Calcolo dello Stato di Equilibrio
Transcription
Calcolo dello Stato di Equilibrio
CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Calcolo dello Stato di Equilibrio Calcolo dello Stato di Equilibrio In un processo di combustione adiabatico ed isobaro in cui la combustione raggiunge uno stato di equilibrio chimico valgono le seguenti relazioni: Vincolo stechiometrico (ponderale): Conservazione delle moli atomiche: Condizione termodinamica di equilibrio chimico (max entropia == min entalpia libera di Gibbs) Conservazione dell’energia in termini di entalpia assoluta della miscela Saturday, July 11, 15 TURBOGETTO SEMPLICE CICLO A PUNTO FISSO CICLO IN VOLO Ese. 5: Turbo-Getto TURBOFAN TURBO COMBUSTORE ANALISI A PUNTO FISSO: COMBUSTORE EQ. ENERGIA (L̇s = 0, M ≪ 1): ∆h0 ≃ ∆h = ∆Q ηb := Q̇/(ṁf Qf ) RENDIMENTO DI COMBUSTIONE T4 : TEMPERATURA ALL’INGRESSO DELLA TURBINA (TIT) ηpb := p4 /p3 RENDIMENTO PNEUMATICO DEL COMBUSTORE f := ṁf /ṁa RAPPORTO COMBUSTIBILE/ARIA, O DI DILUIZIONE ṁa h3 + ṁf hf + Q̇ = (ṁa + ṁf )h4 f ≪ 1 ⇒ ṁa h3 + Q̇ = ṁa h4 ⇒ ṁa cp (T4 − T3 ) = Q̇ Q̇ = ηb ṁf Qf cp T3 cp (T4 − T3 ) = f = ηb Qf ηb Qf p4 = ηpb p3 Saturday, July 11, 15 ! T4 −1 T3 " CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Processi chimicamente reversibili: congelati, in equilibrio Processi chimicamente reversibili: congelati, in equilibrio Irreversible processes dS = dSext + dSint 1 p dQext dSext = dU + dV = ̸ 0 = Non adiabatic system T T T 1 ! µj dNj > 0 Chemically reactive system dSint = − T j Internal (chemical) reversible processes dSint ! 1 ! =− µi dNi = 0 µj dNj = 0 ⇔ dG = T j i Chemically frozen processes (air intake, compressor, turbine, nozzle) ∀j : dNj = 0 ⇒ Nj = const ⇒ ĉ(v,p) (T, Yi ) = const if gas is calorically perfect Processes in chemical equilibrium (combustion chamber) ! µj dNj = 0 ⇒ M in [G (p, T, Nj )] ⇒ Nj = Nj∗ (p, T ) dG = j Saturday, July 11, 15 p,T given CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Conservazione delle moli atomiche: stechiometria Conservazione delle moli atomiche: stechiometria Supponiamo che la miscela sia formata da 8 specie chimiche: 1 H2 2 O2 3 H 4 O 5 OH 6 H2 O 7 HO2 8 H2 O2 La conservazione delle moli atomiche si esprime con 2 equazioni algebriche NH = 2n1 + n3 + n5 + 2n6 + n7 + 2n8 NO = 2n2 + n4 + n5 + n6 + 2n7 + 2n8 che in forma matriciale si scrive Adn = ! 2 0 0 2 1 0 0 1 1 1 2 1 1 2 ⎧ dn1 ⎪ ⎪ ⎪ ⎪ dn2 ⎪ ⎪ ⎪ dn3 ⎪ "⎪ ⎨ dn4 2 dn5 2 ⎪ ⎪ ⎪ ⎪ dn6 ⎪ ⎪ ⎪ ⎪ dn7 ⎪ ⎩ dn8 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ =0 questo sistema lineare di 2 equazioni in 8 incognite ammette ∞6 = 8 − 2 soluzioni. Saturday, July 11, 15 CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Conservazione delle moli atomiche: stechiometria Conservazione delle moli atomiche: stechiometria Le ∞6 soluzioni si trovano partizionando la matrice A ed il vettore dn: ⎧ dn3 ⎪ ⎪ ⎪ dn4 ⎪ ! "# $ ! "⎪ ⎨ 2 0 dn1 1 0 1 2 1 2 dn5 =− 0 2 dn2 dn6 0 1 1 1 2 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ dn7 dn8 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ per ogni scelta delle componenti dnj , j = 3, 8 si troverà una ed una sola coppia dnj , j = 1, 2 che soddisfa il sistema di due equazioni come si possono scegliere le dnj , j = 3, 8 in modo di essere sicuri di averle prese tutte ? si utilizza una base di vettori linearmente indipendenti ovvero: # $ , 1 se i = k i k = 1,8 - 2 = 6 ek = ek = 0 se i ̸= k Con la scelta degli ek effettuata utilizzando vettori linearmente indipendenti consente di scrivere le ∞6 soluzioni in questo modo: ⎧# $ ! "−1 ! dn1 2 0 1 ⎪ ⎨ =− dn2 0 2 0 ⎪ ⎩ k k = 1, 6 dn2+k = ek dξ Saturday, July 11, 15 0 1 1 1 2 1 1 2 2 2 " dn2+k CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Conservazione delle moli atomiche: stechiometria Conservazione delle moli atomiche: stechiometria Tornando ad una rappresentazione per componenti si ottiene ⎫ 1 1 dn1 = − 2 dξ ⎬ 1 1 dn2 = 0 ⇒ H2 = H dξ assume valori compresi ≥ 0 ⎭ 2 dn = dξ 1 3 che indica che ogni ∞1 soluzioni rappresenta una reazione chimica virtuale E qundi in una miscela con 8 specie formata da 2 elementi atomici si possono avere al più 8-2=6 reazioni chimiche linearmente indipendenti in forma compatta si può scrivere dni = $ k νi dξ k k Le 6 direzioni cosı̀ trovate individuano un sottospazio in R8 che in algebra lineare viene chiamato: spazio nullo della matrice A ( NullSpace[A] in Mathematica ). Lo spazio nullo è il sottospazio in cui, a partire da una composizione iniziale della miscela assegnata, le reazioni chimiche trasformano la miscela in modo che il numero di atomi iniziali si conservi Saturday, July 11, 15 1 1 dξ − 2 dt dn1 dt = dn2 dt =0 dn3 dt = dξ1 dt dξ 1 1 1 1 := r (p, T, Nj ) = rf − rb dt CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Condizione termodinamica di equilibrio chimico Condizione termodinamica di equilibrio chimico Reversible (zero entropy) process dG = ! µj dNj = 0 j Stoichiometric constraint dNj = ! νjk dξk k ⇓ dG = ! µj j ! νjk dξk k = ! k dξk ! µj νjk = 0 j ⇓ ∀dξ k ̸= 0, ⎧ ⎨! ⎩ j ⎫N reactions ⎬ µj νjk = 0 ⎭ k=1 ⇓ Free Enthalpy (Gibbs) is stationary ⇔ Chemical equilibrium Saturday, July 11, 15 CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Legge di Azione di Massa Legge di Azione di Massa Equilibrium Condition ! k µj (T, pj ) νj = 0 k = 1,Nreactions j µj (T, pj ) := H̃j (T ) − T S̃j (T, pi ) Ŝj (T, pj ) := 0 S̃j (T ) pj − ℜLog( ) pref " # $ % p pj j 0 0 0 µj (T, pj ) := H̃j (T ) − T Ŝj (T ) − ℜLog( ) = H̃j (T ) − T S̃j (T ) + ℜT Log( ) = µj (T ) pref pref " # # & ' ! ! !" 0 pj pj k 0 k k µj (T ) νj = − ℜT Log( ) νj = 0 ⇒ ) νj µj (T ) + ℜT Log( pref pref j j j ' ! ! k !& pj pj νjk 0 k ) = −ℜT Log( ) H̃j (T ) − T S̃j (T ) νj = −ℜT νj Log( pref pref j j j ⎧ ⎫ ⎧ ⎫ ⎨ ⎨! ' ⎬ 1 !& pj νjk ⎬ 0 k Exp − H̃j (T ) − T S̃j (T ) νj Log( ) = Exp ⎩ ℜT ⎭ ⎭ ⎩ pref j j . /0 1 Kp (T ) k Kp (T ) = Exp ⎧ ⎨ ⎩ Log 2 j Law of Mass Action ⎫ k⎬ 2 pj ν k pj νj ( ) ) j ( = ⎭ pref pref j k Kp (T ) = 2 j Saturday, July 11, 15 pj νjk ) ( pref CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Calcolo dello Stato di Equilibrio Calcolo dello Stato di Equilibrio j Ns + 2 incognite : composizione della miscela (NProducts , j = 1, Ns ), Numero totale di moli (Ntot ), e temperatura adiabatica di fiamma (TProducts ) Ns + 2 equazioni: Conservazione delle moli atomiche: i N = Ns ! i j aj NReac = j=1 Ns ! i j i = Ne aj NProducts j=1 Condizione termodinamica di equilibrio chimico (Legge di azione di massa) k Kp (T ) = " j pj νjk ) ( pref Nj pj = p Ntot k = Ns − Ne Numero totale di moli Ntot = Ns ! Nj j=1 Conservazione dell’energia in termini di entalpia assoluta della miscela j j H̃(TReac , NReac ) = H̃(TProducts , NProducts ) Saturday, July 11, 15 CAMERA DI COMBUSTIONE DESCRIZIONE DELLA CHIMICA Calcolo dello Stato di Equilibrio CAMERA DI CO Risultati del Calcolo dello Stato di Equilibrio Risultati del Calcolo dello Stato di Equilibrio MISCELA H2 /O2 1.000 3400 0.500 3300 0.100 3200 0.050 3100 0.010 3000 0.005 2900 0.001 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Figure: Variazione Temperatura adiabatica di