdeforestation,2012‐2022,OaxacaMixteca.AATRsitehighlightedin yellowthatching.Theredareasindicatethepredicteddeforestationthatwouldoccurinabusiness‐as‐usual scenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbonincentive.Areas thatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblackareasfalloutsidethe boundaryofthereferenceregion. Figure5.4.2b.“Soft”transitionpotentialsurface,OaxacaMixtecaAATRsiteandreferenceregion. Areasinbluerepresentlowertransitionpotential,orareaslesslikelytotransition,andareasinredindicate hightransitionpotential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutsidethe boundaryofthereferenceregion. 60 Figure5.4.4a.“Hard”predictionofdeforestation,2012‐2022,OaxacaSierraNorte.AATRsite highlightedinyellowthatching.Theredareasindicatethepredicteddeforestationthatwouldoccurina business‐as‐usualscenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbon incentive.Areasthatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblack areasfalloutsidetheboundaryofthereferenceregion. Figure5.4.3b.“Soft”transitionpotentialsurface,OaxacaSierraNorteAATRsiteandreferenceregion. Areasinbluerepresentlowertransitionpotential,orareaslesslikelytotransition,andareasinredindicate hightransitionpotential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutsidethe boundaryofthereferenceregion. 61 Figure5.4.5a.“Hard”predictionofdeforestation,2012‐2022,SierraChiapas.AATRsitehighlightedin yellowthatching.Theredareasindicatethepredicteddeforestationthatwouldoccurinabusiness‐as‐usual scenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbonincentive.Areas thatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblackareasfalloutsidethe boundaryofthereferenceregion. Figure5.4.4b.“Soft”transitionpotentialsurface,SierraChiapassiteandreferenceregion.Areasin bluerepresentlowertransitionpotential,orareaslesslikelytotransition,andareasinredindicatehigh transitionpotential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutsidetheboundary ofthereferenceregion. 62 Figure5.4.6a.”Hard”predictionofdeforestation,2012‐2022,CutzmalaValleBravo.AATRsite highlightedinyellowthatching.Theredareasindicatethepredicteddeforestationthatwouldoccurina business‐as‐usualscenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbon incentive.Areasthatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblack areasfalloutsidetheboundaryofthereferenceregion. Figure5.4.5b.“Soft”transitionpotentialsurface,CutzmalaValleBravoAATRsiteandreference region.Areasinbluerepresentlowertransitionpotential,orareaslesslikelytotransition,andareasinred indicatehightransitionpotential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutside theboundaryofthereferenceregion. 63 Figure5.4.7a.”Hard”predictionofdeforestation,2012‐2022,SierraPUCC.AATRhighlightinyellow thatching.Theredareasindicatethepredicteddeforestationthatwouldoccurinabusiness‐as‐usual scenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbonincentive.Areas thatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblackareasfalloutsidethe boundaryofthereferenceregion. Figure5.4.6b.“Soft”transitionpotentialsurface,SierraPUCCsiteandreferenceregion.Areasinblue representlowertransitionpotential,orareaslesslikelytotransition,andareasinredindicatehightransition potential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutsidetheboundaryofthe referenceregion. 64 . Figure5.4.8a.”Hard”predictionofdeforestation,2012‐2022,SierraRaramuri.AATRsitehighlightin yellowthatch.Theredareasindicatethepredicteddeforestationthatwouldoccurinabusiness‐as‐usual scenario,whiletheblueareaisthedeforestationthatwouldoccurwitha$10/tCO2carbonincentive.Areas thatarebluearedeforestedunderbothscenarios.Yellowareasarenon‐forestandblackareasfalloutsidethe boundaryofthereferenceregion. Figure5.4.7b.