fff reflex v1
Transcription
fff reflex v1
ใบรับรองวิทยานิพนธ บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมคอมพิวเตอร) ปริญญา วิศวกรรมคอมพิวเตอร ภาควิชา วิศวกรรมคอมพิวเตอร สาขา เรื่อง การเขารหัสเครือขายเชิงเสนสําหรับปญหาการสื่อสารระหวางตนทางปลายทางแบบหลายคู Linear Network Coding for the Multiple Source-Sink Pair Communication Problem นามผูวิจัย นายมุนนิ ทร เอี่ยมโอภาส ไดพิจารณาเห็นชอบโดย อาจารยที่ปรึกษาวิทยานิพนธหลัก ( ผูชวยศาสตราจารยจิตรทัศน ฝกเจริญผล, Ph.D. ) ( ผูชวยศาสตราจารยชัยพร ใจแกว, Ph.D. ) ( ผูชวยศาสตราจารยภุชงค อุทโยภาศ, Ph.D. ) อาจารยที่ปรึกษาวิทยานิพนธรวม หัวหนาภาควิชา บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตรรับรองแลว ( รองศาสตราจารยกัญจนา ธีระกุล, D.Agr. คณบดีบัณฑิตวิทยาลัย วันที่ เดือน พ.ศ. ) !"!# Linear Network Coding for the Multiple Source-Sink Pair Communication Problem >? @A B@>C DE ! @!F G @@#D"G@G @DE (G@@ ) .G. 2554 C% D#EF 2554: !"!# G@G @DE (G@ @ ) G@@ CG@@ NB OF!: Q#G NN G RNQ!, Ph.D. 28 TDKD%D#UO# $%KFO(&FO VW HDXDHCW $#YZ'&$[#O%VWWD #YX EWOHO !"!# VDX Iwama et al. VW&%YO %D#D( k ( %D#%O& TCOW OD%D# k T %D# &%&%YDXYX(B?N?N>?B V Iwama et al. VW(HDWHWHEWH T O V | ℑ |3k EW U$%]^&W ℑ HDXEWH V k 2|ℑ|2k EWXD OD%D#D( k ( DWHW%D#'YXW& %O&O%&%Y%D#EW Iwama et al. &W& (HDWHWODXO&%D '&$%_Z`D% Dilworth / &# &#H%D# YZ%K& / Munin Eamopas 2011: Linear Network Coding for the Multiple Source-Sink Pair Communication Problem. Master of Engineering (Computer Engineering), Major Field: Computer Engineering, Department of Computer Engineering. Thesis Advisor: Assistant Professor Jittat Fakcharoenphol, Ph.D. 28 pages. Network coding is an another technique to improve efficiency of the network. This thesis has the objectives to study and to improve the network coding, and focus on the multiple source-sink pair communication problem Recently, Iwama et al. present an algorithm for k source-sink pair network coding, when k is some fixed constant. The running time of the algorithm depends on the upper bound on number of vertices performing encoding operations. Iwama et al prove that ℑ 3k encoding vertices are sufficient to obtain the network coding whose operated on field ℑ . In this work, we improve the bound to k 2|ℑ|2k and this tighter bound, in turns, improves the running time of the algorithm proposed by Iwama et al. The techniques used are elementary linear algebra and Dilworthps theorem. / Studentps signature Thesis Advisorps signature / Q#NADQ#G NN G RNQ! @BOF "!Q#G N VN" @BOF@ BVOF"!"V N @WO" X NVNBYZN[Q!