equilibrio con rapporto di equivalenza (p=1 e 10 atm); T reagenti = 300K. Saturday, July 11, 15 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Figure: Variazione Composizione di equilibrio con rapporto di equivalenza (p=1 e 10 atm); T reagenti = 300K. TURBOGETTO SEMPLICE CICLO A PUNTO FISSO CICLO IN VOLO Ese. 5: Turbo-Getto TURBOFAN TURBO FLUSSO ALLA RAYLEIGH FLUSSO ALLA RAYLEIGH Variazione di T0 e variazione di Mach in CC # $ ! " 2 2 2M 1 + δM (γ + 1) T0 [M, γ] = # $2 ⋆ 2 T0 cal 1 + γM ! T04 T03 % T0 T⋆ 0 & [M4 , γ] # $# $2 2 2 1 + δ M4 M4 + M3 M4 γ cal [M3 , M4 , γ] = % & = # $# $2 2 2 T0 1 + δ M3 M3 + M3 M4 γ cal [M3 , γ] T⋆ " 0 cal Variazione di p0 e variazione di Mach in CC ! ! Saturday, July 11, 15 p04 p03 " p0 p⋆0 " [M, γ] = cal % [M3 , M4 , γ] = % cal p0 p⋆ 0 1 # $ γ 2 γ−1 (γ + 1) 1−γ 2 1 + δM 1 + γM2 & [M4 , γ] &cal = p0 [M3 , γ] p⋆ 0 cal ! γ 1+ 1+ 2 " γ−1 δ M3 δ M24 1 + γ M24 1 + γ M23 TURBOGETTO SEMPLICE CICLO A PUNTO FISSO CICLO IN VOLO Ese. 5: Turbo-Getto TURBOFAN TURBO RENDIMENTO PNEUMATICO RENDIMENTO PNEUMATICO Rapporto T04 /T03 in funzione della portata di combustibile f ! " f ηb Qf cp (T4 − T3 ) cp T03 T04 T04 f= ≈ −1 ⇒ =1+ ηb Qf ηb Qf T03 T03 cp T03 Numero di Mach in ingresso M3 della CC per assegnati Mach in uscita M4 e rapporto T04 /T03 & # $ %$ %2 2 2 2 + M4 (γ − 1) M4 + M3 M4 γ T04 == $ Solve %$ %2 , M3 2 2 T03 2 + M3 (γ − 1) M3 + M3 M γ 4 Perdite di pressione p0 in funzione della variazione di Mach tra ingresso ed uscita della camera ηpb := Saturday, July 11, 15 ! p04 p03 " [M3 , M4 , γ] = cal ! γ 2 " γ−1 1 + δ M3 1 + δ M42 1 + γ M42 1 + γ M23 Micro Combustion Chamber M3 Test Bench - DLR In Space Propulsion ISP-1 FP7-SPACE-CALL-1 M3 chamber characterizes ignition behaviour, with varying injection geometries and flow conditions Mass flows are determined through Coriolis flow meters Sonic nozzles set the correct mass flows Sonic nozzles provide an effective separation between feed lines and injector head, thus minimising low frequency combustion instabilities Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 13 Model Equations for Unsteady CSTR with Energy Deposition d( ρV ) = m! fuel [t,p] + m! oxid [t,p] − m! nozzle [p,T,Y] dt d( ρhV ) dp ! = m! fuel [t,p]h fuel + m! oxid [t,p]hoxid − m! nozzle [p,T,Y]h[T,Y] + V + q[t]V dt dt dY j Wj Yj 1 dρ = m! fuel [t,p]Y j + m! oxid [t,p]Y j − m! nozzle [p,T,Y]Y j + ω j [p,T,Y] − [p,T,Y] dt ρ[p,T,Y]V ρ[p,T,Y] ρ[p,T,Y] dt 1 d ρ 1 dp 1 dR 1 dT p = ρ RT → = − − ρ dt p dt R dt T dt R dR R dY j R = ∑ U Yj → =∑ U dt j Wj j W j dt p 0,fuel (t)Afuel p ! ! m fuel [t,p] = mred [ , ηfuel , γ fuel ] dY j dh dT p (t) R fuel T0,fuel 0,fuel h = ∑ h jY → = ∑ hj + Cp → C p = ∑ C j, pY j dt dt dt j j j p 0,oxid (t)Aoxid p 1 t −t 0 ! ! m [t,p] = m [ , η , γ ] oxid red oxid oxid Erg ε [Joule] − 2 σ t2 Erg p (t) R oxid T0,oxid 0,oxid ! q(t)[ ] = e 10[ ] Centimeter 3Second 4πσ r3σ t Joule p p Aoxid m! nozzle [p,T,Y] = m! red [ a , ηoxid , γ (T ,Y )] p R(Y)T ( ) m! red [Πp , η, γ ] = 2γ 1 γ − 1 Πp ISP-1 - September 22-23, 2011 Saturday, July 11, 15 γ ⎛ ⎞ γ −1 η ⎜ 1 − Πp ⎟ ⎝ ⎠ γ ⎛ ⎞ γ −1 1 − η ⎜ 1 − Πp ⎟ ⎝ ⎠ ⎛ 2 ⎞ with Πp ≥ ⎜ ⎝ γ + 1 ⎟⎠ γ γ −1 Model Equations for Unsteady CSTR with Energy Deposition dY j ( ) R[Y ]T m! fuel [t,p]Y j + m! oxid [t,p]Y j − m! nozzleY j dt pV W jω j [ p,T ,Y ] Yj dρ + − [ p,T ,Y ] j = 1 , Ns ρ[ p,T ,Y ] ρ[ p,T ,Y ] dt = ⎛ h − h[T ,Y ] ⎞ ⎛ h − h[T ,Y ] ⎞ - m! nozzle [ p,T ,Y ] + m! fuel [t,p] ⎜ fuel + 1⎟ + m! oxid [t,p] ⎜ oxid + 1⎟ ⎝ ⎠ ⎝ ⎠ R[Y ]T R[Y ]T dT = dt (Cp-R) p V dY j RU dY j