Pedranne Kelle de Araújo Barbosa
Transcription
Pedranne Kelle de Araújo Barbosa
Universidade Federal de Pernambuco Centro de Ciências Biológicas Programa de Pós-Graduação em Ciências Biológicas Interações Bióticas e Abióticas em Feijão-Caupi (Vigna unguiculata) pela técnica de SAGE (Serial Analysis of Gene Expression) Pedranne Kelle de Araújo Barbosa Recife, 2010 Pedranne Kelle de Araújo Barbosa Interações Bióticas e Abióticas em Feijão-Caupi (Vigna unguiculata) pela técnica de SAGE (Serial Analysis of Gene Expression) Tese apresentada como requisito para obtenção de título de Doutor em Ciências Biológicas, junto ao Programa de PósGraduação em Ciências Biológicas, área de concentração em Biotecnologia da Universidade Federal de Pernambuco. Orientadora: Profa. Dra. Ana Maria BenkoIseppon Co-orientador: Prof. Dr. Éderson Akio Kido Recife, 2010 Barbosa, Pedranne Kelle de Araújo Interações bióticas e abióticas em feijão- caupi (Vigna unguiculata) pela técnica de SAGE (Serial Analysis of Gene Expression) / Pedranne Kelle de Araújo Barbosa. – Recife: O Autor, 2010. 152 folhas : il., fig., tab. Orientadora: Ana Maria Benko-Iseppon. Co-orientador: Éderson Akio Kido Tese (doutorado) – Universidade Federal de Pernambuco. CCB. Ciências Biológicas. Biologia Vegetal, 2010. Inclui bibliografia e anexos. 1. Feijão Caupi 2. Estresse abiótico 3. Genética vegetal 4. Biotecnologia . I. Título. 581.38 CDD (22.ed.) UFPE/CCB-2010-123 Para a vida, as portas não são obstáculos, mas diferentes passagens. (Içami Tiba) Dedico Agradecimentos Agradeço a minha mãe, Maria Araújo, a quem dedico esta tese. Mulher guerreira que se faz presente todos os dias na minha vida, incentivando, orientando, acalmando, instruindo e dando todo o suporte que sempre precisei para que mais esta etapa pudesse ser concluída. A ela, meu amor incondicional; Às minhas irmãs, Arianne Barbosa e Anne Barbosa, que em todos os momentos e decisões se fizeram presentes, me apoiando e me incentivando, fazendo com que a distância física entre nós sempre fosse pequena comparada à vontade de “chegar lá”. Ao meu pai, Edmar Barbosa, fonte de inspiração na busca deste objetivo; Agradeço a oportunidade de ter encontrado essa pessoa maravilhosa, Ricardo Castro, que hoje muito mais que meu “namorido”, é um companheiro que me ajudou dando todo o suporte necessário, abdicando horas do seu trabalho, para que eu pudesse concluir essa etapa da minha vida. E que com ele compartilho o maior tesouro da minha vida, nosso filho, Caio Barbosa e Castro; À Profa. Dra. Ana M. Benko-Iseppon pela oportunidade de trabalhar em seu grupo de pesquisa e pela confiança ofertada a mim para o desenvolvimento desse projeto; Ao Prof. Dr. Éderson A. Kido, que muito me surpreendeu nessa fase final do trabalho, e que sem dúvida, sem seu empenho tudo seria muito mais difícil e demorado. Agradeço a acolhida nesse momento; À Fofi (Dra. Valesca Pandolfi), uma grande companheira a quem tenho muito respeito. Uma pessoa que sempre se colocou prontamente a me ajudar para que nossos objetivos finais fossem alcançados; Ao Prof. Dr. Paulo Andrade, a quem tenho grande admiração por toda sua genialidade, presteza, criatividade e alegria. Obrigada pela paciência, os conselhos e as ajudas. Tirando o “Fau”, você é o “cara”! Agradeço a Amanda Martins, pela dedicação nas formatações finais, bem como o companheirismo nos trabalhos extra-laboratório (personal promoter); Ao João Pacífico pela disponibilidade e paciência ofertada nos momentos de “socorro” auxiliando com os programas da bioinfo; A Nina Mota, por toda boa vontade e até mesmo paciência na análise inicial dos dados e por conseguir fazer dos momentos estressantes, momentos até divertidos; Ao Prof. Dr. Tercilio Calsa que se disponibilizou na orientação da construção das bibliotecas SAGE; Aos colegas e amigos de laboratório conquistados, tanto do LGM quanto do LGBV, e que hoje mesmo não fazendo mais parte do grupo (alguns), ainda fazem parte dessa minha história: “quarteto” fantástico (Thiago Souza, Rodrigo Assunção, Bruno Ribeiro), Celuza Castro, Riba (Neto Costa Ferreira), Renata Castro, Nayara Vieira, Marcelo Oliva, Marcelo Lucena, Michely Diniz, Rodrigo Gazzaneo, à Elite (Hayana Azevedo, Kênia Lucena, Mario Correia, Geyner Alves, Diego Sotero, Lidiane Amorim, Alberto Vinicius), Santelmo Vasconcelos, Ebénezer Bernardes, Claudete Marques; Aos amigos que fiz “No Recife” e com certeza me deram suporte psicológico ajudando no andamento dos trabalhos e deixando meus dias sempre mais alegres: as flores (Fátima Alves, Vanessa Oliveira), aos tios (Mércia Melo, Amaro Castro, Leila Martins), aos malinhas (Alexandre Campos, Tony Brito), as sem noção (Lidiane Freire, Marcella Oliveira), ao trio do Renault (Flávio Beltrão, Pedro Neto, Priscilla Belo), a docinho (Hayana Azevedo, Kenia Lucena, Joana Araújo); Aos amigos conquistados na vida acadêmica e familiares que me acompanham (mesmo à distância), sempre torcendo e me incentivando: Profa. Dra. Ana Brito (minha eterna orientadora e a quem tenho uma eterna admiração), Patrese Calheiros, Adriana Lima, Laura Souza, Luiz Fabiano, Maria Eugênia (Tia Gê), Luiz Araújo (tio Lula), Stanley Gonçalves, Genival Costa, Juliana Costa. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão da bolsa de Doutorado e pelo suporte financeiro necessário à realização desta pesquisa; À Universidade Federal de Pernambuco, por meio do Departamento de Ciências Biológicas, pela oportunidade de realização do curso; A DEUS, causa primária de todas as coisas. SUMÁRIO LISTA DE FIGURAS .................................................................................................................................... viii LISTA DE TABELAS ...................................................................................................................................... ix RESUMO .............................................................................................................................................................. x ABSTRACT ........................................................................................................................................................ xi 1. INTRODUÇÃO ........................................................................................................................................... 12 2. REVISÃO BIBLIOGRÁFICA ................................................................................................................. 13 2.1. A Cultura do Feijão-Caupi e sua importância econômica ............................................. 13 2.2. Taxonomia e Características Botânicas ................................................................................. 14 2.3. Estresses Bióticos e Abióticos e suas consequências ....................................................... 15 2.4. Interação Planta-Patógeno .......................................................................................................... 17 2.5. Interação Planta-Vírus ................................................................................................................. 18 2.6. Melhoramento Genético .............................................................................................................. 22 2.7. Técnicas de Avaliação da Expressão Gênica ....................................................................... 24 2.8. Aplicações da SAGE em Plantas ................................................................................................ 26 2.9. Transcriptômica do Feijão-Caupi ............................................................................................ 28 2.10. Bioinformática .............................................................................................................................. 31 2.10.1. Bancos de Dados e Ferramentas de Bioinformática ............................................. 32 3. REFERÊNCIAS BIBLIOGRÁFICAS ................................................................................................... 36 4. CAPÍTULO 1 Transcriptional profiling of wound stress response in Vigna unguiculata (L.) Walp. revealed by SuperSAGE 4.1. Abstract ............................................................................................................................................... 59 4.2. Background ....................................................................................................................................... 60 4.3. Material and Methods ................................................................................................................... 62 4.4. Results and discussion ................................................................................................................. 64 4.5. References ......................................................................................................................................... 81 4.6. Additional file ................................................................................................................................... 94 5. CAPÍTULO 2 The analysis of differential expression in Vigna unguiculata (L.) Walp. to the severe mosaic virus (CPSMV) revealed by SuperSAGE 5.1. Abstract ............................................................................................................................................ 111 5.2. Background .................................................................................................................................... 112 5.3. Material and Methods ................................................................................................................ 113 5.4. Results and discussion .............................................................................................................. 115 5.5. References ....................................................................................................................................... 130 6. CONSIDERAÇÕES FINAIS ................................................................................................................. 142 7. Instruções para autores da revista BMC Genomics ........................................................ 143 LISTA DE FIGURAS REVISÃO BIBLIOGRÁFICA Figura 1. Principais mecanismos do reconhecimento do patógeno e da resposta de defesa em plantas superiores ................................................................................................................... 18 Figura 2. Folhas de Vigna unguiculata (Cultivar IT85F) apresentando sintomas severos após 23 dias da inoculação com vírus do Mosaico Severo (CPSMV) ....................................... 21 CAPÍTULO 1 Figure 1. Distribution of the 30 most represented GO terms in the category “Cellular Component”, including absolute values and percentage ............................................................ 65 Figure 2. Distribution of 30 most represented GO terms in the category “Biological Process”, including absolute values and percentage ...................................................................... 66 Figure 3. Table with the representative sequenced tag number …......................................... 67 Figure 4. Quantitative distribution of SuperSAGE tags ................................................................ 68 Figure 5. Best matches (in %) regarding differentially expressed tags that could not be annotated with the cowpea EST database .......................................................................................... 71 Figure 6. Distribution of the differentially expressed transcripts in absolute numbers within the three principal Gene Ontology categories ..................................................................... 72 Figure 7. Functional categorization of Vigna unguiculata unitags .......................................... 74 CAPÍTULO 2 Figure 1. Distribution of unique tags (axis Y) in relation to tag copy number (axis X). Only tags with a copy number ≥ 2 were plotted on the graph ………………………………. 116 Figure 2. Diagram Venn showed distribution of tags among the three SuperSAGE libraries for each stress treatment (1) BMCT123; (2) BMCT4; (3) BRC1 …………….…. 117 Figure 3. Functional categorization of Vigna unguiculata unitags ………………………….. 121 Figure 4. Response to stress category in SuperSAGE libraries from V. unguiculata … 122 Figure 5. Fold change in Vigna unguiculata tags showing significant changes in expression following BMCT123 and BMCT4 infestation of CPSMV ……………………..… 123 Figure 6. Heat map representing expression perfiles in subcategory response to stress of Vigna unguiculata ………………………………………………………………………………………..…. 129 viii LISTA DE TABELAS CAPÍTULO 1 Table 1. Differentially expressed tags after comparison of the control versus stressed libraries ..................................................................................................................................... 69 Table 2. Sequences of SuperTags (26 pb) differentially expressed ………….…..………. 95 Table 3. Functional classification of the differentially expressed genes …..….……..…. 97 CAPÍTULO 2 Table 1. Summary of SuperSAGE libraries of Vigna unguiculata …………….………… 116 Table 2. Annotation primary of tags SuperSAGE ……………………………………………… 118 Table 3. Summary of 30 most abundant antisense tags ……………………………..…….. 