@\???B ADBXX >"!@!A@N]F^BAB"!!B @#"!NA?@? X ADNBCG@@ B @?"! XV A?BYAD?@?B?#"!VNV"!V !VN#@@ @A B@>C ]FC@ 2554 (1) " "F UC $ H C '&$KD C KD G&'&$H G& H C '&$'$ C '$ '&$# $ YZ'&$% (1) (2) 1 3 4 16 16 16 17 17 25 26 26 26 27 28 (2) 1 2 3 4 5 B@B"@! B@B "@>?@ a>b? k+1 B@B Q!@ >b? p+1 %D#EWD(&%v 8 9 15 19 22 1 !"#$ %""&"'&( Linear Network Coding for the Multiple Source-Sink Pair Communication Problem ## VNNA@@WV@#!V[B@B@ (Network Coding) [BBOBVN"!@@@WV @#!B@Be@V!e@V\? >?\"!@#!B@B! e@ @@B@ B V@ N@#! @ Y\@@W @#!N!e@@@!Q!@\? NOV @B"[! (?N "?V \) bOVC!?! VBV@#!" AD"! !@#! @W@#!B N! \!!@@!Q!@\? bO V! X DB V@W@#!\?>?\@ @#!B!Y "!@C @#! #"B[NA?@ GOF "@! (multicast) B[B>? BO>? @#!\ >?!! X >? @WBY\?[?B NBY@BNBGOFBY[N@"!!A@V"NA? VNBYVNVBOY !VNV !!# V?! @B#>? k # B @#!WO @#!QNZNW@#!N" ! @W \WO!B# \?W# 2 !"DXO w 2003 Lehman and Lehman VW(HOD%D#VHWH( ODX T !" NP-Hard O w 2007 Wang and Shroff \?#N@WDVB@B# 2 #\? " B?!\@@WV\?B@B#@ 2 # NBYg N Iwama et al. (2008) ?!&%Y O%D#D( k ( %D#%O& TCO W OD%D# k T%D# &%&%YDXYX(B?N? N>?BV Iwama et al. VW(HDWHWHEWH T OV | ℑ | 3k EW U$%]^&W ℑ HDXEWHV k 2|ℑ|2 k EWXD OD%D#D( k ( DWHW%D#'YXW& %O&O%&%Y%D#EW Iwama et al. &W& (HDWHWODXO&%D '&$%_Z`D% Dilworth 3 %C" 1. g"!A!O@ "!!!# 4 %D [OV@#!B@@@WV @#!VVDBB@B\e@N!e@ >?BN!WO YN!WO@"!YjBN[ V EFG!H!" ℑ b B@B@ k+k "! #D l · k >?@YBY@ no!? "!V?!BY[N 1. @B@ p? : !Q!"! Q!#D @Vno!?N #CVno!? 2. @B@ !B : @ a "! b V?XB#Vno!? a + b = b + a "! a · b = b · a 3. @B@ N?@# : @ a, b "! c V?XB#Vno!? a + (b+c) = (a+b) + c "! a·(b·c) = (a·b)·c 4. #D@B@ N : @ a, b "! c V?XB#Vno!? a·(b+c) = (a·b) + (a·c) 5. @B!FD 0 "! !FD#D 1 : @ a V?XVno!? a + 0 = a "! a·1 = a 6. @B QQ : @ a Vno!? @W QQ b Vno!?BV a + b = 0 7. @B QQ#D : @ a Vno!? B\@ 0 @W QQ#D b Vno!?BV a·b = 1 no!?BV\?" no!?NN, no!?Nb (Finite field) @WOno!?B@B@Vno!?@BNN? ?no!? N?@B?!ZBA?B[\? 2 @B@ (0,1) B Binary field 5 !NBYN@Vno!?@VVA?N>? (Scalar) H%D#D' WDWD '&$ (Vector) H%D#D%XW'&$%% V ]w&W $W $ '&$]w&W '&$D W (Vector addition) '&$ (W& (Scalar multiplication) $%X 2 H$ TV WWDX 1. D ^W : %C| x '&$ y O V x + y X(O V 2. D &%D# : x '&$ y OWO V , x + y = y + x 3. D HW&W : VW x y '&$ z OWO V , (x+y)+z = x+(y+z) 4. D&Z : D 0 Ov V %D#%O 0 + x = x x OW|O V 5. DGG : x %D#(O V H$D y %D#%O x + y = 0 6. (&D ^W : %C a O]w&W '&$%C| x O V ax H$(O V EW ax DXD TG& (& (scalar product) 7. (W&D HW&W : a '&$ b OW|O]w&W '&$ x O V VW a(bx) = (ab) x 