“Soft”transitionpotentialsurface,SierraRaramuri.AATRsiteandreferenceregion. Areasinbluerepresentlowertransitionpotential,orareaslesslikelytotransition,andareasinredindicate hightransitionpotential,orareasmorelikelytotransition.Blackareasarenon‐forestorfalloutsidethe boundaryofthereferenceregion. 65 5.5.Conclusions Amongthelocalregionsstudied,deforestationisofgreatestconcerninSierraPuccLos Chenes,thenfollowedbyOaxacaIstmo,OaxacaSierraNorteandSierraChiapas.Theremaining regionshadverylowannualdeforestationratesduring2000through2012.SierraPuccLosChenes isoffurthernotebecausewithinthisregionthepercentdeforestationratewasgreatestinsidethe AATRs. Intheregionswithrelativelyhighdeforestationrates,deforestationwasnotaslocally concentratedasisoftenfoundinotherareas.ThedeforestationpatternsinOaxacaIstmo,Oaxaca SierraNorteandSierraChiapasweremostlyinasub‐region,althoughquitespreadthroughoutthe sub‐regionasopposedtoveryconcentratedaroundtownsandmajorroads.InSierraPuccLos Chenes,deforestationwasspreadovermostofthestudyregion. Land‐usedesignationssuchasejidosandcomunidadeswerenotincludedinthefinal models.Howeverwhentestedtheydidhavealargeimpactonthetransitionpotentialsurfaces. Theeffectsofindividualejidosandcomunidadesvariedalotbothbetweensitesandwithinsites.In somecasesejidoswouldreducethelikelihoodofdeforestationandinothercasestheywould greatlyincreasethelikelihood.Thisisanindicationthatindividualland‐useandeconomic decisionsattheejidoorcomunidadeslevelmayhaveastronginfluenceonpatternsofdeforestation. However,furtherresearchwouldberequiredtofullyexploretheserelationshipsandperhaps groupejidoorcomunidadesbasedontheirland‐usepractices. ThesepatternsofhistoricaldeforestationpointMREDDAlliancepartnerstoareas wherefurtherexplorationmaybewarranted.First,were‐notethatthedefinitionofforestandthe mannerinwhichtheforest2000benchmarkwasdefinedissignificant.Muchofthedeforestation weseemayactuallybethere‐clearanceoffallowsand/orplantations,ratherthanclearingof matureforest.Howmuchdeforestationintheseareasisactuallythatofmatureforestcouldbe assessedseveralways.First,onecouldconductavisualqualitativeassessment.Thiscouldbeby superimposingthedeforestationsitesoverthereflectancemosaicfor2000fromUMD.Thiscould bedoneonlineviatheUMD‐Googlesite,orlocallyiffilesaredownloaded. Second,amapofabestestimateofthedistributionofmatureforestin2000couldbe combinedwiththedeforestationdatainaGIS.Thiscouldbeoneofseveralanationalvegetation map,althoughthatmapitselfshouldbeassessedvisuallywiththeLandsatmosaic,sincemany nationalforestcovermapsalsohavemostfallowscombinedintotheforestclass.FortheChiapas andYucutansites,aswellasanotherothersitesofinterestwithinthefivesouthernstatesof Mexico,theConservationInternational(CI)deforestationmapcouldbeused.Thismapreports deforestationforthreedates,including2000(Vacaetal.2005).The2000forestcoverestimate couldbeusedasanexamplebenchmarkmapforthusevaluation,andCIandpartnersattemptedto minimizeanyinclusionoffallowsorplantationsinitsmatureforestclass. Eventhoughourforestdefinitionandbenchmarkmapincludesecondaryforestsand plantations,thepatternsoftree‐coverlossamongthesecovertypesplusforestarerevealing.The findingsmaybeinterpretedasrevealingbothmatureforestclearanceandaformofagricultural intensification,viafallowclearing,thatisoftenassociatedwiththesameland‐usepressuresthat arelinkedtomatureforestclearing. 66 Onthemodels,oneshouldinterpretboththemapofdeforestationpotentialandthehard classificationofpredicteddeforestation.Theformercanbeseenasadistributionoftherelative potentialfordeforestation,nottoodissimilartothecontinuousdeforestationlikelihoodmaps outputfromthenationalanalysis.Thelatterisstrictlythecellsofgreatestpotentialthataddupto theareaofdeforestationpredictedforthestudyregionbythenationalmodel. Ourrecommendationistofollowupthisanalysiswithasecondpassthatattemptsto stratifyhistoricaldeforestationintothatofmatureforestversusothercovertypes.Ifdone,the spatialmodelscouldbere‐runefficiently,especiallysincethemodelingdatasetsareorganizedand