h [T ] -T ∑ j dt ∑ W dt ! q[t] j j j − + (Cp[T ,Y ]-R[Y ]) ρ[ p,T ,Y ] (Cp[T ,Y ]-R[Y ]) dp p γ [T ,Y ] ⎛ γ [T ,Y ] − 1 = dt R[Y ]T ⎜⎝ γ [T ,Y ] + γ [T ,Y ]R[Y ]T V RU dY j ⎞ ∑ h j [T ] dt + T ∑ W dt ⎟⎠ j j j dY j ⎛ ⎛ h fuel − h[T ,Y ] ⎞ ⎛ hoxid − h[T ,Y ] ⎞⎞ ! ! ! m [ p,T ,Y ] + m [t,p] + 1 + m [t,p] + 1 fuel oxid ⎜⎝ Cp[T ,Y ] T ⎟⎠ ⎜⎝ Cp[T ,Y ] T ⎟⎠ ⎟⎠ ⎜⎝ nozzle 1 t −t 0 Erg ε [Joule] − 2 ! q[t][ ]= e Centimeter 3Second 4πσ r3σ t R R[Y ] = ∑ U Y j j Wj ρ[ p,T ,Y ] = σ t2 m! fuel [t,p] = m! red [ Joule 10[ ] Erg m! oxid [t,p] = m! red [ p p 0,fuel (t) p p 0,oxid (t) m! nozzle [p,T,Y] = m! red [ p R[Y ]T h[T ,Y ] = ∑ h j [T ]Y j j dρ 1 = m! fuel [t, p] + m! oxid [t, p] − m! nozzle [ p,T ,Y ] dt V ( ) m! red [Πp , η, γ ] = ISP-1 - September 22-23, 2011 Saturday, July 11, 15 , ηfuel , γ fuel ] p 0,fuel [t]Afuel , ηoxid , γ oxid ] R fuel T0,fuel p 0,oxid [t]Aoxid R oxid T0,oxid pa p Aoxid , ηoxid , γ (T ,Y )] p R[Y]T 2γ 1 γ − 1 Πp γ ⎛ ⎞ γ −1 η ⎜ 1 − Πp ⎟ ⎝ ⎠ γ ⎛ ⎞ 1 − η ⎜ 1 − Πp γ −1 ⎟ ⎝ ⎠ γ ⎛ 2 ⎞ γ −1 with Πp ≥ ⎜ ⎝ γ + 1 ⎟⎠ Data p0fuel = 2.5 patm; pfuel = p0fuel; Tfuel = 290 Kelvin; T0fuel = Tfuel; ηfuel = 0.8; p0oxid = 5.0 patm; poxid = p0oxid; Toxid = 290 Kelvin; T0oxid = Toxid; ηoxid = 0.8; radiusoxid = 0.11 Centimeter; Aoxid = Pi radiusoxid^2; innerradiusfuel = 0.24 Centimeter; outerradiusfuel = 0.30 Centimeter; Afuel = Pi (outerradiusfuel^2 - innerradiusfuel^2); Lchamber = 16 Centimeter; radiuschamber = 3 Centimeter; Volume = Lchamber radiuschamber; pa = 1 patm; p0a = pa; Ta = 290 Kelvin; T0a = Ta; radiusnozzle = 1 Centimeter; Anozzle = Pi radiusnozzle^2; ηnozzle = 0.8; T0 = 300. Kelvin; p0 = 1. patm; ISP-1 - September 22-23, 2011 Saturday, July 11, 15 Inputs 5¥106 4¥106 3¥106 2¥106 1¥106 0.0 0.5 1.0 1.5 Total Pressures at Fuel & Oxygen Manifold in time 3.0 ¥109 2.5 ¥109 sigr = 1.0*10^-3 Meter; sigt = 2.5*10^-4 Second; eps = minimumEnergy ; c1 = eps/(4 Pi sigr*sigr*sigr*sigt); qdotSI = c1*Exp[-.5*((time - t0)/sigt)^2]; SItoCGS = 10; qdot = qdotSI * SItoCGS 2.0 ¥109 1.5 ¥109 1.0 ¥109 5.0 ¥108 0 0.0 0.5 1.0 1.5 Energy deposition in time ISP-1 - September 22-23, 2011 Saturday, July 11, 15 Outputs: Methane/Oxygen System Sensitivity of peak pressure on energy deposition time 2500 2000 1500 1000 500 1.8 ¥106 0.10 0.15 0.20 0.25 0.30 Temperature in time 1.6 ¥106 1.4 ¥106 1.8 ¥106 1.6 ¥106 1.2 ¥106 1.4 ¥106 1.0 ¥106 1.2 ¥106 1.0 ¥106 0.10 0.5 1.0 Peak pressure vs time lag 0.15 0.20 0.25 0.30 Pressure in time • • • • • • short energy deposition time allow little reactants to fill the chamber -> lower total reactant mass yields a lower pressure peak during ignition short/long energy deposition time: ignition develop three/four stages first stage[heating]: isobaric T growth due to energy addition second stage[explosion] (kinetics >> convection): T increases due to fast kinetics, and P follows for inertial confinement because the kinetics is faster than convection third stage[relaxation] (kinetics ~ convection): T&P decrease because the higher P produces a larger outflow fourth stage[near-equilibrium] (kinetics << convection): T&P increase following the arrival of reactants which are instantly burned ISP-1 - September 22-23, 2011 Saturday, July 11, 15 1.5 Outputs: Methane/Oxygen System Sensitivity of peak pressure on minimum energy deposition 1.63 ¥106 3500 1.62 ¥106 3000 2500 1.61 ¥106 2000 1.60 ¥106 1500 1000 1.59 ¥106 500 0.15 0.16 0.17 0.18 0.19 0.20 Temperature in time 1.58 ¥106 0.02 1.5 ¥106 • • • • 1.4 ¥106 1.3 ¥106 1.2 ¥106 0.08 0.10 0.12 0.14 too low power