8. (W&U$HVW#%D : a O]w&W '&$ x, y O V, a(x + y) = ax + ay 9. (W&U$HVW#%D& : a,b O]w&W '&$ x O V, (a+b)x = ax + bx 10.D&Z( 1 (O]w&W : %C x O V , 1x = x 6 O v1, v2, }, vn T OW| O F( G&O( a1v1+a2v2+} + aivi # a1,a2,}, ai T& DG& (linear combination) v G& %C| TG& ! v1, v2, } , vn EWH$W Span(v1, v2, } , vn) "#$% (Ordered Set) v %D#DWKW$O v EWDK ≤ Wv P # ≤ D 3 WDX 1. $% (reflexive) : a ≤ a @ a [@V?XV P 2. @ a@@ (antisymmetric) : W a ≤ b "! b ≤ a "! a = b @ a,b [@V?XV P 3. @ W? (transitive) : W a ≤ b "! b ≤ c "! a ≤ c @ a,b,c [@V?XV P #@V?X a "! b V P NBBB\? (comparable) W a ≤ b b ≤ a \Y\@[NNBBB\@\? (incomparable) "! NBb ? (chain) W@A#Vb @WBB\? "!B (antichain) @AX#Vb BB\@\? "!Bb ?BBB \?B#Vb (Partially Ordered Set) ('"(& #"@#!V"\?[ 3 CV @e@B 1. @#!"# (Unicast) # [@#!B@B!FD" O O @B O \!O # [#" @#!B\?\"!@BV 7 2. @#!"@! (Multicast) [@#!B@B!FD"O ! @B O \!! >?![@BNN !A@ObO#V " \@V@Y@?V 3. @#!"? (Broadcast) [@#!B@B!FD"O !?B@! " !"? Y@Y@?B# V N@! B\!A@@BV "(&%""&"&( @#! !!#[@#!B@BN N! >? " ! N@B!B[## YX V@#!" BY N @#!\!B ?BB[# @ N@\?[ @#!B@"O ON!\? (Network Coding) V@#! @ @#!NW##CV" (Packet) >?ADN#" B" Y@Be@\BV?" \@@W#WO@#!B#CV" \? ADN@W?#@#!V" N!X" "!@#!!Y@@ ?B\? bOVBBYNB[ NYADN@#!B\?N \>?V" V@ "!!N@WW?\?W\?@#!B@B [N@B Ahlswede et al. (2000) \?"?V"@! YN@BV@#! N@BV@ @V\@@W@#!\\? Z@C "! @WV@#!V@BC@OY\? 8 N"? @#!B@V@B@!Q!@#!B>?! N@W@#!\?@BC@OY >?NVn"@B GV"?!FD s a a b a b v t1 b t2 1 B@B"@! OD % s '&$ (& a '&$ b V &% t1 '&$ t2 WF%D# 1 EW' &$#'%# %D#DUO% 1 (& H$EW v (&UO % (& EW v H T &(& a b V %D&$X #HU(& VWDY#(& (&V &%%XEW v HY (&X DEW v U(& a '&$ b T(&OVW EWO(&O a+b (&DX#V &%'& &%U' &(&& T(&%D# VW & t1 U(&%D#VW&#(& b VW O% WD t2 U(&%D#VW(& a VW 9 s a b a b a v a+b a+b b . a+b t1 t2 2 B@B !" (Linear Network Coding) NBV "Y@B@A"!bb# Li et al. (2003) NO\?"?@#!"@! Y@W \?>?V@#!B[Q!@@#!B\? "!"?@B!O@ !>@BV\?" \@VBB?BA?V BVQ!@@#!VBYNB!"#!$%!&"'(# !N@B"?YBBN\V\? (Li et al., 2003) " \@@BY BB?BVB Jaggi et al. (2005) NO\?B @#!"@! CV!B[nA @ >?B@#!V"!@ @!? @BaVV@N \! V" !@ NA@@yBVVQ!@ bOQ!@NBOY@ BYN [ Q!@VAXB\e@?B V A?@WOe@"!N@WW?\? N"!\@[ NV@ >?!V@y 10 @yBVBYNA@Nno!?N? ℑ >?@N[BQ!@N N\@[ N"QQ?no!?BY @y@B B[\\?@Q!@N@B>\@[ ! bO@BQ! N YB "!!VY@?N#CV O(E ⋅ T ⋅ H 2 ) @ E T H N@Y@? Ne@ @@WV@#!"@! #%""&"&( !!#Y[B BVN >?@B!FD!"@! B@B!! " !!#Y" !!N B@#!N B[# !YY Vo 2003 Lehman and Lehman VW"?VZV@#!B\@V@! Y "\@B @#!V#" "!VDBB @B@#!V!FDB[@#! !!#Y \@ N?N# !N[ NP-Hard Wang and Shroff (2007) \?NDVB@BB 2 # !bO[N#A?B[\\? "!"