Faraday Generator
Transcription
Faraday Generator
Team of Austria Markus Kunesch, Julian Ronacher, Angel Usunov, Katharina Wittmann, Bernhard Zatloukal Reporter: Markus Kunesch 14. Faraday Generator Construct a homopolar electric generator. Investigate the electrical properties of the device and find its efficiency. Team Austria powered by: IYPT 2008 – Trogir, Croatia Overview • • • • • • • • • Introduction Experimental Setup Results – Voltage / angular velocity Theory – The Lorentz Force Theory – The electromotive force Comparison Determining the efficiency Eddy currents Conclusion Team of Austria – Problem no. 14 – Faraday Generator 2 Experimental Setup Team of Austria – Problem no. 14 – Faraday Generator 3 Experimental Setup Team of Austria – Problem no. 14 – Faraday Generator 4 Experimental Setup Angular velocity 0-50 (±0.017) rad/s Radius of disk 1.5 , 6, 21 (±0.05) cm Material of disk V Strength of magnets 127, 371, 6, 200 (±0.5) mT Velocity of magnets 0-50 (±0.017) rad/s Shape of magnets Position of contacts Team of Austria – Problem no. 14 – Faraday Generator 5 Experimental Setup Team of Austria – Problem no. 14 – Faraday Generator 6 Results Voltage Voltage [mV] 16 Error: ±0.05 mV 14 12 10 8 6 4 2 0 0 4 Time 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 [s] Team of Austria – Problem no. 14 – Faraday Generator 7 Results angular velocity Angular v [rad/sec] 60 50 Error: ±0.017 rad Voltage [mV] Error: ±0.05 mV 16 14 12 40 10 30 8 20 6 4 10 2 0 Time 0 0 2 5 7 10121517202225273032353740424547505255576062656769 [s] 0 6 12 18 24 30 36 42 48 54 60 66 Team of Austria – Problem no. 14 – Faraday Generator 8 F... Force Theory – Lorentz Force F = q(E + v × B ) q... charge E... electric field v... velocity B... magnetic field E ... electromotive force W... Work W emf = E = q W = ∫ F ⋅ dl 1 E = ∫ F ⋅dl q Team of Austria – Problem no. 14 – Faraday Generator 9 Electromotive Force 1 E = ∫ F ⋅ dl q F = q(E + v × B ) 1 E = ∫ q(E + v × B )⋅ dl = q F... Force q... charge E... electric field v... velocity B... magnetic field E ... electromotive force = ∫ E ⋅ dl + ∫ (v × B )⋅ dl Team of Austria – Problem no. 14 – Faraday Generator 10 Electromotive Force – Stokes Theorem E = ∫ E ⋅ dl + ∫ (v × B )⋅ dl ∂B ∇×E = − ∂t F... Force q... charge E... electric field v... velocity B... magnetic field E ... electromotive force ∇...Nabla operator ∫ E ⋅ dl = ∫ (∇ × E)⋅ dS ∂B = −∫ ⋅ dS ∂t Team of Austria – Problem no. 14 – Faraday Generator 11 Electromotive Force ∂B ⋅ dS + ∫ (v × B )⋅ dl E = −∫ ∂t v... velocity B... magnetic field E ... electromotive force Team of Austria – Problem no. 14 – Faraday Generator 12 Comparison ∂B ⋅ dS + ∫ (v × B )⋅ dl E = −∫ ∂t ∂B E = − ∫ 0 ⋅ dS + ∫ (v × B )⋅ dl ∂t E= ( ) v B × ⋅ dl ∫ V v... velocity B... magnetic field E ... electromotive force Team of Austria – Problem no. 14 – Faraday Generator 13 Calculations ( ) v × B ⋅ dl ∫ E = ∫ (rω × B )⋅ dl E= v... velocity B... magnetic field E ... electromotive force ω...angular velocity r...radius r2 r E = 2 ⋅ ωB 2 r1 2 Team of Austria – Problem no. 14 – Faraday Generator 14 Calculations r2 r2 E = ωB 2 r1 1 2 2 E = ωB r − (r − l ) 2 1 E = ωBl (2r − l ) 2 ( ) Team of Austria – Problem no. 14 – Faraday Generator v... velocity B... magnetic field E ... electromotive force ω...angular velocity r...radius l...length of magnet l 15 Comparison Voltage [mV] 6 Average error: 6.9% 5 4 3 2 1 0 26 28 30 32 34 36 38 40 Angular v [rad/s] Team of Austria – Problem no. 14 – Faraday Generator 16 Further proof ∂B ⋅ dS + ∫ (v × B )⋅ dl E = −∫ ∂t v... velocity B... magnetic field E ... electromotive force V Team of Austria – Problem no. 14 – Faraday Generator 17 Determining the efficiency Eout η= Ein Ein = Ekin 2 V P(out ) = R η ...efficiency E out/in ...Energy out(in)put V...Voltage R...Resistance Team of Austria – Problem no. 14 – Faraday Generator 18 Kinetic Energy η ...efficiency E ...Energy out(in)put Mω 2 R 2 M...mass Ekin = ω...angular velocity 2 R...Resistance Ekin lost −1 P(in ) = = 0.292 ± 0.076 Js t P(in ) = 0.000075 ± 0,0000002489% P (out ) out/in Team of Austria – Problem no. 14 – Faraday Generator 19 Eddy currents Team of Austria – Problem no. 14 – Faraday Generator 20 Conclusion • Full mathematical analysis of the problem • The Voltage output is best calculated using: ∂B E = −∫ ⋅ dS + ∫ (v × B )⋅ dl ∂t • Voltage is obtained when: – Only the disk is rotating – Magnet and disk are rotating – Only the external circuit is rotating – The external circuit and the magnet are rotating Team of Austria – Problem no. 14 – Faraday Generator 21 Conclusion • A description of the phenomenon is possible in every inertial frame – even in the rotating system! • The efficiency is extremely poor – especially when using an inhomogene magnetic field. • More Voltage or Current is obtained with: – Stronger magnets – Higher angular velocity – Smaller internal resistance – A bigger magnet – A bigger disk Team of Austria – Problem no. 14 – Faraday Generator 22 References • Am. J. Phys. Vol. 46 (7), July 1978, M.J. Crooks, D.B. Litvin, P.W.Matthews, R. Macaulay, J. Shaw • Am. J. Phys. Vol. 55 (7), July 1987, R. D. Eagleton • Taschenbuch der Physik, Stöcker H., Wissenschaftlicher Verlag Harri Deutsch, Frankfurt am Main, 2005 • Mathematik für Physiker, Dr. rer. Nat. Helmut Fischer, Dr. rer. Nat. Helmut Kaul, B. G. Teubner, 2005 • Homopolar generator, http://www.physics.brown.edu/physics/demopages/Demo/em/demo/ 5k1080.htm • The homopolar generator, http://farside.ph.utexas.edu/teaching/plasma/lectures/node70.html • http://sciencelinks.jp/jeast/article/200123/000020012301A0808251.php • Homopolar Disk Generator, http://jnaudin.free.fr/html/farhom.htm Team of Austria – Problem no. 14 – Faraday Generator 23 Ad1 Team of Austria – Problem no. 14 – Faraday Generator 24 Ad2 Superconductor ∂B ⋅ dS + ∫ (v × B )⋅ dl E = −∫ ∂t Team of Austria – Problem no. 14 – Faraday Generator 25 Ad3 Experimental Setup 21±0.05 cm Team of Austria – Problem no. 14 – Faraday Generator 26 Ad4 Voltage - EMF Voltage [mV] 6 5 4 3 2 1 0 26 28 Average error: 6,9% 30 32 34 36 Vmeassured V = Rinternal 1− Rinternal + R1 Team of Austria – Problem no. 14 – Faraday Generator 38 40 Angular v [rad/s] R...10 to 15 Ω 27
Similar documents
REVISTE COTATE ISI (româneşti, militare, învăţământ, informatică
¾ JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Bimonthly ISSN: 1454-4164 NATL INST OPTOELECTRONICS, 1 ATOMISTILOR ST, PO BOX MG-5, BUCHAREST-MAGURELE, ROMANIA, 76900 http://inoe.inoe.ro/Journa...
More information