readyforadditionaliterations.Ifdone,onecouldconsidercharacterizingdeforestationforspecific landuses,howeverinformationonthosewouldbederivedfromremotesensingproducts,rather theywouldneedtobebasedonexpertopinionandancillarydata. Finally,municipallevelvariables,suchasagriculturalyieldandevidencelikelihoodwere notincludedintheLCMmodelbecausetheyhadanoverlypowerfuleffectonthemodels.These werethepolygon‐levelvariablesthatwenotewereexcludedbecauseofextrememodelsensitivity inthemethodssection.Essentially,allofthepredicteddeforestationwouldlocateintoasingle municipality.However,theremayberealandstrongeffectsofmunicipal‐leveldeforestationatthe sub‐nationallevelinMexico.Furtherexplorationintootherwaystoincorporatethisinformation intothemodelsiswarranted. Foreitherthesemodelsorlateriterationsofmodels,thereareseveraloptionsforvalidation ofthem.Onecouldcalibrateeachmodelwiththedeforestationpatternsonlythrough2005or 2010,forexample,andpredictdeforestationthrough2012.Theresultingdistributionof deforestationwouldthenbecomparedtoobserveddeforestationintheUMDproduct.Thisisthe mostcommonapproachtovalidationrecommendedinVCS‐approvedmethods. ThereareotheraspectsoftheVCS‐approvedmethodsthatwefindproblematicand recommendconsideringaltering.First,theseveralVCSmethodsrecommendusingstatisticthatis calculatedatthecelllevelisfineifthegoalofamodelistopredictdeforestationatthatlevel. However,thatisusuallynotthegoal.Forexample,ifonecellispredictedasdeforestation,andthe actualdeforestationmapdoesnotshowchangeinthatexactcellbutdoesshowchangeina neighbouringcell,thenthestatisticwouldimplythatthemodelhaszeroaccuracy.Thisiswhya “successful”modelaccordingtothisstatisticisonethathasanaccuracyoffivepercentormore. Whileofacademicinteresttomodeldevelopersinterestedinperformanceatthecelllevel,itis difficulttoacceptthisaslogicalforREDD+projectsormostregional‐levelapplications. Forthisstudy,andforallREDD+projects,thequestionofinterestiswhethermodels predictaccuratelydeforestationforcertainmanagementorstudyunits,suchasproposedREDD+ sites,leakagezones,politicaldistricts,etc.Theseunitsarerepresentedbypolygons,andthusthe comparisonshouldbemadeatthepolygonleveloratascalesimilartothepolygonsofinterest. Oncethisisunderstood,thereareseveralstatisticsthatcouldbeusedtovalidationmodelsatthe polygonlevel. Second,VCS‐approvedmethodsrequireproducingthehardclassificationofpredicted deforestation.Thisforcesalldeforestationintostrictlythecellsofhighestpotential.While interesting,thisisunrealisticandaformofover‐fitting.Thebestevidenceofthelackofrealismof 67 thisapproachisthatthehistoricaldatathemselvesindicatethatmuchdeforestationoccursinsites thatareofmoderatedeforestation.Thenationalmodeldoesnotsufferfromthisproblemsinceit reportsacontinuousestimateofsub‐pixeldeforestationordeforestationlikelihood.Thesame couldbedonewiththelocalmodelsthatwehaverunbyskippingthestepofproducingthehard classificationofpredicteddeforestation.Instead,onecantakethemapofdeforestationpotential andrescalethevaluessuchthattheyadduptothedefinedregionalratepredictedbythenational model.Thisessentiallyproducesacontinuoussub‐celldeforestationoutput.Thesecanthenbe summedforanysetofpolygonsandcomparedtothepolygon‐levelratesderivedfromobserved deforestationinordertovalidatemodels. 68 6. Conclusion 6.1.Summaryofreportfindingsanddirectionsforfutureresearch Weconductedaseriesofanalysesthatcombinebothnationalandlocalscalemodelingto aidtheMREDDAlliancepartnersinassessingthevulnerabilityofMexico’sforeststodeforestation. TheseanalysesfocusonthevulnerabilityofforestedlandswithinMexico’sAATRs,accountingfor Mexico’suniqueforestmanagementdynamicsthroughdisaggregatingtheresultsbyland ownershiptypes.Theseanalysesareultimatelymeanttoinformnationalandsubnationalpolicy, pavingthewayforincentivebasedprograms,andultimatelyreduceddeforestationvulnerabilityin Mexico.Ourmethodologyincludesthreedifferentandcomplementaryapproaches:(i)reviewing theexistingliterature,(ii)anationaleconometricanalysisandassociatedscenariosimulation modeling,adaptingtheapproachoftheOpenSourceImpactsofREDD+Incentives(OSIRIS)model and(iii)local‐levelspatialspatialmodelingforeachAATR,conductedusingtheIDRISI‐SelvaLand ChangeModeler(LCM).Keyfindingsfromeachofthesethreepartsofthereportaresummarized below,alongwithsomediscussionofnextstepsforfutureresearch. 