?VDBBY@W \?>?V""!\?CV!B[nA@ " B?!\@@WV\?B@BN# !@ 2 \? @Vo 2008 Iwama et al. \?!O@V B@BN# !@ 2 #CV!B[nA@ @?V N# !Y[B k >?VBY Iwama et al. \?"?N[ V 11 >?B\@NO NBYOY#N# !"!? np!?N?BVV >?N!B?VW?\ &K" Iwama et al. VBYN @"!! WO ! O@ !N k # Iwama et al. "!N >?B\?"?\ @@ V>? v \?@#!@[ x "! y @!? !"#!$"$ v B"? σ (v ) [ "?WO>? v >??V σ (v ) = (a, b ) @@#!BN \Y ax + by @ a "! b #Vno!?N? ℑ BV V >?Y a "! b \@ 0 NB>? v BY[$ "#!$ (coding vertex) σ @WOb >?Y@?B @B @>? v V?X σ (v ) ; &'()*( +,)-./ *# 0(% ,! 1(/*#/-/(-+ !"%D#VWnaNAG"!# !N k # '&$D O>?%XW%D#DO] EW &%' &$ VW$(&%D#H %%D# T( %X '&$& σ 2.*/#3$* σ (O %D# TV VW !"DX Iwama et al. @@ nB\?@B!FD[ 2/1 Restricted Graph bO[nB@B N?@OY@>?V?XB\@V "!!N@B# (indegree,outdegree) [ (2,1) (1,2) \?Y "!@@ "! Y@?@B# (indegree,outdegree) [ (0,1) "!!@B# (indegree, outdegree) [ (1,0) Y@? 12 naNAGV?X@W"![ 2/1 Restricted Graph \?>?@N >?"!@\V ">?B\@ \ YNND >?N>?%D#D( (indegree, outdegree) T (2,1) %X WO# EW v Y# T *#.,!"*- '&$DY# T *#.,!) (&%D# V H$H G&(&%D#VWH#%X '&$H$DEW%D#D( (indegree, outdegree) T (1,2) 4(#$/- (Fork vertex) &%YN V>?Y@? ?Y@BN>? [N@!BVVZN@ @\? Iwama et al. NO\?"? N >? B V Y \@ N [ @ N O >?@B BV >? @ N ? ! "! N@W"! V N>?!?!>?Q!?@#\? ' &DX%VWEW &D#O#D ( & B [ 0 " NY N D@ \@ @B @Y # "!@ >?@B # (indegree,outdegree) [ (1,1) bO"?@@?\? >?N@B!B ?BY @@ V>? v @B σ (v ) = (a, b) !67'8#'9 α @WO !B>?V[ (a + α , b) "!B ! 8#' W α = −a V ?B !67'8" 9 β !BV>?[ (a, b + β ) "! ! 8" W β = −b NBYN"?@WV!BBY"!V@BN>? !?!>?VQ!?@\? >? ?bB>? O"!!BBB>??Q!B!B\N ? >?N[ V@@?BY !"#:;#(&7: L B"?@#!BV@ L @BV? @B@#! >?@@ V si @#![ xi @#!BV@ L 13 k N [Q!@@#! Y@? ∑ (ai xi ) @#!@ L i =1 (a1 , a 2 , a3 ,…, a k ) =!>8$ v 9''8 867 i @WOB\! B i @ Y@?@#![ 0 "!V@#!BN>? v [ 1 B"? ei (v) !=!>8$ v "? E (v) Q!N>? v \!" ! E (v) = [e1 (v), e2 (v),…, ek (v)] @@ >? v @B@#!@[ x "! y @b@ @!? "!@BQ!N>? v \! B i [ ei !Bb\ a NV @#!B\! B i @B!B\ a ⋅ x ⋅ ei V?B!B\b NV@#!B\! B i @B!B\ b ⋅ y ⋅ ei NZW@B>?B@BQ!\!@ 2 >? !B >?Y >?V>?"@#!B@B!B\ a "!N>? B@B!B\ − a N!B\ >?B@#!\! ?@# MNO 1 $:6!"#!$%!&"'867?(#9 # '?(# ':6$ "#!$8@$: : 3k ℑ $ >:6!"#!$%!&"'6A!;$B7867?(#9 # ':6$ "#!$8@$: 9: 3k ℑ $ (D @@ V@B>? 2 >?B@B@#!Y[ u "! v "!@BQ! \!@"![ (a1,b1) (a2,b2) >?>?"\@[Q# Y (descendant) @N>?B Q!N>?"\NWO@b >?B[ eL "!Q!N>?"\NWO@>?B[ eR N"[ 3 DB?BY 14 DB" a1eL ≠ 1 N ?bB>?" ?BYV@#!B >?"!B\ -a1u "!@#!b>?B!B[ (1-a1eL)u @W !BbB>?B\ a1/(1-a1eL) V@#!>?B!B\ a1u \? DBB b1eR ≠ 1 V?BDB" N ?B>?""