119 ix RESUMO Danos provocados por estresses bióticos e/ou abióticos são fatores limitantes na produção do feijão-caupi (Vigna unguiculata), favorecendo a redução no crescimento e na produtividade desta cultura. Uma alternativa a estes fatores limitantes é o uso de cultivares com características genéticas competitivas e eficientes contribuindo para alcançar um padrão de agricultura mais sustentável e com melhores condições de produção. Assim, pesquisas que possibilitem compreender funções específicas de genes preditos de plantas e seus perfis de expressão em resposta a uma dada condição, são de extrema importância. Com base nisso, uma das metas do projeto NordEST (http://www.vigna.ufpe.br) consistiu na análise funcional de genes de feijão-caupi associados a estes tipos de estresses. Neste âmbito, o presente trabalho teve como objetivo analisar o perfil de expressão diferencial de genes através da técnica de SuperSAGE a partir de transcritos de folhas de feijão-caupi submetidas a injúria mecânica (biblioteca C2) e ao estresse causado pelo vírus do mosaico severo do feijãocaupi (CPSMV) (biblioteca BRM), com o intuito de obter um melhor entendimento com relação à resposta específica a este tipo de estresse, comparativamente a um controle negativo (ausência de injúria; biblioteca C1). As tags que apresentaram 100% de identidade com sequências de EST do banco privado de Vigna (banco NordEST), foram analisadas quanto à sua expressão diferencial e os transcritos que tiveram seus genes superexpressados e/ou reprimidos, dentro dos parâmetros requeridos (escore ≥42) foram anotados em categorias funcionais, de acordo com os termos de ontologia gênica (Gene Ontology) relativos a processos biológicos, função molecular e componente celular. Os resultados demonstraram que muitas sequências, tanto das bibliotecas submetidas à injúria, quanto as bibliotecas inoculadas com CPSMV estão relacionadas à categorias associadas a estresse, seguido de categorias relacionadas ao processos de tradução, ligação de proteínas, regulação da transcrição, redução de oxidação, transporte, proteólise, entre outros. Estas categorias estão relacionadas a rotas metabólicas importantes na resposta a estresses bióticos, indicando que estas tags representam um potencial real para descobertas de novos genes responsivos à injúria ou à resistência ao CPSMV, talvez ainda não descritos e/ou caracterizados. Palavras-chave: Vigna unguiculata, SuperSAGE, perfil transcricional, anotação funcional. x ABSTRACT Damage caused by biotic and / or abiotic factors are limiting factors in the production of cowpea (Vigna unguiculata), favoring a reduction in growth and productivity of this crop. An alternative to these limiting factors is the use of cultivars with genetic competitive and efficient helping to achieve a pattern of more sustainable agriculture and better production conditions. Thus, studies that allow for understanding specific functions of predicted genes of plants and their expression profiles in response to a given condition are of extreme importance. On this basis, one of the goals of the project NordEST (http://www.vigna.ufpe.br) was the functional analysis of genes of cowpea associated with these types of stress. In this context, this study aimed to analyze the profile of differential gene expression using the technique of SuperSAGE transcripts from cowpea leaves subjected to mechanical injury (C2 library) and the stress caused by severe mosaic virus cowpea (CPSMV) library (BRM), in order to gain a better understanding regarding the specific response to this type of stress, compared to a negative control (no injury; Library C1). The tags that showed 100% identity with EST sequences of the private bank of Vigna (NordEST bank), were analyzed for their differential expression and the transcripts whose genes were up and / or down regulated within the required parameters (score ≥ 42) were noted in functional categories, according to the terms of gene ontology (Gene Ontology) related to biological processes, molecular function and cellular component. The results showed that many sequences, both of libraries subjected to injury, as the libraries are inoculated with CPSMV related categories associated with stress, followed by categories related to the processes of translation, protein binding, transcription regulation, oxidation reduction, transport, proteolysis, among others. These categories are related to important metabolic pathways in response to biotic stresses, indicating that these tags represent a real potential for discovery of new genes responsive to injury or resistance CPSMV may not yet described and / or characterized. Keywords: Vigna unguiculata, SuperSAGE, transcriptional profile, functional annotation. xi 1. INTRODUÇÃO Nas regiões Norte e Nordeste, o feijão-caupi [Vigna unguiculata (L.) Walp.] é a leguminosa com maior propagação, representando aproximadamente 80% da produção total de grãos para alimentação humana, sejam verdes ou secos, constituindo uma fonte importante de proteínas (23-30%) e carboidratos (56-68%) (Bressani, 1993; Hall et al., 2003). Entretanto, um dos fatores limitantes desta leguminosa são os estresses causados por fatores bióticos e abióticos, acarretando grandes perdas na sua produtividade. Qualquer uma destas condições pode retardar o crescimento e o desenvolvimento, reduzir a produtividade e, em casos extremos, levar a planta à morte (Qiang et al., 2000; Jiang e Zhang, 2002; Ozturk et al., 2002; Xiong et al., 2002). Além disso, os métodos de cultivo adotados, na maioria das vezes utilizando pouca tecnologia, reduzem a produtividade e qualidade do grão. Desta forma, o uso de cultivares com características genéticas competitivas e eficientes contribuem para alcançar um padrão de agricultura mais sustentável e com maior produtividade. As pesquisas que possibilitem compreender funções específicas de genes preditos de plantas e seus perfis de expressão em resposta a uma dada condição podem contribuir decisivamente no melhoramento de plantas. Neste contexto, os projetos de sequenciamento aumentaram não somente o conhecimento de sequências genômicas para muitos organismos, mas igualmente para sequências de ESTs/cDNA para muitas espécies vegetais, criando novas oportunidades para usar estas informações na compreensão de mecanismos genéticos e desenvolvimento do controle da planta e suas respostas aos estímulos ambientais. As técnicas utilizando a análise de expressão de genes em indivíduos com características diferenciais (por exemplo, resistência/suscetibilidade a doenças) vêm sendo adotadas com grande sucesso em várias culturas vegetais. Dentre elas enquadrase a SAGE (Serial Analysis of Gene Expression, Análise Serial da Expressão de Genes), que simultaneamente identifica e estuda genes expressos sob diferentes situações, sendo baseada no sequenciamento e quantificação de um grande número de regiões específicas (tags), obtidas de populações contrastantes de transcritos (Velculescu et al., 2000). Neste trabalho, o estudo do perfil de expressão diferencial de genes através da técnica de SuperSAGE em V. unguiculata, submetido a injúria mecânica e ao ataque pelo 12 vírus do mosaico severo do caupi (CPSMV), foi aplicado com o intuito de obter um maior entendimento a respeito da relação planta-estresse e/ou planta-patógeno, representando uma fonte de informações que poderá ser utilizada em estudos de genes de resistência. 2. REVISÃO 2.1. A CULTURA DO FEIJÃO-CAUPI E SUA IMPORTÂNCIA ECONÔMICA O feijão-caupi [Vigna unguiculata (L.) Walp.], também conhecido como feijão-decorda, feijão-vigna ou feijão-macassar (Freire-Filho et al., 2002), além de saboroso, apresenta alto valor nutricional, com baixos teores de fatores anti-nutricionais e outras toxinas (Kay, 1979; Quass, 1995). O grão do feijão-caupi possui baixos índices de gordura, sendo rico nos aminoácidos lisina e triptofano, apresentando teores protéicos de duas a quatro vezes maior que outros cereais (Viera, 1983; Fall et al., 2003). Seus grãos também são ricos em minerais e vitaminas (Hall et al., 2003), apresentando um dos mais elevados níveis de ácido fólico e vitamina B1, ajudando a prevenir defeitos no tubo neural (DTN) em fetos (http://www.cdc.gov/; Toriello, 2005). A semente ou “grão seco” (como é referida às vezes) do feijão-caupi compreende um dos produtos mais importantes da planta para consumo humano, embora os grãos frescos e vagens verdes frescas também sejam importantes em alguns locais (Nielson et al., 1997; Ahenkora et al., 1998). Seu cultivo é em grande parte praticado por pequenos produtores, desempenhando importante papel econômico-social na região Nordeste, onde constitui o feijão mais consumido (Frota e Pereira, 2000), gerando cerca de 2,4 milhões de empregos diretos e abastecendo a mesa de 27,5 milhões de nordestinos (Benevenutti, 1996; Maia et al., 2000). O feijão-caupi também possui uma resposta de crescimento favorável em condições de estresse como seca, temperaturas elevadas e outros estresses abióticos (Ehlers e Hall, 1997; Oliveira, 2006). Com base nisso, no período de seca, o feijão-caupi desenvolve particularmente um papel crítico na alimentação animal em muitas partes do oeste da África (Singh e Tarawali, 1997; Tarawali et al., 1997, 2002). 13 Além disso, devido à sua tolerância em solos com baixa fertilidade - em decorrência da sua capacidade de fixação de nitrogênio (Martins et al., 1997), bem como de realizar simbiose efetiva com micorrizas e habilidade para tolerar solos com grandes variações de pH, o feijão-caupi é um dos componentes mais valiosos em sistemas agrícolas, restaurando a fertilidade dos solos para sucessão de outras culturas (Carsky et al., 2002; Tarawali et al, 2002; Sanginga et al, 2003). Segundo estimativas da FAO a produção mundial da cultura de feijão-caupi é de aproximadamente 3,7 milhões de toneladas, em uma área cultivada de cerca de 8,7 milhões de hectares. A Nigéria é o maior produtor, com aproximadamente 57% do total da produção mundial, seguida pelo Brasil, que contribui com 17% da produção mundial (Pereira et al., 2001). O feijão-caupi é um componente importante nos sistemas de produção em especial no Norte e Nordeste do Brasil, no entanto, a produtividade é relativamente baixa (entre 300 a 400 kg/ha), sendo decorrente, principalmente, dos sistemas de produção usados, onde na maioria não são adotadas práticas adequadas de manejo do solo, de pragas e doenças (Freire-Filho et al., 1999; Pio-Ribeiro, 2005). 2.2. TAXONOMIA E CARACTERÍSTICAS BOTÂNICAS O nome “caupi” advém do inglês “cowpea” e se deve, provavelmente, à sua importância na produção de feno para alimentação bovina no sudeste dos Estados Unidos e em outras partes do mundo. Ainda nos Estados Unidos, outros nomes usados para descrever os grãos incluem “southernpeas” “blackeyed peas”, “field peas,” “pinkeyes” e “crowders”. Estes nomes refletem a semente tradicional e algumas novas classes desenvolvidas no sul dos Estados Unidos (Timko et al., 2007). Na África ocidental são atribuídas as denominações “niebe”, “wake” e “ewa”. No Brasil, sua denominação varia conforme a região, sendo mais conhecido como “feijão-de-corda” e “feijão-macassar” na região Nordeste, “feijão-de-praia” e “feijão-de-estrada”, na região Norte, bem como “feijão-miúdo”, na região Sul. É também chamado de “feijão-catador” e “feijão-gerutuba”, em algumas regiões do estado da Bahia e norte de Minas Gerais. Já no estado do Rio de Janeiro é conhecido como “feijão-fradinho” (Freire Filho et al., 1983). O feijão-caupi é classificado dentre as Dicotyledoneae, na ordem Fabales, família Fabaceae, subfamília Faboideae, tribo Phaseoleae, subtribo Phaseolinea, gênero Vigna, 14 secção Catiang e espécie Vigna unguiculata (L.) Walp.) (Verdecourt, 1970; Marechal et al., 1978; Padulosi e Ng, 1997). Trata-se de planta herbácea, autógama, anual (Singh et al., 2002) que apresenta dois tipos de ramificações. No primeiro tipo, o caule produz um número limitado de nós e para de crescer quando emite uma inflorescência. No segundo tipo (o mais cultivado no Brasil), o caule continua crescendo e emitindo novas ramas secundárias e gemas florais. Apresenta inflorescências simples, embora tenham sido identificados genes recessivos que condicionam a produção de inflorescências compostas (Araújo et al., 1981; Machado et al., 2007). As vagens apresentam entre oito e dezoito sementes, cujo formato pode ser cilíndrico, curvado ou em linha reta. As sementes das cultivares pesam entre 80 e 320 mg, podendo seu revestimento apresentar variações como textura (por exemplo, liso, áspero ou enrugado) e cor (branco, creme, verde, vermelho, marrom, preto, entre outros) (Timko e Singh, 2008). 2.3. ESTRESSES BIÓTICOS E ABIÓTICOS E SUAS CONSEQUÊNCIAS O desenvolvimento geral das plantas pode ser afetado por diferentes tipos de estresses, caracterizados por condições externas que adversamente afetam o crescimento, o desenvolvimento e/ou a produtividade. Estes podem ser bióticos, impostos por organismos, como vírus, bactérias, fungos, nematóides e insetos (Santos et al., 1999; Korth, 2003) ou abióticos, incluindo excesso ou deficiência de fatores do ambiente físico ou químico (Agrios, 1997; Sticher et al., 1997; Dias e Rangel, 2007; Soares e Machado, 2007). Dentre as condições ambientais que podem causar alguns desses tipos de danos estão o excesso ou a falta de água (estresse hídrico), variações na temperatura (frio ou calor), excesso de salinidade, deficiência mineral no solo, o excesso ou falta de luz, além da chuva e vento. Compostos fitotóxicos como o O3 (ozônio) também podem causar danos nos tecidos das plantas (Eckey-Kaltenback, et al., 1997; Sanz et al., 2002; Krupa et al., 2003). O dano ocasionado devido a esses fatores pode ter como consequência a redução da qualidade fisiológica da planta após a injúria (efeito imediato) e/ou após determinado período de armazenamento (efeito latente), no caso de sementes e frutos. O ferimento representa uma ameaça constante à sobrevivência da planta porque não 15 somente destrói fisicamente os tecidos, mas fornece um caminho para a invasão pelo patógeno (Cheong et al, 2002). As plantas são organismos sésseis e obtêm nutrientes e água através de suas raízes, e são assim desprovidos de mecanismos que impedem os ferimentos, sejam mecânicos ou causados por patógenos. No entanto, as plantas são dotadas de barreiras pré-existentes que limitam o dano, tal como a cutícula, número e disposição dos estômatos que podem com sucesso suportar a agressão de pequenos herbívoros, ou então os tricomas, os espinhos e outros órgãos especializados que podem restringir o acesso da praga às partes mais nutritivas da planta (Leon et al, 2001; Korth, 2003). Diante da situação de estresse, embora não há possibilidade de mobilizar células especializadas, as plantas evoluíram desenvolvendo células competentes para a ativação das respostas de defesa que dependem da ativação transcricional de genes específicos. Estas respostas são dirigidas a recuperação dos tecidos danificados e a ativação de mecanismos de defesa que impeçam danos adicionais. A maioria das respostas induzidas ocorre em um curto período de tempo entre alguns minutos a diversas horas após o ferimento e incluem a geração/liberação, percepção e transdução de sinais específicos para a ativação de genes de defesa relacionados à injúria (Leon et al, 2001). Em resposta aos danos causados pela injúria as plantas se defendem da mesma forma como se estivessem sendo atacada por patógenos, consequentemente supõe-se que o mecanismo de defesa das plantas nestas duas situações evoluiu integradamente. Na sustentação desta ideia, os estudos mostraram que a injúria utiliza um número de genes que são regulados igualmente e/ou que possuem um mesmo papel em resposta ao patógeno (Durrant et al., 2000; Reymond et al., 2000). Por exemplo, estudos mostraram que diversos hormônios de plantas são importantes nesta resposta, dentre eles, ácido jasmônico, ácido salicílico e o etileno (Dong, 1998, Thomma et al., 1998). Além destes, algumas horas após o ferimento, as plantas produzem espécies reativas de oxigênio (ROS), incluindo o ânion superóxido no tecido danificado e água oxigenada (H2O2) ambos local ou sistemicamente. A produção do superóxido é máxima alguns minutos após o ferimento e 4-6 horas para a H2O2, declinando em seguida (Orozco-Cárdenas e Ryan, 1999). Na situação de ataque por patógenos, em geral, as plantas respondem a estes tipos de estresses através de uma cascata de respostas envolvendo desde a alteração da expressão gênica e do metabolismo celular; até a alteração da taxa de crescimento e 16 mudanças na produtividade (Staskawicz et al., 1995; Moraes, 1998). Entretanto, estas respostas (resistência, tolerância ou suscetibilidade) dependem não somente da duração, severidade, número de exposições e da combinação desses fatores de estresse, mas também do tipo de órgão e tecido, idade de desenvolvimento, genótipo e espécie ou variedade das plantas (Staskawicz et al., 1995). As plantas possuem mecanismos que, dependendo da virulência do patógeno e do efeito sinérgico entre o patógeno e a cultivar (McDowell e Dangl, 2000, Brioso, 2006) podem impedir ou minimizar os danos causados. Esses mecanismos são chamados de “resistência induzida” envolvendo a construção de barreiras histológicas para evitar a entrada ou progressão dos patógenos, principalmente reforçando a parede celular (Durrant e Dong, 2004). 