levels cannot ignite the mixtures higher power levels shorten the ignition times less reactants can fill the chamber peak pressure exhibits a max at ~50mJ 1.1 ¥106 0.16 0.17 0.18 0.19 0.20 Pressure in time ISP-1 - September 22-23, 2011 Saturday, July 11, 15 0.06 Peak pressure vs minimum energy deposition 1.6 ¥106 0.15 0.04 Objectives of ISP-1 WP 2.5 In Space Propulsion ISP-1 FP7-SPACE-CALL-1 To check the ability of the physical models and prediction tools to reproduce: • ignition model • flame propagation - kernel formation - flame kernel evolution in a turbulent flow • anchoring process A dedicated experiment has been carried out at the M3 Test Bench (DLR Lampoldhausen) and has been used as a reference test case to benchmark different numerical approaches Ignition is triggered using a laser beam to control the ignition point location and energy release, in a well controlled gas/gas injection configuration This way a clean experimental configuration is obtained, allowing to check the ability of the numerical tools to reproduce flame propagation and anchoring Two test campaigns have been carried out: • • ambient pressure low pressure 20 Saturday, July 11, 15 Space Propulsion Conference – Bordeaux – May 7-10, 2012 Ignition Sequence In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Test case computed : 21.07.2011-7 An accurate selection of the ignition sequence is essential to avoid undesired peaks in the chamber pressure. attached) Accumulated unburnt masses prior to ignition determine the pressure rise during ignition and its overpressure. τ r is the mean residence time in the chamber τi M τ r := m! e (ambient, M is the mass of gas inside the chamber m! e is the massflow rate of gases exhausted though the nozzle is the ignition delay The ignition overpressure (if all the quantity of propellant in the chamber prior to ignition is burnt instantaneously) can be found from: pmax m! iτ i = pc m! τ r m! iτ i is the mass of reactants in the chamber over the time m! τ r is the mass of propellants in the chamber at any time τi Decreasing the ignition delay decreases the overpressure during ignition. These findings helped the selection of an ignition sequence of the test campaign able to minimize the overpressure. - 117 -57 0 ignition Time line ms Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 21 Micro Combustion Chamber M3 Experiment - DLR In Space Propulsion ISP-1 FP7-SPACE-CALL-1 HOT FLOW LASER-PULSE ON QUISCENT NITROGEN COLD FLOW Gaseous Oxygen, before ignition Schlieren images of laser pulse (150 mJ); Expanding blast wave; Sequence sampled from multiple laser shots therefore only an estimate for the timing can be given; Time step ~ 50 µs Coaxial Methane, before ignition, with Oxygen Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 Schlieren image sequence of laser ignition of CH4/O2 gas/gas 22 Main experimental findings from DLR In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Ambient pressure ignition CC pressure rising due to heating Excitation caused by heat release results in spontaneous emission of OH radicals at ca. 305-309 nm Spontaneous emission in the UV-range is recorded by an intensified highspeed CCD video camera Complete chamber is visualised with a resolution of 512 x 256 pixels A band-pass filter (310 nm ± 5 nm) selects only OH-radical emission Flame lift-off length inversely proportional to chamber pressure Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 23 Motivations for CFD Analyses In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Quantitative