! !B\ b1/(1-b1eR) B>?B DBA? a1eL = b1eR = 1 NY ?b"! ?B>?" ?BYNV>?"@#!!B\ -(a1u+b1v) "!@#!b"! >?B[ (b1/a1)v (a1/b1)u " >?!Bb\ a1 "!!B\ b1 >?BN@B@#!B!B\ +(a1u+b1v) bON\!!BB>?" N @#!"! Q![ k @ no!? ℑ ?Y@B >?@ ℑ 3k N @B>?#B @\ "!@W ? @B"?\ B"B@B>?\@ ℑ 3k \? !O@ Iwama et al. YN@N!>?"!>?" @N>?Y@?B\@V "!! !BY[\\?@BA? N 2 O = O( N 2C ) C (1) @ N N>? "! C N>? !N!>?"! >?""! N@>? ui "! vi @b"!@>? pi "!@>? wi B@N>? pi @>? xi @>? " qi "!@>? yi "! zi B@b"!N>? qi @!?? CB 3 "!b >? 2 b OUT '&$ IN 15 vi ui xi qi pi wi yi zi 3 "@>?@ OUT = {s1 , … , s k , w1 , … , wC , y1 , … , y C , z1 , … , z C } (2) IN = {t1 , … , t k , u1 , … , u C , v1 , … , vC , x1 , … , xC } (3) NY perfect matching b OUT "! IN "! vertex disjoint path BVnB@N OUT \ IN >?\@Q>?"!>?"B!\ @B#"@ B[\\?\@ >? vertex disjoint path DXO&%Y Fortune et al. (1980) bOV![A@ N " N[b>B! C Z\? W@B vertec disjoint path BV\? !O@N!"! NYV\?\@ bOBY[\?@BA? 2C 2 ℑ N" !>? @B\? ℑ #""!>?@B Y@? C >? !BV!O@@@AOY "! O(N ⋅ (3C + k )!⋅ ℑ ⋅ f ( N , C)) @ f ( N , C ) [!V vertex disjoint path @!O@ Fortune et al. (1980) 2C 2C 16 H'&%Q H 1. AD"!#N]F^B 1.1 @A?O 1.2 ?"!! 2. ADV@#!"!OQ! 2.1 @ 2.2 a >? 2.3 A?>"@\@>bnnnp %Q 1. S'&"&K##$%" "'&&"&( V"? Iwama et al. BNDB?N?N>?@g B?N?B"OY "!#NB?N?B"OYBY>?V!BD "!]F^B Dilworth 17 T&'&%DH T& 1. S'&"&K##$%" "'&&"&( NGOF!O@ Iwama et al. @W!?B?N?N >?!\?>? ?"!!BB>? X >?BB Iwama et al. "?\YNDVDBB>?Y@B@#!@ Y NO N DVDB B OY ! @# ! >? \@ N [ @Y@? @W!?B?N?N>?N ℑ 3k [ k 2 ℑ 2k \? B?N? B"OYBYV!V!O@ Iwama et al. !?! V#N @B@@ @?BY =!>8$ v 9'#(&7: L @WOB @ L @ Y@?@#![ 0 "!V>? v @B@#![ 1 B"? eL (v) @ L \@@W\WO\?N v NVQ!BY[ 0 "!V ei (v) "Q!N >? v \@! t i @ 1 ≤ i ≤ k !=!>8$ v "? E (v) Q!N>? v \!" ! E (v) = [e1 (v), e2 (v),…, ek (v)] !=!>8$ v 9:=#(&7: L Q!N>? v !N ?@ L Nn B"? X L (v) "!V !=!>8$ v 867=#(&7: L Q! I L (v) = E (v) − X L (v) 18 ND@W@[b !?B@@@ ≺ ?BY >? u "! v V?XVb N! u ≺ v Z @@B@ v \WO\?N u N!\? u [AAF v MNO 1 D#$:6$ "#!$: k 2 ℑ k ? C A# >#:6 k C ′ ⊆ C 867:6" k + 1 $!&:6 C ′ ⊆ C 867:6" k ℑ + 1 ]F^BBY[BZ\??N >?N]F^B Dilworth (1950) #?BVBA?a>bNN>bBA?B@W"\?Nb !? ?Y\@@Ba>bB@B?WO k + 1 N @B>b? k ℑ k + 1 V?B \@@B>bB?WO>bB@B?WO k ℑ k + 1 N@Ba>b? k + 1 MNO 2 D#$:6$ "#!$ : k 2 ℑ 2k A# >#:6"$ "#!$ C ′ 867 !=!>8$:& A> C ′ F867" k + 1 $!&F867" k k ℑ +1 (D NB Q![ VC#@ k @ no!? ℑ ?Y Q!N" \?@A? ℑ k " @B>?@ k 2 ℑ 2k "!N @Bb >?B Q!@bO@B?@ k 2 ℑ k "!N ]FaBB 1 "? @Bb C ′ #VBY !NBYN"?VDBB@Ba>b?@ k >b?@ k ℑ k bO @B Q!@"! @W!BV>?!?! \?>?@#!!\@!B"! 19 4 a>b? k+1 B@B Q!