PARIS Inalco du 4 au 8 juillet 2016 - jep-taln-recital 2016
Transcription
PARIS Inalco du 4 au 8 juillet 2016 - jep-taln-recital 2016
Journées d’Études sur la Parole Traitement Automatique des Langues Naturelles Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues PARIS Inalco du 4 au 8 juillet 2016 Organisé par les laboratoires franciliens https://jep-taln2016.limsi.fr Conférenciers invités: Christian Chiarcos (Goethe-Universität, Frankfurt.) Mark Liberman (University of Pennsylvania, Philadelphia) Coordinateurs comités d'organisation Nicolas Audibert et Sophie Rosset (JEP) Laurence Danlos & Thierry Hamon (TALN) Damien Nouvel & Ilaine Wang (RECITAL) Philippe Boula de Mareuil, Sarra El Ayari & Cyril Grouin (Ateliers) ©2016 Association Francophone pour la Communication Parlée (AFCP) et Association pour le Traitement Automatique des Langues (ATALA) Actes de la conférence conjointe JEP-TALN-RECITAL 2016, volume 4 : Invités Table des matières Corpora and Linguistic Linked Open Data : Motivations, Applications, Limitations Christian Chiarcos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 From Human Language Technology to Human Language Science Mark Liberman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 i Actes de la conférence conjointe JEP-TALN-RECITAL 2016, volume 4 : Invités Corpora and Linguistic Linked Open Data: Motivations, Applications, Limitations Christian Chiarcos1 (1) Applied Computational Linguistics Johann Wolfgang Goethe Universität Frankfurt a. M. 60054 Frankfurt am Main, Germany [email protected] Linguistic Linked Open Data (LLOD) is a technology and a movement in several disciplines working with language resources, including Natural Language Processing, general linguistics, computational lexicography and the localization industry. This talk describes basic principles of Linguistic Linked Open Data and their application to linguistically annotated corpora, it summarizes the current status of the Linguistic Linked Open Data cloud and gives an overview over selected LLOD vocabularies and their uses. A resource constitutes Linguistic Linked Open Data if it is published in accordance with the following principles : 1. 2. 3. 4. The dataset is relevant for linguistic research or NLP algorithms. The elements in the dataset should be uniquely identified by means of a URI. The URI should resolve, so users can access more information using web browsers. Resolving an LLOD resource should return results using web standards such as Resource Description Framework (RDF). 5. Links to other resources should be included to help users discover new resources and provide semantics. 6. Data should be openly licensed using licenses such as the Creative Commons licenses. Criterion (1) defines linguistic(ally relevant) data, criteria (2-5) define linked data, criterion (6) defines open data, their combination thus yields Linguistic Linked Open Data. The primary benefits of LLOD have been identified as : — — — — — — — Representation : Linked graphs are a more flexible representation format for linguistic data Interoperability : Common RDF models can easily be integrated Federation : Data from multiple sources can trivially be combined Ecosystem : Tools for RDF and linked data are widely available under open source licenses Expressivity : Existing vocabularies help express linguistic resources. Semantics : Common links express what you mean. Dynamicity : Web data can be continuously improved. I specifically focus on linguistically annotated corpora and discuss the potential of Linked Data in relation to four standing problems in the field : 1. representing highly interlinked corpora (e.g., multi-layer corpora, annotated parallel corpora), 1 Actes de la conférence conjointe JEP-TALN-RECITAL 2016, volume 4 : Invités 2. integrating corpora with lexical resources available from the web of data, 3. facilitating annotation interoperability using terminology resources available from the web of data, and 4. streamlining data manipulation processes in a modular and domain-independent fashion. These aspects will be discussed in relation to two selected resources from both general linguistics and Natural Language Processing. Finally, the talk will discuss some of the challenges that LLOD is still facing in both areas. Références C HIARCOS C., H ELLMANN S. & N ORDHOFF S. (2011). Towards a linguistic linked open data cloud : The open linguistics working group. Traitement automatique des langues, 52(3), 245–275. C HIARCOS C., M C C RAE J., C IMIANO P. & F ELLBAUM C. (2013). Towards open data for linguistics : Lexical linked data. In A. O LTRAMARI , P. VOSSEN , L. Q IN & E. H OVY, Eds., New Trends of Research in Ontologies and Lexical Resources. Heidelberg : Springer. C HIARCOS C. & S UKHAREVA M. (2015). OLiA - ontologies of linguistic annotation. Semantic Web Journal, 6, 379–386. C HIARCOS C. et al. (2016a). CoNLL-RDF. beyond the tsv. unpublished manuscript. C HIARCOS C. et al. (2016b). Leight-weight conceptual interoperability for the universal dependencies. unpublished manuscript. M C C RAE J. P., C HIARCOS C., B OND F., C IMIANO P., D ECLERCK T., DE M ELO G., G RACIA J., H ELLMANN S., K LIMEK B., M ORAN S., O SENOVA P., PAREJA -L ORA A. & P OOL J. (2016). The open linguistics working group : Developing the linguistic linked open data cloud. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2016), p. 2435–2441, Portorož, Slovenia : European Language Resources Association (ELRA). S UKHAREVA M. & C HIARCOS C. (2016). Combining ontologies and neural networks for analyzing historical language varieties. a case study in middle low german. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2016), p. 1471–1480, Portorož, Slovenia : European Language Resources Association (ELRA). 2 Actes de la conférence conjointe JEP-TALN-RECITAL 2016, volume 4 : Invités From Human Language Technology to Human Language Science Mark Liberman1 (1) Linguistic Data Consortium. University of Pennsylvania 3600 Market Street, Suite 810, Philadelphia, PA, 19104 USA [email protected] A BSTRACT Thirty years ago, in order to get past roadblocks in Machine Translation and Automatic Speech Recognition, DARPA invented a new way to organize and manage technological R&D : a “common task” is defined by a formal quantitative evaluation metric and a body of shared training data, and researchers join an open competition to compare approaches. Over the past three decades, this method has produced steadily improving technologies, with many practical applications now possible. And Moore’s law has created a sort of digital shadow universe, which increasingly mirrors the real world in flows and stores of bits, while the same improvements in digital hardware and software make it increasingly easy to pull content out of the these rivers and oceans of information. It’s natural to be excited about these technologies, where we can see an open road to rapid improvements beyond the current state of the art, and an explosion of near-term commercial applications. But there are some important opportunities in a less obvious direction. Several areas of scientific and humanistic research are being revolutionized by the application of Human Language Technology. At a minimum, orders of magnitude more data can be addressed with orders of magnitude less effort – but this change also transforms old theoretical questions, and poses new ones. And eventually, new modes of research organization and funding are likely to emerge. 3