analysis of ignition can be done by a "Well-Stirred Reactor" (WSR) or "Continuously Stirred Tank Reactor" (CSTR) models Both models assume infinitely fast and efficient mixing in the chamber These models allow to readily carry out all the relevant sensitivity analyses Why then making the costly and tedious CFD analyses ? Because of the critical role of multi-dimensional phenomena !! Blast Wave Recirculation Fuel Blockage Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 URANS & LES Modelling Options In Space Propulsion ISP-1 FP7-SPACE-CALL-1 URANS MODELLING OPTIONS (CFD++ METACOMP Tech) • Flow geometry 2D Axi-symmetric • real gas, compressible equations • Ideal gas equation of state • multi-species with frozen/active detailed chemical kinetics • viscous flow • transient integration (time accurate, point implicit) • second order space discretization • turbulent modelling on: RANS two-eqns k-epsilon • Ignition by « hot spot » LES MODELLING OPTIONS (CEDRE ONERA) • Flow geometry 3D • real gas, compressible equations • Ideal gas equation of state • multi-species with a frozen/active global reaction mechanism • viscous flow • transient integration (time accurate) • second order space discretization • Smagorinski model for LES subgrid closure • Ignition by « hot spot » ICs: • quiescent Nitrogen fills the chamber at T=290 K, and p=101325 Pa ICs: • quiescent Nitrogen fills the chamber at T=290 K, and p=101325 Pa BCs: • Walls are assumed isothermal, post tip and nozzle are considered adiabatic • Inflow: constant total pressure and temperature for both fuel and oxygen • Outflow: subsonic flow with prescribed ambient pressure BCs: • Walls are assumed adiabatic • Inflow: ramped total pressure and temperature for both fuel and oxygen • Outflow: subsonic flow with prescribed ambient pressure MESH: ~ 230K cells; block-structured MESH: ~ 10M cells; unstructured CHEMICAL KINETIC MECHANISM FOR CH4/O2+INERT NITROGEN: • GRI3.0 (53 species) with Nitrogen kinetics removed involves 36 species • Mechanism simplification (in-house tools) trimmed the mechanism to 15 species CHEMICAL KINETIC MECHANISM FOR CH4/O2+INERT NITROGEN: • Global kinetics (Jones and Lindstedt, adapted by Kim) Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 25 CFD Analyses Inflow BCs for LES In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Test case computed : 21.07.2011-7 (ambient, • Step 1 : O2 cold flow attached) – Not the whole injector is meshed : to account for pressure losses in Ox tube, boundary condition pressure is Pi=9 bars – To account for pressure increase vs time, relaxation is activated on the boundary condition – From t=-117ms to -57ms • Step 2 : CH4 cold flow – Along with stabilized O2 cold flow – From t=-57ms to t=0ms The filling process of the chamber by the cold reactants needs to be accurately replicated because the total mass of reactants at time T0 sets the total level of energy available for combustion during the ignition start-up Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 26 How we trim the kinetics Detailed (NS36) vs Simplified (NS15) In Space Propulsion ISP-1 FP7-SPACE-CALL-1 GRI-Mech 3.0 (53 spcs and 325 reversible rcns) is used as reference mechanism All N-containing species are removed, except N2, together with all N-related reactions, to yield a detailed mechanism with 36 spcs and 219 reversible rcns Mechanism simplification done by in-house tools A spatially homogeneous, iso-choric, adiabatic, forced ignition with gaussian energy