@ MNO 3 ?$# C F"$ "#!$867:6 !=!>8$:& A>:6" : k + 1 $!!"#!$%!&"' σ 867?(#$ "#!$ Q $ >:6!"#!$ %!&"' σ ′ 867?(#$ "#!$ Q-1 $ A>"#:;9''89 #$:& σ (D V>?Va>b v0, v1, J, vk @B@#!b[ u0, u1, J, uk @!? ?CB 4 "!@B σ (vi ) = (ai , bi ) N@#!" !>?@NQ!@@#! k NO@W ri BV k u 0 = ∑ ri u i \? ?bB>? v0 NV i =1 k @#!B v0 !B\ Ku0a0 − ∑ ri u i a0 @!BbB>? vi i =1 k \ a0ri 1 ≤ i ≤ k "!Q!@@#!B!B\N>? v1 WO vk + ∑ riuia0 i=1 ?Y@WV@B!BV σ′(v0) = (0,b0) "! σ′(v0 ) = (ai + a0ri ,b0 ) @ 1 ≤ i ≤ k >?BQ!@#!\!@ σ \? DBB[>bYNOY"!?"a>b\@\?N!B >?V>bN@BQ!@#!"! Q!>?XV>b? >?VBBYN@NDNDBB>b@BB 2 >? MNO 4 D#:6%;$ v1,v2 867 - v1 ≺ v2 A> - :6"#:;"#8#'$:&%& u A> - :6 !=!>8$:& 7%& E(v1 ) = E(v2 ) A> 20 - XL(v1 ) ≠ 0 :&7 L %&#(&7:"#8#'" v2 >:6!"#!$%!&"' σ′(v2 ) = (0, B) :&7 σ (v2 ) = ( A, B) A> σ ′(w) = σ (w) 8QR w∈V −{v1 , v2 } 867"#:;9''89 #$:& σ (D !Bb\ α B v1 N\?@#!BN!B\ α ⋅ u "!@#! b>? v2 N@B[ u1 (1 + α ⋅ e L (v1 )) "!@ ?bB>? v2 @#!BN!B\ − A ⋅ u1 (1 + α ⋅ eL (v1 ) ) !V α = A (1 − A ⋅ eL (v1 ) ) N\? α ⋅ u = A ⋅ u1 (1 + α ⋅ e L (v1 ) ) bO!Q!!B"!\\? >?@W α \?@ A ⋅ e L (v1 ) ≠ 1 B[BYW A ⋅ e L (v1 ) = 1 N@N\? X L (v1 ) = E (v1 ) − I L (v1 ) = E (v1 ) − E (v 2 ) ⋅ A ⋅ e L (v1 ) = 0 (4) bO?"\B XL(v1 ) ≠ 0 NBYN"?V!B>?V>bY W Q!>?@BG?B !!B"! YN@B G?B# MNO 5 D#:6%;$ v1,v2 867 - v1 ≺ v2 A> - !=!>8"8@%;:68S8 6' $!&"6'9 # E (v1 ) = δ ⋅ E (v2 ) $!67'8#'($!&8" )"$ v2 A> !=!>8?$:"$ v1 , E ′(v1 ) >':68S8 6' E (v 2 ) '; (D @V L @b v2 I L (v1 ) = 0 !BbB v2 \@@BQ! V?X E (v1 ) #"! ?YN"?#NVDBB I L (v1 ) ≠ 0 @@ V σ (v 2 ) = (a 2 , b2 ) @ND Q!# 21 E (v1 ) = X L (v1 ) + I L (v1 ) = δ ⋅ E (v 2 ) (5) I L (v1 ) = e L (v1 ) ⋅ a 2 ⋅ E (v 2 ) (6) ?Y XL(v1) N @BG?B E(v2) @!BbB>? v2 I L′ (v1 ) N@B?!B\" G?@# XL(v1) Y\@!B"!" V? NO @WA\? E ′(v1 ) @B?!B\" @BG?B E (v2 ) # !BY@W#N\?V?B N]F^BB 5 Y V@W!B"!>?V>b\? >?B Q!@BG?@ W !Y@BG?B#N@B !B V!? \N"?@W!B>bV@#! !@B!B\ @B \? MNO 6 D#:6"$ "#!$ C = {v1,J, vh+1 } 867 - v1 ≺ v2 ≺ J ≺ vh+1 - !=!>8" vh+1 ≠ 0 A> - :6"#:;"#8#'$:&%& u A> - vi ∈ C D#$ !=!>8 E (vi ) ≠ 0 !=!>8" vl+1 δ i δ i ⋅ E (vi ) = E (vh+1 ) - eL(i+1)(vi )ai+1 ≠ 0 $! 1 ≤ i ≤ k :&7?$# L(i) F#(&7:"#8#'"$ vi A> σ (vi ) = (ai , bi ) $!8QR vi ∈ C A> - !"#:;8" "$ vi %& γ (i ,1) y1 + γ (i , 2) y 2 + + γ (i ,i ) yi :&7 γ (i ,i ) ≠ 0 A> γ (i ,1) , , γ ( i ,i ) ∈ ℑ A> ! y1 , y 2 , , y i 8@$: @W $!!"#!$%!&"' σ A>%? R γ 1′ , γ 2′ , γ l′ ' ∈ ℑ >:6!"#!$%!&"' σ ′ 867 σ ′(vi ) = (ai′ , bi′ ) $!8QR vi ∈ C − {v h +1 } A> σ ′(v h +1 ) = (a h′ +1 , bh +1 ) A> σ ′( w) = σ ( w) $! w∈V / C 8678?