6.1.1.Literaturereviewandmeta‐analysis Theliteraturereviewyieldedinsightsbasedonanoverviewofdeforestationaswellasa meta‐analysisonstatisticalstudiesofdriversofdeforestation.Theoverviewsuggeststhat,while deforestationratesinMexicohavedecreased,thetrendpersists,leadingtomorebiodiversityloss, increasedgreenhousegasemissions,andreducedsubsistenceopportunitiesforlocalpopulations. Landtenure(communitylandmanagement,includingejidos),ruralagriculturalsupport,and paymentsforecosystemsservicesaremajorfocusesoftheliterature.Conclusionsontheroleofthe majorlandtenuretypeinMexico,communitylandmanagement,aremixed.Studiesarealsoin disagreementontheroleofsuchruralagriculturalsupportprogramsasPROCAMPO.However moststudiesagreethatpaymentsforecosystemsservicesdecreasedeforestationrisk,withsome caveatsrelatedtoregionaldifferencesandstartingdeforestationrisk.Theserelationshipswere mirroredinthemeta‐analysis:regressionresultsweremixedforejidosandruralincomesupport, whileresultsforPEStendedtobeassociatedwithdecreaseddeforestation.Furthermore,results fromthemeta‐analysisrevealedothervariableswithconsistentrelationshipstodeforestationin Mexico.ThevariablesmostassociatedwithreduceddeforestationinMexicowereassociatedwith protectionmeasures(asproxiedbyprotectedareasandPES),reducedaccessibility(elevation), reducedresourcecompetition(propertysize)andcommunityforestry.Thevariablesmost associatedwithincreaseddeforestationwereassociatedwithareaswhereeconomicreturnsto agriculturearehigher(proximitytoagricultureandagriculturereturns),biophysicalconditionsfor conversionarefavorable(soilsuitability),andcompetitionforresourcesarehigh(population). MostoftheserelationshipswererobustwhenresultsweredisaggregatedtotheYucatanPeninsula. Notablyhowever,atthenationallevel,povertyappearstobelinkedtoincreasesindeforestation, whileintheYucatánPeninsulapovertyisassociatedwithdecreaseddeforestation.Conversely, indigenouspopulationisassociatedwithdecreaseddeforestationatthenationallevel,butis associatedwithhigherdeforestationintheYucatánPeninsula. ThesediscrepanciessupportthewidelyheldviewthatMexico’slandscapeandtherelated driversofdeforestationvarygreatlybyregion.Theinconsistenciesalsosuggestfurtherstudyof 69 thedynamicsandimpactofcertainvariablesondeforestation,includingcommunityforestry,land tenuretype,indigenouspopulations,ruralagriculturalsupport,PES,andpoverty.Thenegative relationshipbetweencommunityforestryanddeforestationisn’tintuitive;itinvitesfurther researchintothesustainabilityandbiodiversityretentionofplantedforestsandtheirimpacton primaryadjacentforestsovertime.Themixedrelationshipsofvariablesassociatedwith communitylandmanagementinviteadeeperunderstandingofthequalitativedifferencesbetween suchlandtenuretypesascommunidadesandejidosathouseholdandcommunitylevels,andhow thesedifferencesimpactlocaltreecover.Theapparentregionaldiscrepancyofindigenous populations’influenceontreecoveratthenationallevelandintheYucatanPeninsulasuggestsa similarqualitativeinvestigation.ThecaveatstoPEShighlightedbytheliteratureandthemixed meta‐analysisresultsforruralsupportprogramshighlighttheneedtounderstandtherelationship betweenincomeanddeforestation,promptingresearchintotheadvantagesoftyingsupportfor ruralincomestothemaintenanceofforestresourcesinhigherriskareas.Theregionaldifferences oftheimpactofpovertyondeforestationsuggestthatperhapsdeforestationcannotbedirectly attributedtopoverty,highlightingtheneedtounderstandthisdynamicwithinconcurrent geographicalortemporaltrendssimultaneouslyaffectingdeforestation. 