deposition drives the simplification procedure The selected simplified mechanism involves 15 species and 57 reactions The fastest time scale of the simplified mechanism is two orders of magnitude larger than the one of the detailed (stiffnes reduction) Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 27 Test Case#07 Ambient Pressure In Space Propulsion ISP-1 Chamber pressure time evolution FP7-SPACE-CALL-1 URANS & LES return similar chamber pressure histories Both feature a larger-than-experiment chamber pressure peak value and growth rate Chamber pressure peak exceeds fuel manifold pressure -> fuel blockage Late pressure evolution exhibits oscillations tuned with chamber acoustics NB: Chamber pressure growth rate proceeds as: O ⇣ 1 dp p dt ⌘ ⇡O 1 dT T dt +O 1 dR R dt +O ⇣ ṁF ⇢V + ṁOx ⇢V Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 ṁOut ⇢V ⌘ Test Case#07 Ambient Pressure Massflows In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Test Case Values Methane = 0.60 g/s Oxygen = 2.26 g/s Methane and oxygen inflows not fixed at their choked values when the pressure drop falls below the critical value Hot products outflow eventually fixed by sonic condition at nozzle Nearly constant massflows at late times suggest a nearly steady condition URANS & LES fluxes are quite in agreement one to another (despite the slight different treatment of the inflow BCs) Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 Test Case#07 Ambient Pressure Propellants Mach Number In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Oxygen stream choked during cold flow injection (M>1) Oxygen stream subsonic when chamber pressure peaks (M<1) Methane stream never choked (M<1); tends to zero near chamber pressure peak Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 Test Case#07 Ambient Pressure Blust Wave following Laser Pulse • • • In Space Propulsion ISP-1 FP7-SPACE-CALL-1 A blast wave propagates spherically outward, reflects at the injector plate and at the wall, head-on collides at the symmetry axis, propagates downstream towards the nozzle only to be reflected backward towards the injector plate The under-expanded oxygen jet gradually fades away when the flow becomes subsonic Note the formation of transient traveling pressure peaks at the symmetry axis Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 Test Case#07 Ambient Pressure Kernel initiation and flame propagation • The flame kernel propagates downstream near the symmetry axis as convected by the fast central jet • The flame kernel propagates across the recirculation region away from the axis • When methane is not entering the chamber anymore, the cold oxygen jet is not consumed and leaves the chamber unburned-> the temperature field at the axis becomes very cold • Temperature HCO A significant amount of hot products is still present in the chamber ready to reignite the propellants when the chamber pressure is lowered by the mass loss through the choked nozzle Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Test Case#07 Ambient Pressure Fuel blockage In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Methane • • • Methane blockage is clearly monitored by this movie Note the role of the cavity as an accumulator of the blocked methane The blockage process exhibits fluctuations coupled with the chamber acoustics Oxygen Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 In Space Propulsion ISP-1 LES Temperature iso-contour at T=2000K FP7-SPACE-CALL-1 Overall LES dynamics consistent with URANS