$#"#:;"#"'8 ti 67'9 (γ 1′ y1 + γ 2′ y2 + + γ l′' yl ) ⋅ ei (vh+1 ) 22 (D N#N]F^BBY?#N>?A (induction) h B@#!j h = 1 ND#>? v1 "! v2 W E (v1 ) ≠ 0 N!B \B B v1 V@#!B! i !B\ γ 1′ y1 ⋅ ei (v2 ) # δ 1 ⋅ E (v1 ) = E (v2 ) ?Y !B>?V B = γ 1′ δ 1 y1 N\?!B@#! @B VDBB E (v1 ) = 0 N!BV E (v1 ) ≠ 0 >?@BB !Bb\ + eL (v1 ) B>? v1 !BBY\@@BQ!V?X@#!B!N Q![ 0 "!\? σ ′(v1 ) = (a1 + e L 2 (v1 ) , b1 ) (7) HY@ ?bB v2 NV Q! v1 !B[ E ′(v1 ) = X L ( 2 ) (v1 ) = −e L ( 2 ) (v1 ) ⋅ a 2 ⋅ E (v 2 ) (8) "!@#!! B i !B\ − a 2 ⋅ u ⋅ ei (v2 ) NY@!BbB v1 \ − e L ( 2) (v1 ) @#!! B i N!B\ + a 2 ⋅ u ⋅ ei (v 2 ) bON! ?b B v2 "!D σ ′′(v1 ) = σ (v1 ) "!\? E (v1 ) ≠ 0 bO@W!B \??B"?\ "! 5 >b? p+1 %D#EWD(&%v 23 YA Y@@ j]F^B[N@ h = p N"?[NDB h = p+1 ND>? vp "! vp+1 V>b? p+1 ?CB 5 W E (v p ) = 0 N!B >?B?BY@#!jV E (v p ) = −e L ( p +1) (v p ) ⋅ a p +1 ⋅ E (v p +1 ) ≠ 0 ?V (γ 1′ y1 + γ 2′ y 2 + + γ ′p' y p ) ⋅ ei (v p +1 ) γ ′p B i B >?!B\ δ p yp [!B"!@#!B! N\?@#!B! B i !B\ @ φ [ BOY !B@#!B B (φ + γ ′p' y p ) ⋅ ei (v p +1 ) (9) y1 , y 2 ,..., y p −1 Y?YN! (γ 1′ y1 + γ 2′ y 2 + + γ ′p'−1 y p −1 − φ ) ⋅ ei (v p +1 ) = (γ 1′ y1 + γ 2′ y 2 + + γ ′p'−1 y p −1 − φ ) ⋅ δ p ⋅ ei (v p ) = (γ 1′′y1 + γ 2′′ y2 + + γ ′p′'−1 y p −1 ) ⋅ ei (v p ) (10) bON@@ jB]F^B[NB h = p "?@W!BBYN>? v1, J, vp-1 \? "!#N]F^BBY[N N]F^BBYV@W ?B>?V>b"!!B @?!B"!@#!B?N ?BY\? MNO 7 D#$:6!"#!$%!&"' σ 867?(#$ "#!$ Q $ A>:6 C " $ "#!$867:6 !=!>8$:& B7:6" '#' k ℑ k + 1 A# >:6! "#!$%!&"' σ ′ 867:6!"#:;9''8$:& σ '?(#$ "#!$#' Q $ (D N @#!@@B\?@BA? ℑ k #" ?YN @Bb C ′ ∈ C k + 1 B"? v1 , v 2 , , v k +1 @ v1 ≺ v 2 ≺ ≺ v k +1 "! V Li [@b>? vi @B#>? vi,vj B@B X L (vi ) ≠ 0 @W!? j >?\?>?]F^BB 4 NDDBB XLj(vi) = 0 V yi [ @#! 24 @>? vi Nb C ′′ ∈ C ′ B @\V]FaBB 6 >? @N C ′′ = {y1 } "!V y1′ = y1 NYbY?BY 1. V j [?BA?B vj \@#V C ′′ W yj TG& y1′ , y 2′ , , y ′j −1 A?bY 2. "?@B y ′′ B[ y1′ , y 2′ ,, y ′j −1 '&$%O y j = γ ( j ,1) y1′ + γ ( j , 2) y ′2 + + γ ( j , j −1) y ′j −1 + y ′′ γ ( j ,1) , γ ( j , 2) , , γ ( j , j −1) ∈ F # vj V C ′′ "!V y ′j = y ′′ ! 1 N @#!!BY[ V k @ @WbY\?@BA? k !NYN @#!BOY k B@B#@ NZb D = C ′′ + {v j } @\" !V]F^BB 6 ?N #"! "!VB eL (i +1) (vi ) ⋅ ai +1 ≠ 0 Y[N X L (i +1) (vi ) = 0 "!NB E (vi ) = E (vi +1 ) V\? e L ( i +1) (vi ) ⋅ ai +1 = 1 @@Bb B ]F^BB 6 "! @W ?B>? vj V>? BY\@[>?"!V@#!B!!B\ (γ 1′ y1 + γ 2′ y 2 + + γ ′j '−1 y j −1 ) ⋅ ei (v j ) (11) bON]F^BB 6 @W!B>? v1, v2 ,J, vj-1 B@B !B"!B@#!B!! ?BY\? N]F^BB 3 "!]F^BB 7 @WAN>?