2.4. INTERAÇÃO PLANTA-PATÓGENO As plantas, diferentemente dos animais, não possuem sistemas imunológicos para enfrentar determinadas situações adversas. Esse fato, associado à sua imobilidade (condição séssil) fez com que elas aperfeiçoassem, ao longo da evolução, mecanismos de defesa, tanto pré-formados, como induzidos (Hammond-Kosack e Jones, 2000; BenkoIseppon et al., 2010). A defesa pré-formada constitui-se no principal mecanismo de resistência não específica, em que as plantas formam barreiras estruturais (estômatos, cutículas, vasos condutores e tricomas) ou bioquímicas (fenóis, alcalóides, glicosídeos fenólicos e fitotoxinas). Já na defesa induzida ou pós-formada também podem ser encontradas barreiras estruturais como, cortiça, halos, lignificação, calose, etc; e bioquímicas: a síntese de peptídeos, proteínas e metabólitos secundários, no combate à infecção por patógenos (Pascholati e Leite, 1995; Taiz e Zeiger, 1998; Heath, 2000). Quando ocorre uma interação planta-patógeno, uma série de sinais moleculares coordenados, que ativam regiões do genoma da planta são desencadeados, interferindo na severidade da doença causada pelo patógeno. Muitas dessas respostas requerem ativação transcricional de genes por enzimas que produzem uma forma de barreira físico-fisiológica (por exemplo, lignina) ou por enzimas que participam da rota biossintética que conduz à síntese de compostos de defesa, como por exemplo, as fitoalexinas (metabólitos secundários - como derivados fenólicos) (Kahn et al., 2002; Woolhouse et al., 2002; Wink, 2003; Benko-Iseppon et al., 2010). 17 A percepção inicial do patógeno pela planta ocorre a partir da síntese de um fator de avirulência (avr) pelo patógeno que pode ser percebida pela planta a partir dos chamados genes de resistência (genes R), em uma interação compatível ou não, denominada interação gene-a-gene. Havendo interação compatível (patógeno virulento e hospedeiro suscetível), os genes R induzem a ativação de uma cascata de sinais, incluindo proteínas relacionadas à patogênese, ou proteínas PR (Pathogenesis-Related) (Van Loon et al., 1994; Heath, 2000; Durrant e Dong, 2004). As proteínas PR, por sua vez, além de serem produzidas no local da infecção, são também induzidas sistemicamente (Dixon e Harry, 1990), tomando parte ativa na eliminação do agente patogênico e no desenvolvimento da Resistência Sistêmica Adquirida – SAR (Systemic Aquired Resistance), contra futuros ataques desse patógeno (Nimchuk et al, 2003; Vallad e Goodman, 2004). O amplo espectro de compostos da SAR promove uma imunidade integrada e de longa memória contra o patógeno indutor no local da infecção, bem como em tecidos não infectados. Infecções experimentais algumas vezes resultam nesta resistência patógeno-específica, embora a proteção induzida também possa ser inespecífica (Scherer, 2002; Vallad e Goodman, 2004; Benko-Iseppon et al., 2010). Nas interações incompatíveis (patógeno avirulento e hospedeiro resistente), o sistema de defesa da planta é eficientemente ativado, conduzindo à resistência (Nimchuk et al, 2003) . A Figura 1 sintetiza as principais etapas e mecanismos do reconhecimento do patógeno e da resposta de defesa em plantas superiores, incluindo uma ou mais das 17 categorias de genes PR (Pathogen Related), dentre os quais se incluem proteínas antimicrobianas (Antimicrobial Proteins, AMPs), compreendendo pequenos peptídeos ricos em cisteína (Benko-Iseppon et al., 2010). 2.5. INTERAÇÃO PLANTA-VÍRUS Durante a evolução, plantas e vírus desenvolveram mecanismos complementares de ataque e defesa, onde o fenótipo de resistência ou suscetibilidade das plantas à infecção por vírus irá depender do balanço entre estes mecanismos (Zerbini et al., 2005). Os vírus de plantas interferem nos processos normais da célula hospedeira, provocando modificações histológicas e fisiológicas, ruptura do balanço energético, 18 alteração na síntese de proteínas, ácidos nucléicos e clorofila, supressão do silenciamento gênico pós-transcricional, transcricional, além de alteração nas taxas respiratórias (Flint et al., 2000; Voinnet, 2005; Soosaar et al., 2005). Figura 1. Principais mecanismos do reconhecimento do patógeno e da resposta de defesa em plantas superiores. Organismos patogênicos (principalmente vírus, bactérias e fungos) sintetizam produtos avr (avirulence)) que podem ser compatíveis com produtos de genes R secretados retados pela planta. Interações compatíveis levam à ativação de uma cascata de sinais induzindo fatores da resistência sistêmica (como etileno e ácido jasmônico), bem como fatores da resistência adquirida, compreendendo uma ou mais das 17 categorias de genes PR (Pathogen Pathogen Related), Related), dentre os quais se incluem proteínas antimicrobianas (Antimicrobial Proteins,, AMPs). Fonte: Benko-Iseppon Benko et al. (2010). A entrada dos vírus nas células vegetais é realizada por meio de um vetor biológico, como no caso de insetos, fungos, nematóides, ácaros ou após danos mecânicos 19 (Matthews, 1991; Medeiros et al., 2003; Ng e Falk, 2006 ). Estes utilizam dois processos para a invasão na planta; um decorrente do movimento de célula-a-célula pelos plasmodesmos e o outro pelo transporte em longa distância (sistêmico) pelos tecidos vasculares do floema. No movimento célula-a-célula, os vírus de plantas são dependentes, para sua sobrevivência, da transmissão eficiente por proteínas de movimento (MP) codificadas pelos vírus, bem como componentes codificados pelo hospedeiro (Atabekov e Taliansky, 1990; Lucas et al., 2001). Esta propagação assegura a sobrevivência do vírus, resultando muitas vezes em ocorrência de doença. Os primeiros estudos sobre transmissão de vírus de plantas por vetores demonstraram tanto a complexidade como a especificidade da interação vírus-vetor (Ng e Falk, 2006). Os patossistemas virais apresentam maior complexidade para o diagnóstico quando comparados àqueles causados por outros agentes etiológicos, pois de certa forma, há uma maior dificuldade em identificar precisamente os sintomas de viroses, uma vez que existem múltiplas doenças, pragas e deficiências nutricionais que causam sintomas semelhantes àqueles de vírus. Esta complexidade aumenta ainda mais quando se considera a existência da interação entre o vírus, a planta hospedeira e o vetor (Nutter, 1997; Zhang et al., 2000). Dentre os vírus que infectam plantas, mais de 70 gêneros foram descritos (Walkey e Payne, 1990), dos quais acredita-se que mais de 200 sejam disseminados por sementes em uma ou mais espécies de hospedeiros (Mandahar, 1981). No feijão-caupi, cerca de 30 gêneros virais envolvendo mais de 119 espécies foram citadas em diferentes partes do mundo (Thottappilly e Rossel, 1985; Brioso, 2006). Estima-se que a perda da cultura devido à infecção por vírus varie entre 10 e 100% (Shoyinka, 1974; Rachie, 1985; Shoyinka et al., 1988), dependendo da relação entre vírus-hospedeiro, assim como a prevalência de fatores epidemiológicos (Thottappilly e Rossel, 1988). No Brasil, os principais vírus que infectam o feijão-caupi são: o Cucumber mosaic virus (CMV) (família Bromoviridae), o Cowpea severe mosaic virus (CPSMV) (família Comoviridae), o cowpea golden mosaic virus (BGMV) (família Geminiviridae), o Bean common mosaic virus (BCMV) (família Potyviridae), o Cowpea aphid-borne mosaic virus (CABMV) (família Potyviridae), o Cowpea green vein banding virus (CGVBV) (família Potyviridae), o Cowpea rugose mosaic virus (CPRMV) (família Potyviridae), o Cowpea 20 severe mottle virus (CPSMoV) (família Potyviridae) (Kitajima, 1986; Kitajima, 1995; Lima et al., 1998), e o Blackeye cowpea mosaic virus (BICMV) (Lin et al., 1981). Dentre as espécies virais que possuem importância econômica, o gênero Potyvírus, com mais de 100 espécies, corresponde a 16% de todas as viroses de plantas. Sua transmissão se dá por meio de várias espécies de pulgões ou afídeos, através de picadas de prova (transmissão não persistente); portanto, a transmissão do vírus ocorre em segundos (Pirone, 1991; Gray, 1996). Outra virose que constitui um dos principais fatores limitantes na produção de feijão-caupi é a do Mosaico Severo, causada pelo CPSMV, família Comoviridae, gênero Comovirus (Chen e Bruening, 1992; Assunção et al., 2005). Estes vírus possuem forma isomérica com aproximadamente 28 nm de diâmetro, possui um genoma bipartido e é constituído de duas moléculas de RNA de fita simples que codifica proteínas para o movimento célula a célula e a longa distância (Hull, 2002; Pio-Ribeiro et al., 2005). Em condições naturais, no Nordeste brasileiro, os CPSMV são transmitidos por espécies do gênero Diabrotica e Cerotoma (Costa et al., 1978) embora o vírus se encontre disseminado em praticamente todas as regiões produtoras do país. Essa ampla distribuição geográfica do vírus é decorrente da numerosa gama de hospedeiros (espécies cultivadas e silvestres da família Fabaceae) e das dificuldades encontradas no manejo da doença (Paz et al., 1999). As plantas infectadas pelo CPSMV apresentam sintomas severos, como modificações da cor e no hábito das plantas, subdesenvolvimento e clareamento das nervuras principais, bolhosidade, manchas cloróticas, além de mosqueado e distorção foliar (Zerbini 2002; Lima et al., 2005). Tais características podem ser vistas na figura 2, em experimento realizado em casa de vegetação do Departamento de Genética da UFPE. As folhas da cultivar IT85F-2687 de V. unguiculata foi inoculada com CPSMV em vários tempos diferentes (30, 60 e 90 min e 16 h) para posterior utilização em bibliotecas de SuperSAGE utilizadas neste trabalho. Algumas fontes de resistência ao CPSMV no germoplasma de caupi já foram relatados por diversos pesquisadores (Umaharan et al., 1996, Paz et al., 1999), porém continua sendo um dos fatores limitantes da produção em se tratando de cultivares suscetíveis. Uma das alternativas como medidas de controle de doenças causadas por vírus fundamenta-se na introdução de resistência genética em cultivares comerciais através do melhoramento genético. 21 Figura 2. Folhas de Vigna unguiculata (Cultivar IT85F-2687) 2687) apresentando sintomas severos após 23 dias da inoculação com o vírus do Mosaico Severo (CPSMV). ( Foto cedida por Pandolfi (2007) em experimentos com feijão-caupi caupi sob estresses bióticos (CPSMV) ( em casa de vegetação da UFPE. 2.6. MELHORAMENTO GENÉTICO Uma das principais finalidades do melhoramento genético de plantas é descobrir e testar novos acessos de germoplasma, desenvolver novas cultivares e variedades de culturas economicamente importantes, com vistas a garantir o suprimento de alimentos (Borém, 1998). Para alcançar seus objetivos, os melhoristas têm contado com o auxílio de algumas ferramentas valiosas. O uso dos sistemas de incompatibilidade nas plantas, para a criação de variedades híbridas e os cruzamentos interespecíficos, para a aquisição dee novos genes, também têm sido efetivos em algumas espécies (De Nettancourt, 1997). Dois dos principais fatores da evolução, a recombinação e a seleção, também têm sido intensivamente utilizados pelos melhoristas, com o emprego de métodos refinados desenvolvidos desenvolvidos na primeira metade deste século. As mutações – o terceiro grande fator da evolução – têm sido consideradas instrumentos adicionais, capazes de auxiliar os métodos convencionais de melhoramento, aumentando a variabilidade genética das espécies (Duvick, (Duvic 1986). Dentre as técnicas mais usadas estão a mutagênese e a transgenia. Com grande repercussão os transgênicos crescem de importância a cada ano e embora a área com 22 transgênicos esteja em constante crescimento em vários países, o uso desta ferramenta biotecnológica é alvo de discussão, devendo-se salientar que do ponto de vista do melhoramento genético, as técnicas convencionais e a transgenia não são mutuamente excludentes, ao contrário: são complementares (Paterniani, 2006). O feijão-caupi possui uma ampla variabilidade genética para praticamente todos os caracteres de interesse agronômico (Embrapa, 1990; Teófilo et al., 1990) sendo alvo importante em programas de melhoramento genético. Entretanto, embora os estudos para a seleção de feijão-caupi para a região Nordeste tenham se iniciado na década de 40 (Krutman et al., 1973), comparativamente a outras culturas, são poucas as cultivares recomendadas e lançadas comercialmente, devido principalmente aos múltiplos objetivos adotados pelos agricultores, visando não só a produtividade. No entanto, nos últimos anos a qualidade do grão e a arquitetura da planta também têm sido enfatizado devido as exigências do mercado quanto a qualidade para cozimento do grão comercializado (Carbonell et al., 2003), além das características relacionadas à produtividade e à resistência a patógenos, principalmente viroses (Miranda et al., 1996, Freire-Filho 2005). Algumas cultivares de feijão-caupi já foram relatadas como completamente resistentes aos vírus do mosaico amarelo, BICMV e CABMV. Destas, as cultivares IT96D659, IT96D-660, IT97K-1068-7 e IT95K-52-34 foram as que apresentaram melhores características de resistência e rendimento (Singh e Hughes, 1998; 1999). Van-Boxtel e colaboradores (2000) selecionaram 14 variedades de feijão-caupi, três isolados de BICMV e 10 isolados de CABMV com o intuito de identificar cultivares de caupi com resistência múltipla as viroses. Foi observado que as cultivares IT86D-880 e IT86D-1010 foram resistentes a três isolados de BICMV e cinco isolados de CABMV. As cultivares IT82D-889, IT90K-277-2 e TVu 201 se mostraram resistentes aos outros cinco isolados de CABMV. Esses resultados evidenciaram que é possível produzir novas variedades de caupi com resistência combinada aos 13 isolados virais. No Brasil, a resistência ao CPSMV, ao CABMV e ao BGMV também já foi relatada em algumas cultivares: BR 10-Piauí (Santos et al. 1987), BR 12-Canindé (Cardoso et al., 1988), BR 14-Mulato (Cardoso et al., 1990), BR 17-Gurguéia (Freire Filho et al., 1994), EPACE 10 (Barreto et al,. 