predictions LES captures the non symmetric flow evolution triggered by the off-axis laser pulse location LES captures 3-D jet instabilities LES captures a “breathing” evolution of the flame front as also noticed in experiments LES captures the development of cold unreacted pockets Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 URANS OH vs Experimental OH* In Space Propulsion ISP-1 FP7-SPACE-CALL-1 The comparison shows that the computed OH field is qualitatively exhibiting a similar shape and shape evolution, moves downstream at about the right speed, and posses a brighter core region surrounded by a darker halo, where locally the light intensity is proportional to the amount of OH Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 LES Temperature vs Experimental OH* In Space Propulsion ISP-1 FP7-SPACE-CALL-1 The shape and position of the OH∗ emission field is quite similar to the one of the temperature and reactive zones in the LES computation OH* emission field accounts for the integral contribution along the chamber cross-section, whereas both LES and URANS results refer to cut-planes passing through the chamber axis Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 In Space Propulsion ISP-1 Flame Index at “stationary” conditions FP7-SPACE-CALL-1 FI = ∇yFuel ⋅ ∇yOxid FI > 0 ⇒ fuel and oxidizer fluxes aim at same direction (pre-mixed nature) FI < 0 ⇒ fuel and oxidizer fluxes aim at opposite directions (non pre-mixed) Pre-heat, pre-mixed flame region (Solid lines are HCO mass fraction lines) Positive T Index Premixed mixture Fuel and oxidizer from both jet and recirculation region mix here llift −off ∼ v jetτ ign v jet ∼ llift −off ∼ p0 − pCC p0 − pCC τ ign Negative T Index Non-premixed mixture Co-axial Jet Mixing layer (nearly) stationary flame is: lifted, and pre-mixed Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 Conclusions In Space Propulsion ISP-1 FP7-SPACE-CALL-1 Lesson learned • URANS axi-symmetric calculations can be effectively able to provide a rather detailed picture of the ignition events, albeit there remains a number of issues for the quantitative accuracy of the URANS predictions • 2D axi-symmetric URANS and 3-D LES provide predictions in satisfactory agreement, even when rather different kinetic mechanisms have been adopted • CFD analyses offered interesting contributions in the understanding of a number of critical ignition phenomena, which are difficult to appreciate on the basis of experimental diagnostics alone Main problem found • Larger-than-experiment chamber pressure peak value and growth rate Possible causes (given that the pressure peak is mostly linked to the mass of CH4 and O2 in the chamber at T0) • neglecting nitrogen filling the propellant manifold at T0 (volume of pipe(s) between the probe and the boundary conditions) realizes "too much" reactants in the chamber • supersonic oxygen jet spreads too quickly by numerical dissipation and causes an excess of oxidant in the chamber at T0 Space Propulsion Conference – Bordeaux – May 7-10, 2012 Saturday, July 11, 15 Acknowledgements In Space Propulsion ISP-1 FP7-SPACE-CALL-1 This work has been carried out with the support of: FP7 EU Grant no.218849, titled "In-Space Propulsion-1" (ISP-1) M.Valorani acknowledges the support of: CASPUR Competitive HPC Grant 2009 The URANS flow solver is: CFD++ by Metacomp Technologies, Inc. The LES flow solver is: CEDRE, an ONERA in-house software package 39 Saturday, July 11, 15 Space Propulsion Conference – Bordeaux – May 7-10, 2012