6.1.2.Nationalmodeling Westatisticallyanalyzeddetailedspatially‐explicitdataonannualforestcoverlossesacross allofMexicoover2000‐2012inrelationtovariationinestimatedgrossagriculturalrevenuesand proxiesforfixedandvariablecostsusingobservablesitecharacteristics.Thegoalwastocapture theinfluenceoftheeconomicnetbenefitsfromconvertinglandfromforesttonon‐forestusesfor thepurposesofcalibratingapolicy‐simulationmodelthatcan,forexample,analyzetheimpactof differentpolicystructurestocreateincentivesforlow‐emissionspracticesforreducing deforestation. Weaggregatedatafrom(Hansen,etal.,2013)tothe900mresolutionandmodel deforestationinrelationtovariationinestimatedgrossagriculturalrevenuesandproxiesforfixed andvariablecostsusingobservablesitecharacteristics.Wequantifytheeffectsofagricultural revenueondeforestationinMexicobasedonhistoricaldata,andthensimulatedeforestationfor alternativeagriculturalrevenuescenariosforourstudyperiod(2001‐2011).Wefurtherproject futuredeforestation(2014‐2023)underabusiness‐as‐usualscenario,basedon2012conditions, andalternativecarbonincentivesforpracticestoreducedeforestation.Theresultsfromthe simulationprovideregionaldeforestationratesasaninputtotheLCMmodelingoftheseven AATRs. Theultimategoalofthisanalysisistohelpinformcost‐effectivepolicyapproachesto reducedeforestation.Tohelpachievethisgoal,thereareseveralfutureextensionsofthis research,includingfurthermodelvalidationandexploringtheimplicationsofadditionalvariables. Thecurrentanalysisfocusedontheroleofeconomicreturnstocropproduction.Additional analyseswouldbeneededtoidentifythespecificroleofdifferentlandownershipcategories,such asdifferenttypesofejidosandothercommunallands,aswellastoexplicitlyidentifytheroleof PROCAMPO,aswellasotheragriculturalandforestrydevelopmentprograms,alongwiththeroleof existingconservationincentives.Withadditionalpotentialdata,wealsomightbeabletoconsider changesbetweenforestsandotherland‐usesbeyondcropproduction.Intermsofthecarbon 70 emissionsreductionscostestimates,apriorityistoextendtheanalysistoincludebelow‐ground carbonstocks,aswellasfurthercompareourestimateswithotherdatasources.Whilethis analysisconsideredonlyforestlosses,animportantextensionwouldbetoconductananalysisof thedatafromUMDandotherdatasourcesonforestgains.Thiswouldprovideamorecomplete pictureoftheforestandcarbondynamicsinMexico. Also,withadditionalcomputationalpower,wecouldimprovethespatialresolutionand furtherrefinetheeconometricestimationtofurthermodelthespatio‐temporalprocessesdriving deforestation.Wecouldexplicitlyestimateandconductsimulationsusingafullfixed‐effectsmodel, aswellasalternativespatialpaneldatamodels,whichhelpcontrolforunobservedvariationsthat onlyexistbetweenneighboringregions(orspatialautocorrelation),usingspatialweightingmatrix. Thesevariationsmaynotbecontrolledforwithanon‐spatialpaneldatamodel.Anotherextension wouldbetoexplicitlyconsiderthedynamicdecision‐processbasedonsurvivalmodeling approaches.Inaddition,wecanimprovehowweconductsimulations,updatingthespatialpattern ofthesurroundinglandscapeateachtimestep. Inadditiontopossibleextensionsfortheunderlyinganalysis,amainpriorityforfuture researchistousetheeconometricestimationtocalibrateaversionoftheOpenSourceImpactsof REDD+Incentives(OSIRIS)modeltoanalyzealternativeREDD+andagriculturalpolicyscenariosin Mexico.Thiswillrequirelinkingtheeconometricmodeltoageneralequilibriummodeltoaccount forpossiblepricefeedbacks,whichcouldproducedeforestationshiftsor“leakage.”Thiswillalso entailbuildinganopen‐sourceinterfacethatcanmakethemodeluser‐friendlyandmorebroadly usable.Thesestepswillenablemorerealisticexaminationofalternativepolicydesignsforcreating economicincentivesforpromotinglow‐emissionsagriculturaldevelopmentandreducing deforestationinMexico. 