1988), Setentão (Paiva et al., 1988), IPA 206 (IPA, 1989). Além destas, a BR 16-Chapéu-de-couro (Fernandes et al. 1990), BRS Paraguaçu (Alcântara et al., 2002) e BRS Guariba (Vilarinho, 2007) se mostraram resistentes ao CABMV. A 23 cultivar BRS Guariba se mostrou resistente também ao CGMV, moderadamente resistente ao oídio (Erysiphe polygoni DC.) e a mancha-café (Colletotrichum truncatum (Schw. Andrus & Moore)) e moderadamente tolerante à seca e a altas temperaturas (Vilarinho, 2007). Outra cultivar recentemente lançada foi a BRS Pujante, que submetida a cultivos em áreas de sequeiro ou sob irrigação no sertão nordestino, apresenta elevada produtividade sem adubações: 705 kg/ha e 1586 kg/ha, respectivamente. São quantidades que superam às obtidas por cultivos tradicionais na região e, além disso, apresentram valores próximos de 1,0 (sem sintomas) para as viroses do mosaico dourado (MDO), CPSMV e Potyvírus (Santos et al., 2008). 2.7. TÉCNICAS DE AVALIAÇÃO DA EXPRESSÃO GÊNICA Diferentes metodologias têm sido empregadas com a finalidade de medir a expressão global de genes em nível celular, tecidual, órgãos ou organismos em diferentes estágios de desenvolvimento e/ou sob várias condições ambientais (Velculescu et al., 1995), incluindo fatores bióticos e abióticos. Estas tecnologias estão divididas em duas categorias: técnicas “abertas” e técnicas “fechadas” (Matsumura et al., 2003). Na tecnologia fechada tal como arranjos de DNA (microarrays) as análises são baseadas em hibridização usando sequências completas ou parciais de DNA (cDNAs, produtos de PCR, plasmídeos ou bactérias contendo plasmídeos), previamente conhecidas e disponíveis em bancos de dados. Nesta tecnologia, sondas de cDNAs (a partir da transcrição reversa dos RNA mensageiros obtidos de células sob condições específicas) são submetidas à hibridização com o DNA fixado na membrana. A indução ou repressão de cada gene é medida em função desta intensidade de sinal emitido em cada condição testada, refletindo o nível de expressão de cada gene (Freeman et al., 2000). Assim, o “padrão de expressão” de milhares de genes pode ser comparado simultaneamente; entretanto, o espaço de análise é finito e o nível de análise da expressão do gene é limitado à sequência previamente caracterizada do transcrito para os quais corresponde a prova que foi colocada no microarranjo (Schena et al., 1995). Por outro lado, na tecnologia aberta, os métodos mais usados para análise do transcriptoma são baseados no sequenciamento do seu cDNA (ESTs – Expressed 24 Sequence Tags) ou de etiquetas representativas de transcritos denominadas “tags” (“etiquetas” em inglês). Dentre as estratégias desenvolvidas destacam-se a Differential Display - DDRT (Liang e Pardee, 1992), Serial Analysis of Gene Expression - SAGE (Velculescu et al., 1995) e algumas variantes, o cDNA-AFLP (Bachem et al., 1996); GeneCalling (Shimkets et al., 1999), Total Gene Expression Analysis - TOGA (Sutcliffe et al., 2000), e o Massively Parallel Signature Sequencing - MPSS (Brenner et al., 2000) (Matsumura et al., 2005; Hanriott et al., 2008). A SAGE ou Análise Serial da Expressão Gênica destaca-se por ser um método rápido e abrangente, estabelecido como uma técnica para análise quantitativa de um grande número de transcritos (Velculescu et al., 1995). Esta tecnologia é baseada em dois princípios: primeiro, uma sequência curta ou tag (9-11 pb) contém informação suficiente para identificar um transcrito único. Segundo, várias tags podem ser concatenadas em uma única molécula formando longos clones que, após sequenciamento resultam na identificação simultânea de muitas tags diferencialmente expressas (Saha et al., 2002; White, et al., 2008). Consequentemente, o padrão de expressão de qualquer população de transcritos pode ser quantitativamente avaliado pela abundância dos transcritos e pela identificação do gene correspondente a cada tag (Velculescu et al., 1997). Outra vantagem da Técnica SAGE, é que ela permite que as tags sejam utilizadas como primers ou sondas para identificar genes desconhecidos, como foi demonstrado na banana (Musa acuminata L.) por Coemans et al. (2005). A SAGE também apresenta grandes vantagens sobre os microarranjos, uma vez que possui maior potencial para discriminar entre transcritos homólogos e parálogos, revelando valores absolutos na expressão do transcriptoma e propiciando uma comparação direta entre os genes (Lu et al., 2004, Poole et al., 2008). Entretanto, um dos problemas da SAGE, quando comparada ao microarranjo, é que a SAGE é usada para poucas amostras ao mesmo tempo, existindo às vezes necessidade de comparar o perfil de expressão dos genes de múltiplas amostras (Matsumura et al., 2005). Outra deficiência na utilização da SAGE é o tamanho da tag de 15 pb, considerada demasiadamente curta para permitir a identificação inequívoca do gene de origem. Além disso, em organismos não modelos, isto é, com limitações ou sem sequências de DNA ou cDNA/ESTs disponíveis, a SAGE clássica de 15 pb não é devidamente prática devido à baixa casualidade e confiança da anotação das sequências. Isso é observado quando se realiza o alinhamento de sequências (BLAST). Usando uma sequência de entrada (query), 25 a mesma tag frequentemente combina dois ou mais genes, podendo confundir a análise (Matsumura et al., 2005). Diante disso, para aumentar a fidelidade do tag mapping, vários esforços foram feitos para aumentar o tamanho da tag, facilitando, desse modo, uma anotação mais acurada. Dentre estes aperfeiçoamentos estão as modificações da SAGE de 15 pb para 21 pb (LongSAGE) (Saha et al., 2002) e SuperSAGE (26pb) (Matsumura et al., 2003). Uma técnica desenvolvida comparável aos princípios da SAGE é a MPSS. No entanto, a MPSS utiliza a clonagem in vitro de fragmentos de cDNA em microgrânulos (microbeads), gerando pequenas etiquetas a partir desses cDNAs onde então é realizado o sequenciamento em larga escala dessas partículas sem a necessidade de separação física desses fragmentos. O resultado final da MPSS é uma abundância de milhares de tags de 17 ou 20 bases, a maioria das quais identifica um transcrito. Esta tecnologia permite a produção de um numero 100 vezes maior de tags em relação a SAGE, entretanto, esta técnica requer equipamento especializado e possui custos extremamente elevados (Brenner et al., 2000; Christensen et al., 2003; Meyers et al., 2004). 2.8. APLICAÇÕES DA SAGE EM PLANTAS A análise através da SAGE passou a ser aplicada com sucesso em um grande número de espécies eucariotas incluindo Saccharomyces cerevisiae (Velculescu et al., 1997), Homo sapiens (Zhang et al., 1997), Caenorhabditis elegans (Jones et al., 2001) e Drosophila melanogaster (Gorski et al., 2003). Em plantas, a técnica foi descrita pela primeira vez por Matsumura et al. (1999), ao analisar a expressão de genes de arroz (Oryza sativa L.) sob diferentes condições de germinação. Em seguida, Lorenz e Dean (2002) aplicaram a SAGE em pinheiro (Pinus taeda L.) para identificação dos genes envolvidos na formação da madeira e na caracterização das funções em relação à qualidade da madeira. Esses trabalhos representaram avanços por permitir a utilização da SAGE em plantas. Diversos trabalhos utilizando a planta modelo Arabidopsis thaliana também foram realizados. Jung et al. (2003) utilizaram a SAGE para comparar a expressão de genes sob diferentes estados fisiológicos e identificar genes que possuem papel importante na tolerância ao frio. Essa característica (tolerância ao frio) tem sido alvo de 26 diversos estudos em plantas. Com este objetivo, a tecnologia LongSAGE foi eficientemente aplicada na caracterização de genes associados ao estresse causado pelo frio em Arabidopsis (Byun et al., 2009). Os resultados revelaram que diversas estratégias são adotadas pela planta na regulação da transcrição em resposta à exposição ao frio. Ainda em Arabidopsis, seis bibliotecas SAGE contrastantes de raízes em crescimento hidropônico foram construídas para a identificação de genes expressos em grande escala, fornecendo novos conhecimentos das especificidades funcionais do sistema radicular (Fizames et al., 2004) Em cevada (Hordeum vulgare L.) a LongSAGE foi empregada para identificar a variação dos transcritos de RNAm desde o grão seco até a germinação, totalizando um período de 120 h. Os resultados forneceram dados na compreensão de como taxas relativas de modificação de proteínas e carboidratos contribuem na malteação (processo empregado para preparar o malte através da germinação sob condições controladas), exibida por alguns genes-chave para a germinação da semente da cevada (White et al., 2006; White et al., 2008). A SuperSAGE foi aplicada pela primeira vez em folhas de arroz infectado pelo fungo Magnaporthe grisea (T.T. Hebert) M.E. Barr. Os perfis de expressão dos genes do arroz e do fungo foram monitorados simultaneamente e foi visto que o gene da hidrofobina de M. grisea é o gene ativamente mais expresso no arroz, demonstrando o poder da SuperSAGE para a identificação simultânea da expressão de genes na interação entre dois ou mais organismos tais como patógeno-hospedeiro. Ainda nesse trabalho, a SuperSAGE foi aplicada na análise da mudança da expressão do gene elicitor IFN1 de Nicotiana benthamiana Domin. A técnica permitiu a identificação de genes superexpressos e reprimidos pelo elicitor em um organismo não-modelo, onde os genes mais reprimidos estavam envolvidos na fotossíntese (Matsumura et al., 2003). Outro organismo não modelo a qual a SuperSAGE foi aplicada foi em folhas de bananeira para caracterizar a expressão global de genes. As tags de SuperSAGE foram usadas como primers em 3’ RACE permitindo a identificação de transcritos desconhecidos e fornecendo uma ferramenta poderosa para a genômica funcional em organismos não modelo (Coemans et al., 2005). Um recente trabalho utilizando a SuperSAGE foi feito com grão de bico (Cicer arietinum L.). A técnica foi aplicada para analisar a expressão de genes de raízes de grão de bico em resposta a seca. Este estudo demonstrou que a transdução de sinais, a 27 regulação da transcrição, a acumulação de osmólitos e as espécies reativas a oxigênio estão sob remodelamento transcricional após 6h de estresse hídrico e que algumas isoformas destes transcritos que caracterizam estes processos são alvos em potenciais de tolerância a seca (Molina et al., 2008). Embora a aplicação mais importante da SAGE seja a identificação da expressão diferencial de genes, ela também tem possibilitado a identificação da ocorrência de regulação anti-senso, como foi demonstrado em arroz (Gibbings et al., 2003; Gowda et al., 2007), em Arabidopsis (Robinson et al., 2004) e na cana-de-açúcar (Saccharum L.) (Calsa e Figueira, 2007). 2.9. TRANSCRIPTÔMICA DO FEIJÃO-CAUPI A caracterização de genomas foi uma das forças motrizes da ciência nos anos 90. Desde o sequenciamento completo do primeiro organismo de vida livre (Haemophilus influenzae) em 1995 (Fleishmann et al., 1995), a consolidação e a inovação das técnicas de análise genômica tornaram possível o sequenciamento do genoma de seres complexos como plantas, animais e seres humanos. Aliado a isso, os crescentes investimentos na área fizeram com que a lista de sequências de genomas completos tenha crescido a uma velocidade cada vez maior, contribuindo com um volume de dados disponíveis para acesso público (Binneck, 2004). Em plantas, embora o número de genomas completos disponíveis ainda seja limitado, quando comparado a outros organismos, um crescente número de sequências expressas como ESTs e tags têm sido disponibilizadas à comunidade científica, auxiliando no entendimento de processos genéticos em organismos com grandes genomas, como vegetais (Benko-Iseppon, 2001). Em função disso, em 2004, surgiu uma proposta de efetuar uma análise genômica funcional e estrutural no feijão-caupi (V. unguiculata), incluindo uma rede de laboratórios da região Nordeste do Brasil, denominada rede NordEST, visando identificar genes candidatos potencialmente úteis para fins de melhoramento desta cultura. Este projeto, coordenado pela Universidade Federal de Pernambuco (Profs. Ana M. Benko Iseppon e Ederson A. Kido), conta com a colaboração das Universidades Federais do Piauí, do Ceará, da Paraíba, das estações da Embrapa (Recursos Genéticos, Brasília-DF; CAPTSA, Meio-Norte) e da Universidade de São Paulo (ESALQ; CENA), tendo seu início oficial em junho/2005. O projeto contou 28 ainda com o auxílio de dois grupos consultores: da Universidade de Frankfurt (Johann Wolfgang Goethe Universität) na Alemanha e da Universidade da Califórnia, em Riverside (EUA). As principais metas do citado projeto incluíram (a) a geração de no mínimo 100 mil transcritos diferencialmente expressos em tecidos e condições importantes pra o entendimento de processos de tolerância ou resistência a estresses bióticos e abióticos; (b) o desenvolvimento de um mapa genético de alta resolução e (c) o desenvolvimento de estratégias eficientes de cultivo, transformação e regeneração in vitro, de modo a propiciar a rápida conversão dos dados gerados em benefício da cultura vegetal em questão. Desta forma, técnicas modernas de mapeamento genético assistido por marcadores moleculares (incluindo CAPs, dCAPs, DAF, SSR, AFLP, ISSR e RGAs) vêm sendo utilizadas a fim de mapear as regiões responsáveis a resistência a viroses (CPSMV; família Comoviridae e CABMV; família Potyviridae), bem como estresse abiótico como salinidade e seca (incluindo QTLs) que envolvam a produtividade e a arquitetura da planta (Benko-Iseppon et al., 2005; Amorim et al., 2009). No âmbito do citado projeto, ferramentas de genômica expressa (EST e SAGE) relacionadas a estresses bióticos (Potyvírus e Mosaico Severo) e abióticos (salinidade) do feijão-caupi também foram utilizadas, incluindo a construção de 10 bibliotecas de EST submetidas a estresse biótico (vírus do mosaico severo) e abiótico (salinidade), nove bibliotecas de SuperSAGE submetidas ao estresse salino e ao Vírus do Mosaico Severo e quatro bibliotecas de LongSAGE submetidas ao estresse por Potyvírus (BenkoIseppon et al., 2008) (Tabela 1). Atualmente o projeto envolve atividades referentes à categorização das bibliotecas de ESTs de V. unguiculata (sequências do banco NordEST, HarvEST e NCBI) compiladas em um banco local e a análise das bibliotecas controles (injúriado e não injúriado) de SuperSAGE infectadas pelo Mosaico Severo, desenvolvidas junto à empresa GenXPro (Frankfurt am Main, Alemanha) no âmbito do projeto. Em setembro/2009 o referido projeto contava com mais de cinco milhões de transcritos para análise (Kido et al., 2009), número que atualmente excede 20 milhões de transcritos, incluindo SuperSAGE-tags, Long-SAGE-tags e ESTs, ultrapassando largamente o número de 100 mil transcritos inicialmente planejado (Kido e BenkoIseppon, com. pess.). 