\?Y VDB>b"!a>b"! V]F^BN!WON>?Y@?V MNO 2 $:6!"#!$%!&"'867?(#9 # '?(#$ "#!$: k 2 ℑ 2k $ >:6!"#!$%!&"'6A$B7867?(# ':6$ "#!$';9: k 2 ℑ 2k >? 25 (D @B>?@ k 2 ℑ 2k N]F^BB 2 N\?@B>ba>b bO @\V ]F^BB 3 ]F^BB 7 ?Y@W V@B@B>?\@ k 2 ℑ 2k \? %DH BB?N?N>?VNBY[g N Iwama et al. >?@W!?>? VDBB@B@#! OY @#! B @B?BY\? N?@B @B@#!@Y \Z @ BBY>?N[ @B Q!B@# NDVDBB Q!\@@?N@WB?NN>?B" BY\?B 26 '&' NBYB!?B?N?>?N?@B[ ℑ 3k V! 2k k 2 ℑ >? >?V!BD "!]F^B Dilworth V#N@W# B ? N ? V@ bO B ?N ? B " OY BY V ! O @ V D B@B !!#V!V!?!\? ' VNBYB"B?N?N>?V@Y \@\? A!O@ "!O@V@>?OWO!FD? N@W g!O@V@BC"!V!V!BY\?B 27 '&""" Ahlswede, R., N. Cai, S. R. Li, and R. W. Yeung. 2000. Network information flow. IEEE Transactions on Information Theory Dilworth, R. P. 1950. A Decomposition Theorem for Partially Ordered Sets. Annals of Mathematics. Vol. 51. No 1 Fortune, S., J. Hopcroft, and J. Wyllie. 1980. The directed subgraph homeo-morphism problem. Theoret. Comput. Sci. Iwama, K., H. Nishimura, M. Paterson, R. Raymond, and S. Yamashita. 2008. Polynomial-time construction of linear network coding. ICALP 2008. Jaggi, S., P. Sanders, P. A. Chou, M. Effros, S. Egner, and L. Tolhuizen. 2005. Polynomial time algorithms for multicast network code construction. IEEE Transactions on Information Theory. Vol. 51. No 6 Lehman, A. R. and E. Lehman. 2003. Complexity classification of network information flow problems. In Proc. 41st Annual Allerton Conference on Communication, Control, and Computing. Li, S-Y. R., R. W. Yeung, and N. Cai. 2003. Linear network coding. IEEE Transactions on Information Theory Wang, C.C. and N. B. Sheoff. 2007. Beyond the butterfly a graph-theoretic characterization of the feasibility of network coding with two simple unicast sessions. IEEE International Symposium on Information Theory 28 %KN'&#" ?B WB? GOF "NNA WBNNA Q!?B?/Q! AGOFB\? @A B@>C 16 @F 2528 C\ N?A@ G.. (G@\nne) @!F G \?A>DE GOF CG@@ @!F G (.G. 2551)
Similar documents
4.0.3 spy sweeper
ใด คอมพิวเตอร์ สามารถเก็บได้ เช่น ข้อมูลสํามโนครัวประชากรของประชาชนทัว ประเทศ สามารถเก็บ ข้อมูลรายละเอียดทั"งหมดของประชากรทั"งประเทศหรื อทัว โลกได้ ตั"งแต่ ชื อ-สกุล วันเดือนปี เกิด และ สถานที ...
More informationOnline Group Singing System by Background Subtraction
รู ปที@ 3 แผนภาพแสดงวิธีการทํางานของอัลกอลิธึมทํา Background Subtraction ................................................. 6 รู ปที@ 4 ภาพพื=นหลังที@ไม่มีผใู ้ ช้ .....................................
More information