6.1.3.LocalModeling Theresultsofthedeforestationpredictionmapsprovidesinterestingusefulinformationon areasmostvulnerabletotransitionandtheinclusionofthenationalmodelfordeterminingtherate oftransitionswhichaccountfornationallevelpolicydecisions.ThecombinationoftheLCMand nationalmodelprovidesasignificantimprovementtousingeithermodelinisolation.One weaknessofusingtheLCMinisolationisthattherateofdeforestationiseithersolelybasedonthe historicalratesorbasedonsubjectiveanalystopinion.Includingdeforestationratesderivedfrom thenationalmodelprovidesaquantitativerationalforpickingaparticularratebasedonnational andregionalpolicydecisions.Whileusingnationalmodelinisolationdoesnothavethefinespatial resolutionthatwouldbenecessaryforlocalandsitelevelanalysis. Thecombinationofthetwomodelingapproachescouldbefurtherstrengthenedby applyingthesamefilteringandpre‐processingmethods.Thiswasnotdoneinthisstudyasthetwo modelsweredevelopedinparallelusingtheinformationmostapplicableforeachindividual approach.Thecohesionofthemodelscouldalsobeimprovedbycreatingtransitionpotentialsat thereferenceregionlevelandapplyingtheratesfromthenationalmodelattheAARTscale,which couldhelptomitigatetheunevenallocationofdeforestation,whichleadtonopredicted deforestationwithin2oftheAATRsites. 71 Afinalconsiderationforstrengtheningtheallocationofdeforestationwouldbetousea continuousornon‐discreteallocationofdeforestation.Meaningthatthedeforestationwouldbe allocatedatasub‐pixellevel,inwhichallpixelsavailablefortransitionwouldbeassignedasmall amountofdeforestationbasedontherelativevalueofthatpixel.Thedisadvantagetothismethod isthatmapofpredicteddeforestationwouldnotbeaseasilyvisualized.Howeverthearea estimateswithinAATRsorotherland‐usecategorieswouldbemorelikelytorepresentreality. Thismethodrequiresfurtherresearch,butprovidesanalternativetomitigatingtheuneven allocationofdeforestation,especiallyinsiteswithlowtransitionrates. Westressthatthesemodeloutputscannotbeusedforreferenceemissionslevelsfor projects.Thediscussionsectionindicatesseveraloftheissuesthatarisefromusingthesourcesof dataandmethodsthatwehaveused,andsuggestssomepossiblefollow‐upanalysesthatcouldbe doneasnextstepstofurtherexploretherelativethreatsofdeforestationamongthesesites. However,themodelresultsprovidedheredostronglyindicateseveralfindings.First,somesites haveverylittlehistoricaldeforestationandthreatoverthecomingdecade.Second,thereisa consistenttrendforreductionsindeforestationratesamongallsitesifREDDwereimplementedat a$10carbonpriceandwiththeotherassumptionsofthenationalOSIRISREDDmodel.Third,the studyindicateswhichsiteslikelyhavethehighestmaximumpotentialforemissionsreductions.In termsofREDDpotential,thesetwositeshavethegreatestifonlyconsideringthemaximum emissionsreductionsobtainable,asbothwouldhavehighreferenceemissionslevels.ForOaxaca, anadvantagemaybethattheworktoreduceemissionscanbeconductedinafairlysmallareaand focussedonfewcommunitiesorejidos.InSierraPucc–LosChenes,whilethemaximumreduction possibleisgreater,aREDDprojectwouldneedtoworkovermostofthesite,whichmayprove muchmorecostlyandriskier. 72 7. Workscited Alix‐Garcia,J.,2007.Aspatialanalysisofcommonpropertydeforestation.JournalofEnvironmnetal EconomicsandManagement,Volume53,pp.141‐157. Alix‐Garcia,J.,deJanvry,A.&Sadoulet,E.,2008.TheRoleofDeforestationRiskandCalibrated CompensationinDesigningPaymentsforEnvironmental.EnvironmentandDevelopmentEconomics, 13(3),pp.375‐394. Alix‐Garcia,J.M.,Shapiro,E.N.&Sims,K.R.E.,2012.ForestConservationandSlippage:Evidence fromMexico'sNationalPaymentsforEcosystemServicesProgram.LandEconomics,88(4),pp.613‐ 638. Anderson,J.,2010.TheGravityModel.NBERWorkingPaperSeries,Issue16576. Barsimantov,J.&Kendall,J.,2012.CommunityForestry,CommonProperty,andDeforestationin EightMexicanStates.JournalofEnvironmentandDevelopment,pp.414‐437. Blackman,A.,Albers,H.J.,Murphy,L.C.&Avalos‐Sartorio,B.,2008.LandCoverinaManagedForest Ecosystem:MexicanShadeCoffee.AmericanJournalofAgriculturalEconomics,90(1),pp.216‐231. Bonilla‐Moheno,M.etal.,2013.VegetationChangeandLandTenureinMexico:ACountry‐Wide Analysis.LandUsePolicy,30(1),pp.355‐364.. Bray,D.B.,Ellis,E.A.,Armijo‐Canto,N.&Beck,C.T.,2004.Theinstitutionaldriversofsustainable landscapes:acasestudyofthe.LandUsePolicy,Volume21,pp.333‐346. Bray,D.B.etal.,2003.Mexico’scommunity‐managedforestsasaglobalmodelforsustainable landscapes.ConservationBiology,17(3),pp.672‐677. Busch,C.&Geoghegan,J.,2010.Laborscarcityasanunderlyingcauseoftheincreasingprevalence ofdeforestationduetocattlepasturedevelopmentinthesouthernYucatanregion.Regional EnvironmentalChange,Volume10,pp.191‐203. Busch,J.etal.,2012.Structuringeconomicincentivestoreduceemissionsfromdeforestation withinIndonesia.PNAS. CamaradeDiputados,2008.ConstitucionPoliticadelosEstadosUnidosMexicanos.[Online] Availableat:http://www.diputados.gob.mx/LeyesBiblio/ref/cpeum.htm Carrillo,J.&Mota‐Villanueva,J.,2006.GuíaLegalparaDueñosdeBosquesenMéxico.,s.l.:WWF‐ México. Cartus,O.etal.,2014.ANational,DetailedMapofForestAbovegroundCarbonStocksinMexico. RemoteSensing,Volume6,pp.5559‐5588. Chowdhury,R.,2006.DrivingForcesofTropicalDeforestation:TheRoleofRemoteSensingand SpatialModels.SingaporeJournalofTropicalGeography,27(1),pp.82‐101. Chowdhury,R.,2006.LandscapechangeintheCalakmulBiosphereReserve,Mexico:Modelingthe drivingforcesofsmallholderdeforestationinlandparcels.AppliedGeography,26(2),pp.129‐152. Corbera,E.etal.,2010.RightstoLand,ForestsandCarboninREDD+:InsightsfromMexico,Brazil andCostaRica.Forests,2(1),pp.301‐342. 73 Deininger,K.&Minten,B.,2002.DeterminantsofDeforestationandtheEconomicsofProtection: AnApplicationtoMexico.AmericanJournalofAgriculturalEconomics,84(4),p.943. Deininger,K.W.&Minten,B.,1999.Poverty,Policies,andDeforestation:TheCaseofMexico. EconomicDevelopmentandCulturalChange.EconomicDevelopmentandCulturalChange,47(2),pp. 313‐344. Eastman,J.R.M.E.V.F.a.L.A.S.,2005.Transitionpotentialmodelingforlandcoverchange.In:M. G.a.M.B.e.D.Maguire,ed.GIS,spatialanalysisandmodeling.Redlands,California:ESRIPress,pp. 357‐386. Ellis,E.A.,2010.LandUse/LandCoverChangeDynamicsandDriversinaShallow‐GradeMarginal CoffeeGrwoingREgionofVeracruz,Mexico.AgroforestrySystems,80(1),pp.61‐84. Ellis,E.&Porter‐Bolland,L.,2008.Iscommunity‐basedforestmanagementmoreeffectivethan protectedareas?:Acomparisonoflanduse/landcoverchangeintwoneighboringstudyareasof theCentralYucatanPeninsula,Mexico.Forestecologyandmanagement,256(11),pp.1971‐1983. FAO,2010.GlobalForestResourcesAssessment2010,Rome,Italy:s.n. Ferretti‐Gallon,K.&Busch,J.,2014.WhatDrivesDeforestationandWhatStopsIt?AMeta‐Analysisof SpatiallyExplicitEconometricStudies,WorkingPaper361:CenterforGlobalDevelopment, Washington,DC. FoodandAgricultureOrganizationofTheUnitedNations,2010.GlobalForestResourceAssessment, s.l.:s.n. Geoghegan,J.,Schneider,L.&Vance,C.,2004.TemporalDynamicsandSpatialScales:Modeling DeforestationintheSouthernYucatánPeninsularRegion.GeoJournal,61(4),pp.353‐363. Geoghegan,J.etal.,2001.ModelingtropicaldeforestationinthesouthernYucatánpeninsular region:comparingsurveyandsatellitedata.Agriculture,Ecosystems&Environment,85(1‐3),pp.25‐ 46. Hansen,M.etal.,2013.High‐ResolutionGlobalMapsof21st‐CenturyForestCoverChange.Science, 15November,Volume342,pp.850‐853. Hansen,M.etal.,2013.SupplementaryMaterialsforHigh‐ResolutionGlobalMapsof21st‐Century ForestCoverChange.Science,342(850). Honey‐Roses,J.,Baylis,K.&Ramirez,I.,2011.ASpatiallyExplicitEstimateofAvoidedForestLoss. ConservationBiology,25(5),pp.1032‐1043. IPCC5thAssessmentReport,2014.Chapter11:Agriculture,ForestryandOtherLandUse(AFOLU).. WorkingGroupIII‐ClimateChange2014:MitigationofClimateChange.. Jaimes,P.,2010.ExploringthedrivingforcesbehinddeforestationinthestateofMexico(Mexico) usinggeographicallyweightedregression.AppliedGeography,20(4),pp.576‐591. Klepeis,P.&Vance,C.,2003.NeoliberalPolicyandDeforestationinSoutheasternMexico:An AssessmentofthePROCAMPOProgram.EconomicGeography,79(3),pp.221‐240. Lubowski,R.,2002.Determinantsofland‐usetransitionsintheUnitedStates:econometricanalysisof changesamongthemajorland‐use,Cambridge,MA:s.n. 74 Lubowski,R.,Plantinga,A.&Stavins,R.,2006.Land‐usechangeandcarbonsinks:Econometric estimationofthecarbonsequestrationsupplyfunction.JournalofEnvironmentalEconomicsand Management,pp.135‐152. Munoz‐Pina,C.,2008.PayingforthehydrologicalservicesofMexico'sforests:.Ecological Economics,pp.725‐736. Naidoo,R.&Iwamura,T.,2007.Global‐scalemappingofeconomicbenefitsfromagriculturallands: Implicationsforconservationpriorities.BiologicalConservation,Volume140,p.40–49. NationalGreenhouseGasInventory,2007.Mexico’sThirdNationalCommunicationtotheUNFCCC, s.l.:s.n. Nelson,G.C.&Hellerstein,D.,1997.DoRoadsCauseDeforestation?UsingSatelliteImagesin EconometricAnalysesofLandUse.AmericanJournalofAGriculturalEconomics,79(1),pp.80‐898. Nelson,G.&Geoghegan,J.,2002.Deforestationandlandusechange:sparsedataenvironments. AgriculturalEconomics,Volume27,pp.201‐206. Perez‐Verdin,G.,Kim,Y.S.,Hospodarsky,D.&Tecle,A.,2009.Factorsdrivingdeforestationin common‐poolresourcesinnorthernMexico.JournalofEnvironmentalManagement,90(1),pp.331‐ 340. Petterson,J.,2003.TheWashingtonPost.[Online]Availableat: http://www.washingtonpost.com/wp‐ srv/liveonline/03/special/nation/sp_nation_petterson050603.htm [Accessed11August2014]. Plantinga,A.,1996.TheEffectsofAgriculturalPoliciesonLandUseandEnvironmentalQuality. AmericanJournalofAgriculturalEconomics,78(4),pp.1082‐1091. PROCEDE,2010.REgistroAgrarioNacional:PresidenciaDeLaRepublica,Mexico.[Online] Availableat:http://www.ran.gob.mx/ran/programas_sustantivos/ran_procede.html Rueda,X.,2010.UnderstandingDeforestationintheSouthernYucatan:InsightsfromaSub‐ Regional,MultiTemporalAnalysis.RegionalEnvironmentalChange,10(3),pp.175‐189. SAGARPA,2012.ProgramadeApoyoalIngresoAgropecuarioPROCAMPOParaVivirMejor.[Online] Availableat:http://www.sagarpa.gob.mx/agricultura/Programas/proagro/procampo/Resultados‐ Indicadores/Documents/2012/PROCAMPO_4Inf_trimestral_dic2012.pdf [Accessed2September2014]. SAGARPA,2014.Procampo.[Online] Availableat: http://www.sagarpa.gob.mx/agricultura/Programas/proagro/procampo/Paginas/procampo.aspx [Accessed20April2014]. SAGARPA,n.d.http://www.siap.gob.mx/.[Online] Availableat:http://www.siap.gob.mx/ [Accessed15December2013]. 75 SEDESOL‐CONAPO‐INEGI,2004.DelimitacióndelaszonasmetropolitanasdeMéxico,México,D.F.: s.n. SEMARNAT/INECC,2012.Mexico:QuintaComunicacionNacionalantelaConvencionMarcodelas NacionesUnidassobreelCambioClimatico,D.F.,Mexico.:SecretariadeMedioAmbienteyRecursos Naturales(SEMARNAT);InstitutoNacionaldeEcologiayCambioClimatico(INECC). Stavins,R.&Jaffe,A.,1990.UnintendedImpactsofPublicInvestmentsonPrivateDecisions:The DepletionofForestedWetlands.AmericanEconomicReview,80(337‐352). TurnerII,B.L.etal.,2001.DeforestationinthesouthernYucatanpeninsularregion:anintegrative approach.ForestEcologyandManagement,Volume154,pp.353‐370. UnitedNationsFrameworkConventiononClimateChange,2009.Mexico:Challenges& OpportunitiesforMitigationintheAgriculturalSector,s.l.:s.n.Vaca,R.G.D.C.L.H.J.S.M.,2012. EvidenceofIncipientForestTransitioninSouthernMexico.PLoSONE,7(8). vanderWerf,G.etal.,2009.CO2EmissionsfromForestLoss.NatureGeoscience,Volume2,pp.737‐ 738. Vance,C.&Geoghegan,J.,2002.TemporalandSpatialModellingofTropicaldeforestation:a survivalanalysislinkingsatelliteandhouseholdsurveydata.AgriculturalEconomics,27(3),pp. 317‐332. Vance,C.&Iovanna,R.,2006.AnalyzingSpatialHierarchiesinRemotelySensedData:Insightsfrom aMultilevelModelofTropicalDeforestation.LandUsePolicy,Volume23,pp.226‐236. Wooldridge,J.,2002.Econometricanalysisofcrosssectionandpaneldata.Cambridge,MA:MIT Press. 76 www.alianza‐mredd.org.mx ALIANZAMÉXICOPARALAREDUCCIÓNDE EMISIONESPORDEFORESTACIÓNYDEGRADACIÓN 77 78