29 Tabela 1. Descrição das bibliotecas de ESTs de feijão-caupi sob estresse biótico (Vírus do Mosaico Severo do Caupi) e abiótico (estresse salino, NaCl 200mM) e das bibliotecas de LongSAGE sob estresse biótico (Potivírus) e biliotecas de SuperSAGE sob estresse biótico (CPSMV e Potyvírus) e abiótico (estresse salino, NaCl 200mM) – Projeto NordEST- RENORBIO. I- Bibliotecas de EST (Expressed Sequence Tags) Biblioteca Descrição VUSS00 VUSS02 VUSS08 VUST00 VUST02 VUST08 VUBM90 VUBM01 VUIM90 VUIM01 Canapu Controle (2+8h s/ estresse) Canapu (2h após estresse) Canapu (8h após estresse) Pitiuba Controle (2+8h s/ estresse) Pitiuba (2h após estresse) Pitiuba (8 h após estresse) BR-14 mulato - Mosaico (30+60+90 min após estresse) BR-14 mulato - Mosaico controle 01 (30+60+90 s/ estresse) IT- 85F - Mosaico (30+60+90 min após estresse) IT – 85F - Mosaico controle 01 (30+60+90 s/ estresse) II - Bibliotecas de LongSAGE (Serial Analysis of Gene Expression) Biblioteca Descrição IP+ IPBR+ BR- IT – 85F - Potyvirus (30+60+90 min e 16h após estresse) IT – 85F - Potyvirus (30+60+90 min e 16h sem estresse) BR14-mulato- Potyvirus (30+60+90 min e 16h após estresse) BR14-mulato- Potyvirus (30+60+90 min e 16h sem estresse) III- Bibliotecas de SuperSAGE (Serial Analysis of Gene Expression) Biblioteca Descrição BRC1 BRC2T123 BRC2T6 BRMT123 BRMT6 PTS3T BRS3T PTCtr BR14Ctr L1_CMV-2_16 L2_CMV-2_BRC1 L3_CMV-2_3090 L1_CPV1-3 L2_CPV_4 L3_CPV_5 L4_CPV_6 BR14-mulato - controle absoluto BR14-mulato, controle injuriado (30+60+90 min após estresse) BR14-mulato, controle injuriado (16h após estresse) BR-mulato - Mosaico (30+60+90 min após estresse) BR14-mulato - Mosaico (16h após estresse) Pitiuba, stress salino, (30+60+90 min, 2h, 8h após estresse) BR14-mulato, stress salino (30+60+90 min, 2h, 8h após estresse) Pitiuba controle (30+60+90 min, 2h, 8h) BR14-mulato (30+60+90 min, 2h, 8h) BR14-mulato, controle injuriado (16h após estresse) BR14-mulato - controle absoluto BR14-mulato, controle injuriado (30+60+90 min) IT – 85F (30+60+90 min após estresse) IT – 85F (16h após estresse) IT – 85F (30+60+90 min e 16h sem estresse) IT – 85F (16h após o estesse) Além da iniciativa que integra a rede brasileira de genômica do feijão-caupi (Rede NordEST), destaca-se uma iniciativa desenvolvida pelas Universidades de Virgínia e da Califórnia (USA), com sequências já disponibilizadas em bancos de dados públicos, 30 integrada no projeto HarvEST, tendo gerado cerca de 180.000 ESTs (Close, 2007; HarvEST, 2008). Atualmente estas sequências encontram-se integradas no servidor NordEST, onde foram clusterizadas com as sequências de EST do citado projeto, perfazendo 248.500 ESTs disponíveis para ancoragem das tags de SuperSAGE e LongSAGE, bem como para outras análises in silico. Adicionalmente, destaca-se um banco de dados genômico, o Cowpea Genespace / Genomics Knowledge Base (CGKB) derivado de análise e sequenciamento de porções ativas do genoma do feijão-caupi, a partir da filtração do DNA genômico metilado (Chen et al., 2007). O “Cowpea-Genespace” tem se mostrado como uma excelente ferramenta para anotação, caracterização e análise de SAGE e EST-tags, colocando projetos com feijão-caupi em posição de vantagem face a outras leguminosas de importância nacional, como o feijão-comum (Phaseolus vulgaris L.) e o amendoim (Arachis hypogea L.) (BenkoIseppon, 2009). 2.10. BIOINFORMÁTICA A bioinformática tem sido referida como um campo interdisciplinar, agindo como interface entre o campo científico e tecnológico. É caracterizada por prover métodos computadorizados para interpretar os dados gerados em estudos de sequenciamento de genomas, gerando grande volume de informação, de forma a trazer novos avanços para a biologia molecular. A bioinformática representa um dos grandes desafios para se tentar decifrar o genoma (Lengauer, 2001), consistindo na criação, desenvolvimento e operação de bancos de dados associados a ferramentas computacionais que permitam coletar, organizar e interpretar dados (Ouzounis, 2002). Devido ao grande volume de informação gerado pelos projetos de análise de genomas e transcriptomas, tem se tornado cada vez mais complexo o armazenamento, acesso e a análise dos dados gerados. Para contornar tal dificuldade, bancos para armazenamento e processamento de dados, através de ferramentas de análise, têm sido implementados e disponibilizados (bancos abertos), aumentando ainda mais a aplicabilidade da pesquisa (Félix, 2002; Wheeler et al., 2002). 31 2.10.1. Bancos de Dados e Ferramentas de Bioinformática Existem dois tipos de bancos de dados envolvendo sequências de genes e proteínas: os bancos de dados primários e os secundários. Os bancos de dados primários são aqueles derivados diretamente dos dados obtidos a partir do sequenciamento de ácidos nucléicos ou proteínas. Estes bancos podem conter, além da sequência em si, outros dados como uma tradução de uma sequência de um clone de DNA, sequências padrão (como sítios de fosforilação), promotores e outras anotações semelhantes. Entre os principais bancos primários destacam-se o GenBank (Benson et al., 2000), EBI-EMBL (European Molecular Biology Laboratory; http://www.ebi.ac.uk/embl/, Emmert et al., 1994), DDBJ (DNA Database of Japan, http://www.ddbj.nig.ac.jp/, Tateno et al., 2002) e PDB (Protein Data Base; http://www.rcsb.org/pdb/home/home.do) (Westbrook et al., 2002) Os bancos de dados secundários são derivados dos primários, tais como o Blocks, sequências sem "gaps" alinhadas contendo as regiões mais conservadas em proteínas (Henikoff e Henikoff, 1991), o SWISS-PROT e TrEMBL (Bairoch e Apweiller, 1998), o PROSITE (banco de dados de famílias e domínios de proteínas) (Sigrist et al., 2002) e o REBASE, banco de dados com informações sobre enzimas de restrição, metilases, microorganismos de origem, sequências de reconhecimento, sítios de clivagem, especificidade de metilação, disponibilidade comercial e referências (Roberts et al., 2007). Inúmeros outros bancos de dados têm surgido nos últimos anos, os quais, assim como novas ferramentas de bioinformática, visam auxiliar o pesquisador na aquisição de informação biológica, na identificação de significado e na associação de tal informação com determinada categoria ou processo, para que a mesma possa ser utilizada de forma mais abrangente. Dentre as ferramentas de bioinformática utilizadas para este projeto, podemos citar algumas comentadas a seguir. a) PHRED Programa utilizado para análise da qualidade das sequências de DNA (Ewing e Green, 1998; Ewing et al., 1998). b) PHRAP E CAP3 O Phrap e o CAP3 são exemplos de programas que fazem a montagem das reads 32 (transcritos) com a finalidade de alinhá-las entre si, produzindo sequências maiores, dando origem aos contigs (sequenciamento genômico) ou clusters (sequenciamento de cDNA). Esses programas utilizam os valores de qualidade de bases produzidos na comparação das regiões de sobreposição das reads, na construção de alinhamento múltiplo das sequências e na geração das sequências consenso (Huang e Madan, 1999). Após a inserção das informações de montagem dos clusters no banco de dados, a próxima etapa é a análise por métodos comparativos contra um banco de dados público para dedução das funções por regiões similares das sequências comparadas (Peruski e Peruski, 1997). c) BLAST Um dos programas mais utilizados para buscas por similaridades é o BLAST (Basic Local Alignment Search Tool), disponível no site do NCBI (National Center Biotechnology Information - http://www.ncbi.nlm.nih.gov), o qual calcula o nível de similaridade que pode existir entre uma região da sequência do cluster e outra que esteja disponível em um banco de dados, como o GenBank, realizando um alinhamento local (Altschul et al., 1990). O BLAST é subdividido de acordo com o tipo de sequência de entrada (nucleotídeo ou aminoácido) e com o tipo de resultado esperado (Altschul et al., 1990). Assim, pode-se escolher entre: BLASTn - compara sequências de nucleotídeos com o banco de dados de nucleotídeos; BLASTp - compara sequência de aminoácidos com banco de dados de proteínas; BLASTx - sequência de nucleotídeos traduzida nos seis possíveis quadros de leitura em um banco de dados de proteínas; tBLASTn, sequência de aminoácidos em um banco de dados de nucleotídeos traduzido dinamicamente nos seis quadros de leitura e tBLASTx - sequência de nucleotídeos em um banco de dados de nucleotídeos traduzido por computador (Gibas e Jambeck, 2001). O programa BLAST permite ainda alinhar sequências, através da ferramenta BLAST2Seq. Quando o programa padrão for usado para procurar por sequências homólogas em bases de dados de nucleotídeos e de proteínas, frequentemente existe a necessidade de comparar somente duas sequências que já são sabidamente homólogas, ou que venham de espécies relacionadas, ou ainda foram isoladas do mesmo organismo. Nesse caso, procurar no banco de dados completo consumiria um tempo e esforços desnecessários. O BLAST de duas sequências utiliza o algoritmo do BLAST para comparar sequências de DNA-DNA, DNA-proteína ou sequências de proteína-proteína 33 (Tatusova e Madden, 1999). Algumas sequências incluem regiões com baixa complexidade, apresentando uma composição incomum, o que pode criar problemas quando se procuram sequências com similaridades. Os filtros de baixa complexidade são usados para se remover a sequência de baixa complexidade que pode causar problemas, mostrando um resultado que nem sempre se refere a sequências verdadeiramente relacionadas. Nas buscas no BLAST executadas sem um filtro podem ser relatados índices de similaridade elevados somente por causa da presença de uma região de baixa complexidade (Wootton e Federhen, 1996). d) DiscoverySpace 4.01 DiscoverySpace é um software gráfico que integra banco de dados contendo informações funcionais de sequências de expressão gênica e mapeamento de tags. Essas informações são reunidas em um único banco de dados, onde é possível realizar análises comparativas, aplicando o teste estatístico de Audic e Claverie (1997), visualizando os resultados em um gráfico de dispersão ou gerando conjuntos de tags específicas (Wang et al., 2005). Sua aplicação permite que o usuário utilize bases de dados biológicos múltiplas sem exigir o conhecimento detalhado da fonte das bases de dados, além de fornecer ferramentas domínio-especificas (Robertson et al., 2007). e) Blast2GO É uma ferramenta para a anotação funcional de sequências novas, com simultânea análise de dados da anotação. A principal aplicação se caracteriza pela anotação de milhares de sequências em uma sessão; pela possibilidade de modificação no processo de anotação em todas as etapas; pela geração de significado biológico dos dados com funções gráficas e estatísticas diferentes. O banco do Gene Ontology, os mapas do KEGG e o InterPro são suportados pelo Blast2GO (Conesa et al., 2005). O Blast2GO otimiza a função de transferir sequências homólogas através de um algoritmo elaborado que considera a similaridade, a extensão da homologia, a base de dados de escolha, a hierarquia do GO e a qualidade das anotações originais (Conesa e Götz, 2008). 34 f) Cluster 3.0 O Cluster (Eisen et al., 1998) é um programa que fornece um ambiente computacional e gráfico para análise de experimentos de microarranjos e outros dados, como exemplo, de SAGE. O programa inclui várias ferramentas de clusterização, dentre eles: o método de clusterização hierárquica, que organiza os genes em uma arvore estrutural baseada na suas similaridades; o método de clusterização de medias K, onde os genes são organizados nos clusters; a auto-organização de mapas, onde são montados os clusters dos genes em uma grade bidimensional retangular e os clusters vizinhos são similares. Para cada um desses métodos diferentes, as distâncias mensuradas podem ser usadas (Hoon et al., 2004). Essas ferramentas foram utilizadas no estudo do perfil de expressão diferencial de genes através da técnica de SuperSAGE em Vigna unguiculata, como observado nos capítulos 1 (submetido a injúria mecânica) e o capítulo 2 (ataque pelo vírus do Mosaico Severo do Caupi), com o intuito de se obter um maior entendimento a respeito da relação planta-estresse e/ou planta-patógeno, representando informações a serem utilizadas em programas de melhoramento da cultura. 35 3. REFERÊNCIAS BIBLIOGRÁFICAS Agrios GN (1997) Plant Pathology, Academic Press, San Diego, pp 635. Ahenkora K, Adu-Dapaah HK, Agyemang A (1998) Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp.) leaves. Plant Foods for Human Nutrition, 52: 221-229. Alcântara JP, Monteiro ID, Vasconcelos OL, Freire-Filho FR, Ribeiro VQ (2002) BRS Paraguaçu, novo cultivar de caupi de porte "enramador" e tegumento branco para o estado da Bahia. Revista Ceres, 49(286): 695-703. Amorim LLB, Onofre AVC, Ferreira Neto JRC, Silva RLO, Correia CN, Silva MD, Carvalho R, Horres R, Moretzsohn MC, Sittolin IM, Rocha MM, Freire-Filho FR, Monte SJH, Pandolfi V, Andrad, GP, Pio-Ribeiro G, Kido EA, Benko-Iseppon AM (2009) Mapa genético de feijão-caupi com marcadores derivados de marcadores gênicos e não codificantes. In: 5º Congresso Brasileiro de Melhoramento de Plantas, Guarapari, ES. 5º Congresso Brasileiro de Melhoramento de Plantas, pp 1-4. Araújo JPP, Santos AA, Cardoso MJ, Watt EE (1981) Nota sobre a ocorrência de uma inflorescência ramificada em caupi Vigna unguiculata (L.) Walp. Subsp. unguiculata no Brasil. Revista Ciência Agronômica, Fortaleza, 12(1/2): 187-193. Atabekov JG, Taliansky ME (1990) Expression of plant virus coded transport function by different viral genomes. Advances in Virus Research, 38: 201-248. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology, 215: 403-410. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1): 25-9. 36 Assunção PI, Filho MRL, Resende VL, Barros SCM, Lima SG, Coelho BSR, Lima JAA (2005) Genes diferentes podem conferir resistência ao Cowpea severe mosaic virus em caupi. Fitopatologia Brasileira 30(3): 274-278. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Research 7(10): 986-95. Bachem CW, Van der Hoeven RS, De Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant Journal 9(5): 745-753. Bairoch A, Apweiler R (1998) The Swiss-prot protein sequence data bank and its supplement TrEMBL. Nucleic Acids Research 26(1): 38-42. Barreto DPD, dos Santos AA, Quindere MAW, Vidal JC, Araujo JPP, Walt EE, Rios GP, Neves BP (1988) Epace-10: Nova cultivar de Caupi PARA O CEARÁ. Fortaleza: EPACE Folder. Barros MCS (2007) Efeito do Cowpea severe mosaic vírus na tava fotossintética e na produtividade de plantas de caupi Vigna unguiculata L. (Walp) e avaliação da eficiência do acibenzolar-metil na indução de resistencia ao mosaico severo. Dissertação de Mestrado. UFAL, pp. 43. Barros DR, Beserra JEA, Alfenas-Zerbini P, Pio-Ribeiro G, Zerbini FM (2007) Complete genomic sequence of two isolates of Cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts. Virus Review & Research, 12: 238-239. Benevenutti V, (1996) Gestão governamental de apoio à produção de feijão: o caso de Pernambuco (1991-1994). Dissertação de Mestrado em Administração e Comunicação Rural) - Universidade Federal Rural de Pernambuco, Recife. Benko-Iseppon AM (2001) Estudos moleculares e citogenéticos no caupi e em espécies relacionadas: Avanços e perspectivas. Embrapa Documentos, 56: 327-332. Benko-Iseppon AM (2009) Identificação e Validação de Genes Importantes para a Biotecnologia e Produtividade a partir do Transcriptoma do Feijão-Caupi (Vigna 37 unguiculata). Projeto Submetido ao Edital MCT/CNPq/CT-AGRO/CT-BIOTEC Nº 42/2009. Programa Genoprot - Rede Integrada de Estudos Genômicos e Proteômicos, pp 34. Benko-Iseppon AM, Soares-Cavalcanti NM, Wanderley-Nogueira AC, Berlarmino LC, Silva RRM, Almeida PML, Brunelli KR, Kido LMH, Kido EA (2005) Genes associated with biotic and abiotic stresses in cowpea [Vigna unguiculata (L.) Walp.] and other angiosperms, pp 350-359. In: Nogueira RJMC, Araújo EL, Willadino LG, Cavalcante UMT (Eds.): Environmental Stresses: damages and benefits to plants UFRPE University Press, Recife, pp 500. Benko-Iseppon AM, Rocha MM, Freire-Filho FR, Aragão FJL, Monte SJH, Calsa-Junior T, Pandolfi V, Barbosa PK, Houllou-Kido LM, Grangeiro TB, Oliveira JJA, Vasconcelos IM, Ramos MV, Campos FAP, Silveira JAG, Kido EA (2008) Genômica funcional, estrutural e comparativa de feijão-caupi (Vigna unguiculata). In: Anais do I Encontro de Avaliação do Programa Rede Nordeste de Biotecnologia – RENORBIO, Brasília, Ministério da Ciência e Tecnologia, 1: 7-8. Benko-Iseppon AM, Galdino SL, Calsa-Junior T, Kido EA, Tossi A, Belarmino LC, Crovella S (2010) Plant Antimicrobial Peptides. Current Protein & Peptide Science, ISSN: pp 1389-2037. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, Wheeler DL (1999) Nucleic Acids Res. 26:1-7. Binneck E (2004) As Ômicas: integrando a bioinformação. Biotecnologia Ciência e Desenvolvimento. Brasília, 32: 28-37. Borém A, Carneiro JES (1998) A cultura. In: VIEIRA C, PAULA JR, TJ, BORÉM A (Ed.) Feijão: aspectos gerais e cultura no estado de Minas Gerais. Viçosa: UFV, 13-17. Bray EA (1993) Molecular responses to water deficit. Plant Physiology 103: 1035-1040. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing 38 (MPSS) on microbead arrays. Nature Biotechnology, New York, 18(6): 630-634. Erratum in: Nature Biotechnology, New York, 18(10): 1021. Bressani R (1993) Grain quality of common beans. Food Reviews International, 9(2): 237-297. Brioso PST (2006) Técnicas moleculares na identificação de vírus em feijão-caupi. In: Congresso Nacional do Feijão-caupi (CONAC). VI Reunião Nacional de FeijãoCaupi. Anais do Congresso Nacional do Feijão-caupi (CONAC). VI Reunião Nacional de Feijão-Caupi, Teresina (PI), EMBRAPA, 121: 1-5. Byun YJ, Kim HJ, Lee DH (2009) LongSAGE analysis of the early response to cold stress in Arabidopsis leaf. Planta, 229(6): 1181-1200. Calsa JR T, Figueira A (2007) Serial Analysis of Gene Expression in SugarCane (Saccharum SPP.) Leaves Revelealed Alternative C4 Metabolism and Putative Antisense Transcripts. Plant Molecular Biology, 63: 745-762. Carbonell SAM, Carvalho CRL, Pereira VR (2003) Qualidade tecnológica de grãos de genótipos de feijoeiro cultivados em diferentes ambientes. Bragantia, 62(3): 369379. Cardoso MJ, Freire-Filho FR, Athayde Sobrinho C (1990) BR 14-MULATO: nova cultivar de feijão macassar para o estado do Piauí. Teresina: EMBRAPA-UEPAE de Teresina 4p. (EMBRAPA-UEPAE de Teresina. Comunicado Técnico. 48). Cardoso MJ, Santos AA, Freire-Filho FR, Frota AB (1988) “BR 12-Canindé”: cultivar de feijão macassar precoce com resistência múltipla a vírus. Teresina: EMBRAPAUEPAE de Teresina 3p. (EMBRAPAUEPAE de Teresina. Comunicado Técnico, 39). Carsky RJ, Vanlauwe B, Lyasse O (2002) Cowpea rotation as a resource management technology for cereal-based systems in the savannas of West Africa. In: Fatokun CA Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 252-266. Centers for Disease Control and Prevention (fevereiro, 2010) http://www.cdc.gov/ 39 Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinnion in Plant Biology, 5: 250-257. Chen X, Bruening G (1992) Nucleotide sequence and genetic map of cowpea severe mosaic virus RNA 2 and comparisons with RNA 2 of other comoviruses Virology. Journal-Article, 187(2): 682-92. Chen X, Laudeman WT, Rushton JP, Spraggins AT, Timko PM (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics, 8: 129-37. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129(2): 661-677. Christensen TM, Vejlupkova Z, Sharma, YK, Arthur KM, Spatafora JW, Albright CA, Meeley RB, Duvick JP, Quatrano RS, Fowler JE (2003) Conserved subgroups, developmental regulation in the monocot rop gene family. Plant Physiology, 133(4): 1791-1808. Close J, Wanamaker S, Roose ML, Lyon M (2007) HarvEST. Methods in Molecular Biology 406: 161-177. Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, Sági L (2005) SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theoretical and Applied Genetics, 111(6): 1118-1126. Conesa A, Götz S (2008) Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. International Journal of Plant Genomics, 2008: 619832. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21: 3674-3676. 40 Costa CL, Lin MT, Kitajima EW, Santos AA, Mesquita RCM, Freire-Filho FR (1978) Cerotoma arcuata (Oliv.), um crisomelídeo vector do mosaico da Vigna no Brasil. Fitopatologia Brasileira, 3: 81-82. de Nettancourt D (1997) Incompatibility in angiosperms. Sexual Plant Reproduction, 10:185-197. De Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open Source Clustering Software. Bioinformatics. 20 (9): 1453-1454. Dias GB, Rangel TBA (2007) Indução de resistência em plantas: o papel do oxido nítrico. Revista Capixaba de Ciência e Tecnologia, Vitória, 3: 1-8. Dixon RA, Harrison MJ (1990) Activation, structure, and organization of genes involved in microbial defense in plants. Advances in Genetics, 28:165-234. Dong FG, Wilson KG, Makaroff CA (1998) The radish (Raphanus sativus L.) mitochondrial cox2 gene contains an ACG at the predicted translation initiation. Current Genetics, 34: 79-87. Duvick DN (1986) Plant breeding: past achievements and expectations for the future. Economic Botany, 40: 289-297. Durrant WE, Dong X (2004) Systemic Acquired Resistance. Annual Review of Phytopathology, 42: 185-209. Durrant W, Rowland O, Piedras P, Hammond-Kosack K, Jones J (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell, 12: 963-977. Eckey-kaltenback H, Kierfer E, Grosskopf E, Ernst D, Sandermann H (1997) Differential transcript induction of parsley pathogenesis related proteins and of small heat shock protein by ozone and heat stress. Plant Molecular Biology, 33: 343-350. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.) Field Crops Research, 53(1-3): 187-204. 41 Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genomic-wide expression pattern. Proceedings of the National Academy of Science USA, 95: 14863-14868. EMBRAPA (1990) Centro Nacional de Pesquisa de Arroz e Feijão (Goiânia, GO). Catálogo descritivo de germoplasma de caupi (Vigna unguiculata (L.) Walp.), Goiânia, pp 16 (EMBRAPA-CNPAF. Documentos, 31). Emmert DB, Stoehr PJ, Stoesser G, Cameron GN (1994) The European Bioinformatics Institute (EBI) databases. Nucleic Acids Research, 22(17): 3445-3449. Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8:186-194. Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8:175-185. Fall L, Diouf D, Fall-Ndiaye MA, Badiane FA, Gueye M (2003) Genetic diversity in cowpea, [Vigna unguiculata (L.) Walp.] varieties determined by ARA and RAPD Techniques. African Journal of Biotecnochnology, 2: 48-50. Félix JM (2002) “Genoma Funcional”, Biotecnologia, Ciência &Desenvolvimento, Nº 24, janeiro a fevereiro. Fernandes JB, Sousa NA, Holanda JS. (1990). BR 16-Chapéu-de-couro: nova cultivar de feijão macassar para o sertão do Rio Grande do Norte. Natal: EMPARN Folder. Fizames C, (2004) The Arabidopsis root transcriptome by serial analysis of gene expression gene identification using the genome sequence. Plant Physiology, 134: 67-80. Fleischmann RD, Adams MD, WhiteO, Clayton R A, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G G, FitzHugh W, Fields CA, Gocayne JD, Scott JD, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback T, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman J L, Fuhrmann JL, Geoghagen NS, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) 42 Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269: 496-512. Flint SJ, Enquist LW, Krug RM, Racaniello VR, Skalka AM (2000) Principles of Virology: Molecular Biology, Pathogenesis and Control. ASM Press, pp 804. Freeman WM, Robertson DJ, Vrana KE (2000) Fundamentals of DNA hybridization arrays for gene expression analysis. Biotechniques, 29: 1042-1055. Freire-Filho FR, Cardoso MJ, Araújo AG (1983) Caupi: nomenclatura científica e nomes vulgares. Pesquisa Agropecuária Brasileira, 18(12): 136-137. Freire-Filho FR, Santos AA, Cardoso MJ, Silva PHS, Ribeiro VQ (1994) BR 17 – Gurguéia: nova cultivar de caupi com resistência a vírus para o Piauí. Teresina: EMBRAPACPAMN 6p. (EMBRAPA-CPAMN. Comunicado Técnico, 61). Freire-Filho FR, Ribeiro VQ, Barreto PD, Santos CAF (1999) Melhoramento genético de Caupi (Vigna unguiculata (L.) Walp.) na Região do Nordeste. In: Queiroz MA, Goedert CO, Ramos SRR (Ed.). Recursos genéticos e melhoramento de plantas para o Nordeste brasileiro. Petrolina: Embrapa-CPATSA; Brasília, DF: EmbrapaCenargen. Freire-Filho FR, Rocha MM, Ribeiro VQ, Lopes ACA (2002) Adaptabilidade e estabilidade da produtividade de grãos de linhagens de caupi de porte enramador. Revista Ceres, 49: (284)383-393. Freire-Filho FR, Lima JAA, Ribeiro VQ (2005) Feijão-Caupi. Avanços Tecnológicos. Brasília, Embrapa Informação Tecnológica, PP 519. Freire-Filho FR, Rocha MM, Ribeiro VQ, Lopes ACA (2005) Adaptabilidade e estabilidade produtiva de feijão-caupi, Ciência Rural, 35(1): 24-30. Frota AB, Pereira PR (2000) Caracterização da produção de feijão-caupi na região MeioNorte do Brasil. in: Cardoso, MJ. (org). A cultura do feijão-caupi no Meio-Norte do Brasil. Teresina: Embrapa Meio-Norte, 28: 9-25. 43 Gibas C, Jambeck P (2001) Desenvolvendo bioinformática: ferramentas de software para aplicações em biologia. Tradução: Milarepa Ltda. Rio de Janeiro: Editora Campus. 440p. Gibbings JG, Cook BP, Dufault MR, Madden SL, Khuri S, Turnbull CJ, Dunwell JM (2003) Global transcript analysis of rice leaf and seed using SAGE technology. Plant Biotechnology Journal, 1: 271-285. Gowda Malali, Venur RC, Huameng LI, Jantasuriyarat C, Songbiao Chen, Bellizzi M, Pampanwar V, Kim H, Dean RA, Stahlberg E, Wing R, Soderlund C, Wang GL (2007) Magnaporthe grisea infection triggers RNA variation and antisense transcript expression in rice. Plant Physiology, 144: (1)524-533. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJM, Marra MA (2003) A SAGE approach to discovery of genes involved in autophagic cell death. Current Biology, 13: 358-363 Gray SM (1996) Plant virus protein involved in natural vector transmission. Trends in Microbiology, 4: 259-264. Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Research, 82: 103-134. Hammond-Kosack K, Jones JDG (2000) Responses to Plant Pathogens. In: Buchanan B B Gruissem, W Jones R L. Biochemistry & molecular biology of plants. Rockville: American Society of Plant Physiologists, 1102-1156. Hanriott L, Keime C, Gay N, Faure C, Dossat C, Wincker P, Scoté-Blachon C, PeyronC, Gandrillon (2008) A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics, 9: 418. Harvest, EST database (2009) HarvEST: Barley, HarvEST: Cowpea, University of California, Riverside. http://www.harvest-web.org/ (Outubro 2, 2009). 44 Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology London, 3(4): 315-319. Henikoff S, Henikoff JG (1991) "Automated assembly of protein blocks for database searching", NAR, 19: 6565-6572; Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Research, 9: 868-877. Hull RM (2002) Plant Virology. 4th edition. Academic Press, San Diego. IPA (Recife, PE) (1989) Caupi-IPA-206: nova cultivar de feijao macassar (Vigna unguiculata [L] Walp.) tipo moita para Pernambuco. Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53(379): 2401-2410. Jones SJ, Riddle DL, Pouzyrev AT, Velculescu VE, Hillier L, Eddy SR, Stricklin SL, Baillie DL, Waterston R, Marra MA (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Research 11: 1346–1352. Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Molecular Biology, 52: 553-567. Kay DE (1979) Legumbres alimenticias. Zaragoza, Editorial Acribia. pp 437. Kahn RA, Fu H, Roy CR (2002) Cellular hijacking: a common strategy for microbial infection. Trends in Biochemichal Sciences, 27: 308-314. Kido, EA, Pandolfi V, Barbosa PK, Berlamino L C, Barbosa Silva A, Brandao RMSS, Araujo AS, Castro JF, Calsa-Junior T, Rocha MM, Winter P, Kahl G, Rotter B, Horres R, Molina C, Jungmann R, Amorim LLB, Onofre AVC, Ferreira Neto JRC, Granjeiro TB, Lima AS, Lobo MDP, Houlou-Kido LM, Carvalho R, Wanderley AC, Barros OS, Vieira-Mello GS, Brasileiro-Vidal AC, Bortoleti KCA, Pedrosa-Harand A, Andrade 45 PP, Andrade GP, Pio-Ribeiro G, Sittolin IM, Freire Filho FR, Castro LA, BenkoIseppon AM (2009). Brazilian cowpea transcriptome project over five million expressed sequence tags to understand salinity and virus resistance. In XII Congresso Brasileiro de Fisiologia Vegetal, Fortaleza Livro de Resumos Fortaleza CE SPH Comunicação Visual. pp 3-410. Korth KL (2003) Profiling the response of plants to herbivorous insects. Genome Biol. 4 (7): 221. Kitajima, EW (1986) Lista de publicações sobre viroses e enfermidades correlatas de plantas no Brasil (1911 - 1985). Fitopatologia Brasileira, Brasília, v. suplemento. Kitajima, EW (1995) Lista de publicações sobre viroses e enfermidades correlatas de plantas no Brasil (1986 - 1993). Fitopatologia Brasileira, Brasília, v. suplemento, pp 1-92. Krupa V S (2003) Joint Effects of Elevated Levels of Ultraviolet-B Radiation, Carbon Dioxide and Ozone on Plants. American Society for Photobiology, 535-542. Krutman S, Medeiros LC, Santana JC (1973) da. Indicação para o feijoeiro de macassar Vigna simensis l. em Surubim na Zona do Agreste. Pesquisa Agropecuária do Nordeste, 5(1): 5-12. Lengauer T (2001) Computational Biology at the Beginning of the Post-genomic Era. University of Bonn, Berlin, Lecture Notes in Computer Science, 341-355. Leon J, Rojo E, Sánchez-Serrano JJ (2001) Wound signalling in plants Journal of Experimental Botany. 52( 354):1-9. Liang P, Pardee AB (1992.) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, Washington, 257: 67-971. Lima JAA, Lima RCA, Gonçalves MFB, Sittolin IM (1998) Biological and serological characteristics of a genetically different cowpea server mosaic virus strain. Virus Reviews & Research, 03(1-2): 57-65. 46 Lima JAA, Sittolin IM, Lima RCA (2005) Diagnose e estratégias de controle de doenças ocasionadas por vírus. In: Freire-Filho FR, Lima JAA, Silva PHS, Ribeiro VQ, Eds.) Feijão caupi: Avanços tecnológicos. Embrapa Informação Tecnológica, 404-459. Lin MT, Kitajima EW, Rios GP (1981) Serological identification of several cowpea viruses in Central Brasil. Fitopatologia Brasileira, 6: 73-85. Lorenz WW, Dean JF (2002) SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiology, 22(5): 301-10. Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nature Reviews, Molecular and Cell Biology, 2: 849-857. Lu G, Jantasuriyarat C, Zhou B, Wang GL (2004) Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theoretical and Applied Genetics 108: 525-534. McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends in Biochemical Sciences, London, 25(2): 79-82. Machado CF, Freire Filho FR, Ribeiro VQ, Costa DSS, Amorim AF (2007) Herança da inflorescência composta da cultivar de feijão-caupi cacheado. Ciência e Agrotecnologia, 31(5): 1347-1350. Maia FMM, Oliveira JTA, Matos MRT, Moreira RA, Vasconcelos IM (2000) Proximate composition, amino acid contend and haemagglutinating and trypsin-inhibiting activities of some Brazilian Vigna unguiculata (L.) Walp cultivars. Journal of the Science of Food and Agriculture, 80(4): 453-458. Matsumura H, Nirasawa S, Terauchi R (1999) Technical advance: transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant Jounal, 20: 719-726. 47 Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Iwate, 100(26): 15718-15723. Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2005) SuperSAGE. Cell Microbiology, 7(1): 11-18. Maréchal R, Mascherpa JM, Stainier F (1978) Étude taxonomique d’um groupe complexe d’espèces de genres Phaseolus et Vigna (Papilionaceae) sur la base de donneés morphologiques et polliniques, traitées par l’analyse informatique. Boissiera, 28: 1-273. Martins LMV, Neves MCP, Rumjanek NG (1997) Growth characteristics and symbiotic efficiency of rhizobia isolated from cowpea nodules of the north-east region of Brazil. Soil Biology and Biochemistry, 29: 1005-1010. Matthews REF (1991) Plant Virology, 2ed. New York: Academic Press, pp 835. Medeiros RB, Ferreira MASV, Dianese JC (2003) Mecanismos de agressão e defesa nas interações planta-patógeno. Ed. UnB, pp 289. Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, Ning J, Haudenschild CD (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nature Biotechnology, 22(8): 10061011. Miranda P, Pimentel MH, Tavares JA, Raposo JAAA, Barros EOC, Marques MS, Cipriano G, Silva JG, Souza OP (1996) Desenvolvimento de germoplasma de caupi para condições de sequeiro. In: EMPRESA PERNAMBUCANA DE PESQUISA AGROPECUÁRIA (Recife, PE). Relatório de pesquisa apresentado a FACEPE: programação 1995/1996. Recife: IPA, pp 48-79. Moraes MG (1998) Mecanismos de resistência adquirida em plantas. Revisão anual de Patologia Vegetal, 6: 261-284. 48 Mandahar CL, (1981) Virus transmission through seed and pollen. In Plant Diseases and Vectors: Ecology and Epidemiology, K. Maramorosch and K.F. Harris, eds (New York: Academic Press, Inc.), pp. 241-292. Maramorosch and K.F. Harris, eds (New York: Academic Press, Inc.), pp 241-292. Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: The Drought stress-responsive transcriptome of Chickpea roots. BMC Genomics, 9: 553. Ng JCK, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review Phytopathology, 44: 183-212. Nielsen SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Science, 33: 469-472. Nielsen SS, Ohler TA, Mitchell CA (1997) Cowpea leaves for human consumption: production, utilization and nutrient composition. In: Singh, B.B., Moham Raj, D.R., Dashiell, K.E., Jackai, L.E.N. (Eds.), Advances in Cowpea Research. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Centre for Agricultural Science (JIRCAS), IITA, Ibadan, Nigeria, pp 326332. Nimchuk Z, Eulgem T, Holt III BF, Dangl JL, (2003) Recognition and response in the plant immune system. Annual Review of Genetics, 37: 579-609. Nutter FW (1997) Quantifying the temporal dynamics of plant virus epidemics. A review. Crop Protection, 16: 603-618. Oliveira JTA (2006) Mecanismos de defesa do feijão-caupi [Vigna unguiculata (l.) Walp.] contra patógenos cpamn.embrapa.br Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology, 48(5-6): 551-73. 49 Orozco-Cárdenas ML, Ryan CA (1999) Hydrogen Peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Science USA, 96: 6553-6557. Padulosi S, Ng NQ (1997) Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN, eds. Advances in cowpea research. Ibadan, Nigeria: IITA. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS), 1–12. Paterniani E (2006) “Técnicas de manipulação genética em plantas: Uma análise crítica”. Genética na Escola. Revista Semestral publicada pela SBG (Sociedade Brasileira de Genética), 1: 25-29. Pascholati SF, Leite B (1995) Hospedeiro: mecanismos de resistência. In: Bergamin Filho, A., Kimati, H. & Amorim, L. (Eds.) Manual de Fitopatologia - Princípios e Conceitos. São Paulo. Ed. Agronômica Ceres, pp 417-454. Paz CD, Lima JAA, Pio-Ribeiro G, Assis Filho FM, Andrade GP, Gonçalves MFB (1999) Purificação de um isolado do vírus do mosaico severo do caupi, obtido em Pernambuco, produção de antissoros e determinação de fontes de resistência em caupi. Summa Phytopathologica, 25: 285-188 Paiva JB, Teófilo EM, Santos JHR, Lima JAA dos, Gonçalves MFB, Silveira L de FS (1988) “Setentão”: nova cultivar de feijão-de-corda para o estado do Ceará. Fortaleza: UFC, Folder. Pereira PAA, Peloso MJ, Costa JGC, Ferreira CM, Yokoyama LP (2001) Produto feijão: perspectivas de produção, do consumo e do melhoramento genético. In: reunião nacional de pesquisa de caupi, Teresina; Embrapa Meio Norte 1: 307-311. Pio-Ribeiro G, Andrade GP, Assis Filho FM (2005) Doenças do caupi (Vigna unguiculata). In: Kimati, H.; Amorim L.; Bergamim Filho A.; Camargo, L.E.A.; Rezende, J.A.M. (Eds.) Manual de fitopatologia: doenças das plantas cultivadas. 4. ed. São Paulo: Agronômica Ceres, 2: 215-222. 50 Pirone TP (1991) Viral genes and gene products that determine insect transmissibility. Seminars in Virol, 2: 81-87. Poole R, Barker G, Werner K, Biggi G, Coghill J, Gibbings J, Berry S, Dunwell J, Edwards K (2008) Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription. BMC Genomics, 9: 475. Qiang L, Nanming Z, Yamaguch-Sinozaki K, Shinozki K (2000) Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chinese Science Bulletin, 45(11): 970-975. Quass CF, (1995) In: C.F. Quass, Editor, Guidelines for the production of Cowpeas, National Department of Agriculture, Pretoria. Rachie KO (1985) Introduction. In: Singh SR, Rachie KO, editor. Cowpea research, production and utilization. John Wiley and Sons, Chichester, UK, pp 21-28. Reymond P, Weber H, Damond M, Farmer EE, (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12: 707-719. Robertson G, (2007) Genome-wide profiles of STAT1 DNA association using chromatin immuno precipitation and massively parallel sequencing. Nat. Methods, 4: 651657. Robinson SJ, Cram DJ, Lewis CT, Parkin IA (2004) Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol, 136(2): 32233233. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW (2002) Using the transcriptome to annotate the genome. Nat Biotechnol, 20: 508-512. Sanginga N, Dashiell KE, Diels J, Vanlauwe B, Lyasse O, Carsky RJ, Tarawali S, Asafo-Adjei B, Menkir A, SchulzS, Singh BB, Chikoye D, Keatinge D, Ortiz R (2003) Sustainable resource management coupled to resilient germ-plasm to provide new intensive cereal-grain-legume livestock systems in the dry savanna. Agric Ecosyst Environ, 100: 305-314. 51 Santos AA, Freire-Filho FR, Cardoso MJ (1987) BR 10 – Piauí: cultivar de feijão macassar (Vigna unguiculata) com resistência múltipla a vírus. Fitopatologia Brasileira 12: 400-402. Santos FML, Lima JAA, Santos AA, Barreto, PD (1999) Infecções simples e múltiplas de vírus em caupi no Ceará. Fitopatologia Brasileira, 24: 518-522. Santos CAF, Barros GAA, Santos ICCN, Ferraz MGS (2008). Comportamento agronômico e qualidade culinária de feijão-caupi no Vale do São Francisco. Horticultura Brasileira, 26: 404-408. Sanz MJ, Sanchez G, Calatayud V, Gallego MT, Cervero J (2002) La contaminación atmosférica de los bosques: Guia para la indentificacion de los daños visibles causados por ozone. Ministerio Del Médio Ambiente, Madrid, pp 161. Scherer NM (2002) Evolução molecular darwiniana nas proteínas relacionadas à patogêneses (PRs) em plantas. Dissertação de mestrado. Universidade Federal do Rio Grande do Sul. Instituto de Biociências. Programa de Pós-Graduação em Genética e Biologia Molecular. Schena M, Shalon D, Davis WR, Brown OP (1995) Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science, 270(5235): 467-470. Shimkets RA, Lowe DG, Tsu-Ning Tai J, Sehl P, Jin H. et al. (1999) Gene expression analysis by transcript profiling coupled to a gene database query. Nature Biotechnology, 17: 798-803. Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinformatics, 3: 265-274. Singh BB, Tarawali SA, (1997) Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. In: Renard, C. (Ed.), Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems. CAB International in Association with ICRISAT and ILRI, Wallingford, UK, pp 79-100. 52 Singh BB, d’ Hughes J (1998) Sources of multiple virus resistance. IITA Annual Report . Project 11 24-27. Singh BB, d’ Hughes J (1999) Sources of multiples virus resistance. IITA Annual Report . Project 11. 30. Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2002) Recent Progress In Cowpea Breeding. In: Fatokun, CA, Tarawali SA, Singh BB, Kormawa PM and Tam’Ò M. (Eds.). Challenges and opportunities for enhancing sustainable cowpea production. Ibadan: IITA, pp 22-40. Singh BB, Ajeigbe HA, Tarawali SA, Fernandez-Rivera S, Musa Abubakar (2003) Improving the production and utilization of cowpea as food and fodder. Field Crops Research, 84(1-2): 169-177. Soares, MAS, Machado OLT (2007). Defesa de plantas: Sinalização química e espécies reativas de oxigênio. Revista Tropica - Ciências Agrárias e Biológicas, 1: 19. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nature Reviews in Microbiology, 3(10): 789-98. Staskawicz B, Ausubel F, Baker B, Ellis J, Jones J (1995) Molecular genetics of plant disease resistance. Science, 268: 661-667. Sticher L, Mauch Mani B, Metraux JP (1997) Systemic acquired resistance. Annual Review of Phytopathology, 35: 235-270. Sutcliffe JG, Foye PE, Erlander MG, Hilbush BS, Bodzin LJ, Durham JT, Hasel KW (2000) TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proceedings of the National Academy of Sciences USA, 97: 1976-1981. Shoyinka SA (1974) Status of virus diseases of cowpea in Nigeria. in Proceedings of the First IITA Grain Legume Improvement Workshop. IITA, Ibadan, Nigéria, P 270273. Shoyinka SA, Taiwo MA, Ansa OA (1988) Legume viruses in Africa. In: Virus diseases of plants in Africa, edited by Williams, AO, Mbiele AL and Nkouka N. OAU/ STRC Scientific Publication, Lagos, Nigeria, pp 39–57. 53 Taiz L, Zeiger E (1998) Plant defenses: surface protectants and secondary metabolites. In: Taiz L; Zeiger E. Plant Physiology, 13: 347-376. Tarawali SA, Singh BB, Gupta SC, Tabo R, Harris F, Nokoe S,Fernández-Rivera S, Bationo A, Manyong VM, MakindeK, Odion EC (2002) Cowpea as a key factor for a new approach to integrated crop/livestock systems research in the dry savannas of West Africa. In: Fatakun, C.A., Tarawali, S.A., Singh, B.B., Kormawa, P.M., Tamo, M. (Eds.), Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Proceedings of the World Cowpea Conference III, IITA, Ibadan Nigeria 4–8 September, IITA Ibadan, Nigeria. Tarawali SA, Singh BB, Peters M, Blade SF (1997) Cowpea haulms as fodder. In: Singh BB, Mohan Raj DR, Dashie KE, Jackai LEN (eds) Advances in Cowpea Research. Co publication of International Institute of Tropical Agricuture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). Sayce, Devon, UK, 313-325. Tateno Y, Imanishi T, Miyazaki S, Fukami-Kobayashi K, Saitou N, Sugawara H, Gojobori T 2002) DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Research. 30(1): 27-30. Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiological Letters, 174(2): 247-50. Teófilo EM, Paiva JB, Vidal JJ (1990) Renovação de estoque e caracterização de 94 cultivares de feijão-de-corda (Vigna sinensis (L.) Savi). In: Universidade Federal do Ceará (Fortaleza, CE). Centro de Ciências Agrárias. Relatório de pesquisa 1988: criação e difusão de novos cultivares de feijão-de-corda para o estado do Ceará, Fortaleza: UFC/CCA/FCPC , 1-5. Thottappilly G, Rossel HW (1985) World-wide occurrence and distribution of virus diseases. In Cowpea research, production and utilization Edited by: Singh SR and Rachie KO. John Wiley and Sons, Chichester, 155-171. Thottappilly G, Rossel HW (1988) Seed transmission of cowpea (yellow) mosaic virus unlikely in cowpea. Tropical Grain Legume Bulletin, 34: 27. 54 Thomma BPHJ, Broekaert WF (1998) Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thaliana. Plant Physiology and Biochemistry, 36: 533-537. Timko MP, Gowda BS, Ouedraogo J, Ousmane B (2007) in Integrating New Technologies for Striga Control:Towards Ending the Witch-Hunt, G. Ejeta, J. Gressel,Eds. World Scientific, Singapore, pp 115-128. Timko MP, Singh BB (2008) Genomics of Tropical Crop Plants and Models. New York, 1: 227-258. Toriello HV (2005) Folic acid and neural tube defects. Genetics in Medicine, 7(4): 283284. Umaharan P, Ariyanayagan RP, Haque SQ, (1996) Resistance to cowpea severe mosaic virus, determined by three dosage dependent genes in Vigna unguiculata (L.) Walp. Euphytica, 95: 49-55. Vallad GE, Goodman RM (2004) Review and interpretation acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44: 19201934. Van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter, 12: 245264. Van Boxtel J, Singh BB, Thottappilly G, Maule AJ (2000) Resistance of (Vigna unguiculata [L.] Walp.) breeding lines to blackeye cowpea mosaic and cowpea aphid borne mosaic potyvirus isolates under experimental conditions. Journal of Plant Disease and Protection, 107: 197-204. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science, 270: 484-487. Velculescu VE, Vogelstein B, Kinzler KW (2000) Analysing uncharted transcriptomes with SAGE. Trends in Genetics, 16(10): 423-5. 55 Velculescu VE, Zhang L, Zhou W, Vogelstein J. Basrai MA, Bassett JRDE, Hieter IP, Volgelstein B, Kinzler KW (1997) Characterization of the Yeast Transcriptome. Cell, 88: 243-251. Verdcourt B (1970) Studies in the Leguminosae - Papilionoidea for the flora of tropical East Africa. Kew Bulletin, 24: 597-569. Viera C (1983) Cultura do feijão. 2. ed. Viçosa, Universidade Federal de Viçosa/Minas Gerais, pp 26- 65. Vilarinho AA (2007) BRS Guariba – cultivar de feijão-caupi de alto desempenho em Roraima. Artigo em Hypertexto. Disponível em: <http://www.infobibos.com/ Artigos/2007_4/Guariba/index.htm> Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews in Genetics, 6: 206-220. Wang X, Gorlitsky R, Almeida JS (2005) From xml to rdf: how semantic web technologies will change the design of ’omic’ standards. Nature Biotechnology, 23: 1099-1103. Walkey DGA, Payne CJ, (1990) The reaction of two lettuce cultivars to mixed infection by beet western yellows virus, lettuce mosaic virus and cucumber mosaic virus. Plant Pathology, 39: 156-160. Watt EE, Araújo JPP, Guazzelli RJ (1987) Desenvolvimento de germoplasma de caupi. In: Reunião nacional de pesquisa de caupi, 2. Goiânia, Resumos. Goiânia: EmbrapaCNPAF, pp 44. Wheele DL, Church DM, Lash AE, Leipe DD, Madden TL, Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner L, Rapp BA (2002) Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Research, 30: 13-16. Wheeler DL, Chappey C, Lash A, Leipe DD, Madden TL, Schuler GD, Tatusova T, Rapp BA (2000). Nucleic Acids Research, 28: 10–14. 56 Westbrook J, Feng Z, Jain S, Bhat TN, Thanki N, Ravichandran V, Gary Gilliland L, Bluhm W, Weissig H, Greer DS, Bourne PE, Berman HM (2002) The Protein Data Bank: unifying the archive. Nucleic Acids Research, 30 (1): 245-248. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64: 3-19. White JF, Pacey-Miller T, Bundock PC, Henry (2008) Differential LongSAGE tag abundance analysis in a barley seed germination time course and validation with relative real-time RT-PCR. Plant Science, 175(5): 858-867. White JF, Pacey-Miller T, Crawford AC, Cordeiro GM, Barbary D, Bundock PC Henry (2006) Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE), Plant Biotechnology Journal, 4(3): 289-301. Woolhouse MEJ, Webster JP, Domingo E, Charles-Worth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their host. Nature Genetetics, 32: 569-577. Wootton JC, Federhen S (1996) Analysis of compositionally biased regions insequence databases. Methods in Enzymology, 266: 554-571. Xiong L, Schumaker SK, Zhu J-K (2002) Cell Signaling during Cold, Drought, and Salt Stress. The Plant Cell, 14: 165-183. Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Fast screening of microsatellite markers in cotton with PAGE silver staining. Acta Gossypii Sinica, 12: 267-269. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kenneth W, Dagger K (1997) Gene Expression Profiles in Normal and Cancer Cells. Science, 276(316): 1268-1272. Zerbini FM, Carvalho MG, Zambolim EM (2002) Introdução à Virologia Vegetal. Editora UFV, Viçosa, MG. pp145. Zerbini FM, Alfenas PF, Andrade EC (2005) O silenciamento de RNA como um mecanismo de defesa de plantas a vírus. Revisão Anual de Patologia de Plantas – RAPP, 13: 191-244. 57 CAPÍTULO 1 Transcriptional profiling of wound stress response in Vigna unguiculata (L.) Walp. revealed by SuperSAGE To be submitted to the journal BMC Genomics 58 4.1. ABSTRACT Background: Despite its importance, the overall transcriptional response after wounding in higher plants is still scarcely known. Evidences have shown that plants tend to defend themselves against a pathogen attack, immediately after wounding perception, but similar responses have been recognized after some abiotic stress conditions. Legumes are among the most important crops, but little knowledge is available regarding their response profile after wounding. Cowpea (Vigna unguiculata) is among the most tolerant crops against biotic and abiotic conditions in semi-arid areas, with as in tropical regions of Africa and South America, being a natural candidate to deliver important genes for biotechnological approaches regarding other crops, especially legume pulses. Results: Considering this demand, the NordEST network (www.vigna.ufpe.br) generated two SuperSAGE libraries from mRNA isolated from leaves submitted to mechanical injury (C2), as compared with a negative control (C1, leaves without injury). A total of 113.828 tags have been generated for C1 and 110.686 for C2. From these, 5.481 tags presented 100% identity with the NordEST EST bank, from a total of 10.907 unique tags analyzed. A total of 1.503 was unequivocally recognized as differentially expressed, from which 60% were super-expressed and 40% were repressed. From 3.851 tags without known function, 1.692 presented similarities with available ESTs from V. unguiculata, uncovering the high potential of this approach for the discovery of unknown genes. The remaining 2.159 tags presented similarity neither with cowpea ESTs nor with other known plant sequences, also representing a source for novelty. Considering the differential expression (up- and down-regulated) the functional GO (Gene Ontology) categories have been annotated regarding biological processes, molecular functions and cellular components. The results revealed considerable amounts of sequences related to reduction of oxidative processes (20%), transduction (14%), transcription regulation (10%), transport (9%), and proteolysis (6%), among other. Conclusion: The genes corresponding to such categories are known to be involved in pathways especially regarding response to abiotic stress, indicating their potential use as targets for RTqPCR essays using duplicates of the mRNA samples used to generate the here analyzed libraries. Keywords: Vigna unguiculata; tolerance to stress; Super Serial analysis of Genes Expression (SuperSAGE); gene expression. 59 4.2. BACKGROUND Higher plants are faced with the difficulty that they must survive and propagate while being immobilized within their local environment. There, they can be exposed to all types of abiotic stresses and to the attack of living enemies that to use plant tissue as a home or food [1]. Among different kinds of biotic and abiotic threats, wounding is an important stress factor that may affect plants. Many factors can contribute to wounding, such as insect predation, wind, rain, and chilling. Despite of being considered an abiotic stress factor, mechanical wounding is a very important biotic process, since it provides pathways for pathogen invasion. To respond efficiently, plants have to defend themselves a priori against pathogen attack, immediately after wounding perception. Hence, an integrated response considering the pathogen and wounding pathways has been hypothesized, with evidences showing that wounding regulates a number of genes that are also regulated by or play a role in pathogen response [2, 3, 4, 5]. To date, the overall response to wounding in higher plants is known especially for model plants as Arabidopsis thaliana [4, 6, 7, 8] and to a lesser extent in rice (Oryza sativa) [9], and tomato (Lycopersicon esculentum) plants [10]; with few available information regarding important crops, such as soybean (Cicer arietinum) [11, 12]. Besides physiological evaluations, no expressions assays have been found so far for important tropical legumes as common bean (Phaseolus vulgaris) and cowpea (Vigna unguiculata). Cowpea (Vigna unguiculata (L.) Walp.) is an essential element of the tropical cropping systems, especially considering dry areas of Africa, South America and Asia, but also some temperate (especially semi-arid) areas of other regions as the Mediterranean region and the southern region of the United States [13]. In stress situations, plants respond with drastic changes in expression profiling, with induction of signal cascades immediately after stress perception at cellular level [14]. Previous works have revealed an interconnection among wounding and other biotic and abiotic stresses, as pathogen attack and also other abiotic stresses, as drought and salinity [4, 7, 8]. Responses to such stress categories are known to present both constitutive and inducible resistance mechanisms, with defensive weapons including morphological barriers, secondary metabolites, and antimicrobial proteins that in combination impair pathogen invasion. Countless expression assays have shown, in the 60 past decade that a single plant/pathogen interaction (either compatible or incompatible) is able to recruit or silence hundreds of genes, many of them already known, while others remain to be described [15, 16]. Expression profiling methods are essential to understand questions regarding not only the identity of recruited genes in a given situation, but also to recognize the modulation of such responses, since the surveillance may depend not only on the ‘quality’ of the activated genes, in many cases it may associated with differences in the timing and magnitude of the expression, but also on the contemporary expression of different sets of genes [15, 16]. Among important methods the SAGE (Serial Analysis of Gene Expression) approach allows the simultaneous identification of expressed genes under contrasting situations, allowing the quantification of tags representing different sets of genes [17]. The annotation of these tags has been a concern, since it depends on the availability of annotated cDNA (EST) libraries. Therefore, efforts have been carried out in order to increase the size of SAGE tags, generating technical improvements with emphasis on the methods of LongSAGE (21 pb tags) [18] and SuperSAGE (26 pb tags) [19]. This last method, besides providing better tag-gene annotation, presents the advantage of potential use of the tag as primers for cDNA amplification, its use in RNA interference (RNAi) essays, the exportation of tags for use in DNA arrays (chips) and the use in essays regarding co-expression of two eukaryotic models, in the case of host-pathogen evaluations [20]. The combination of the SuperSAGE approach using high throughput sequencing methods (as 454 Plattaform/Roche; Solexa/Illumina and Applied Biosystems) permitted an increase in the sensitivity of the method for the identification of rare transcripts and isoforms under contrasting stress conditions in legumes [21]. The present work brings evidences regarding the transcriptional profile of cowpea against mechanical wounding using SuperSAGE approach, aiming to bring some light to the processes involved in such response in cowpea, as compared with the up to date knowledge in A. thaliana and other studied higher plants. 61 4. 3. MATERIALS AND METHODS 4.3.1. Mechanical Injury Essay Cowpea plants (cultivar BR-14 Mulato, developed by EMBRAPA-CPMN, Teresina, Brazil) were cultivated in pods with two kg capacity in a greenhouse under anti-aphid net. The substrate was composed by two parts of organic soil to three parts of river sand. The experiment included 45 pods with five seeds per pod, grown under 12/12 h photoperiod and temperature varying from 28 to 32°C. The stress experiment was conducted 20 days after the plantlet emergence, when all plants contained the two first true leaves emerged after the cotyledons. The injury was carried out on five plants per treatment, which were submitted to mechanical stress by rubbing with Carborundum® on the abaxial surface of all true leaves. The treatments consisted of different groups collected 30, 60, 90 minutes and 16 hours after the stress treatment. Plant groups for each treatment and for control (leaves collected without stress) were maintained isolated from the plants grown for each stress experiment, but under the same environmental conditions, aiming to avoid the influence of volatile compounds emitted during the stress treatments. The control group was constituted by the same number and tissues, without injury. Collected materials were properly identified and immediately frozen in liquid N2, being maintained in a deep freezer (-80ºC) until RNA extraction. 4.3.2. Extraction of total RNA and isolation of messenger RNA (mRNA) Total RNA was extracted from cowpea leaves using a CTAB extraction followed by precipitation in LiCl solution, as described by Chang et al. (1993)[22], followed by DNAse treatment and checking the RNA quality and amount in 1,5% (p/v) agarose gel as well as in the Qubit (INVITROGEN®, USA) fluorometer. Each total RNA sample was purified using the RNAeasy (CLONTECH®) kit, being quantified again in fluorometer. Equimolar amounts of the four control treatments (not injured) were combined in order to compose the C1 library. The second library (C2T123) included an equimolar mixture of the injured plants, including the three initial times (30, 60 e 90). The remaining injured sample (16 h) was used to compose the 62 library C2T6. The mRNA isolation was carried out using 1 mg of RNA according to Oligotex-dT (QIAGEN®) batch protocol. 4.3.3. Construction of SuperSage libraries SuperSAGE libraries were developed under supervision of Prof. Dr. Günter Kahl (Frankfurt University) in collaboration with the GenXPro GmbH company (Frankfurt am Main, Germany). Procedures followed the protocol described by [19] with improvements described by [21], and minor modifications. Basically the Poli(A)-RNA was used for the cDNA synthesis using the cDNA Synthesis System (INVITROGEN®, USA) with reverse transcription using a biotinilated oligo-dT containing the restriction site for EcoP15I (CAGCAG). The product was converted to double stranded cDNA, being subsequently fragmented with the enzyme NlaIII (New England Biolabs, NEB®, Beverly, MA). cDNA fragments were ligated to magnetic beads with addition of streptavidin (Promega®, Madison, WI, USA). After washing, the cDNA was divided into two parts, and each was ligated to a different adaptor containing the EcoP15I restriction site using T4 DNA ligase (NEB®). After ligation, both parts were mixed and digested using EcoP15I. The digested products (tags + adapters) were separated in acrilamide gel 10% (p/v) and visualized with ethidium bromide. Fragments with the expected size were isolated from the gel, eluted and purified, with subsequent sticky ends converted to blunt ends using the KOD DNA polymerase (line Thermococcus kodakaraensis KOD1, TOYOBO®, Osaka) and subsequent tag ligation to form ditags. The ditags were PCR amplified (for details see [21]) and directly sequenced by 454 Life Sciences sequencer (Branford, CT, USA). 4.3.4. Analysis of SuperSAGE products From each sequence, 26 bp long tags were extracted using the ‘GXP-Tag Sorter’ software provided by GenXPro (Frankfurt am Main, Germany). Library comparison and primary statistical treatment was carried out using the DiscoverySpace 4.01 software (Canada's Michael Smith Genome Sciences Centre, available at http://www.bcgsc.ca/discoveryspace), after exclusion of singlets (tags appearing a single time). The program also allowed the identification of tags appearing exclusively in a given library (here regarded as unique tags or unigenes), and that differentially 63 transcribed (p-value; p>0.05). Scatter plots of the distribution of the expression ratios (R(ln)) and significance of the results were calculated according to Audic and Claverie (1997) [23]. The frequency ratio was calculated the counted tags of injured library C2 (C2T123+C2T6) in relation to the control C1. In the case of exclusive tags in a given library, the zero frequency in the other library was modified to 0.5 following the recommendations given by the developers of the program DiscoverySpace. The R ratio was considered the modulation value of the transcriptional expression (FC; Fold Change) when R > 1 when super expressed and 1/R when repressed. 4.3.5. Bioinformatics and Annotation of SuperSAGE Tags The tags were first annotated using BLASTn (score ≥ 42) local, against nucleotide sequences of following data banks: (a) NCBI (http://www.ncbi.nlm.nih.gov): only plant ESTs (January 2009); Refseq (plant ESTs; June 2009); (b) TIGR (www.tigr.org/db.shtml), compiled plant sequences (2009); (c) Vigna unguiculata ESTs. This last bank included 202,076 ESTs comprising the private NordEST bank (http:/www.vigna.ufpe.br) with 23,000 ESTs as well as sequences from two public data banks: NCBI (4,000 ESTs) and HarvEST [http://harvest.ucr.edu; (103,923 ESTS). The clusterization was carried out using the program Cap3 [24], via EGassembler (http://egassembler.hgc.jp/) [25]. The unigenes were also annotated using a local BLASTx tool (e-value ≤ 10-10) against the UNIPROT-Swiss-Prot/TrEMBL (http://www.uniprot.org/; release 15.7) database. Best scores were taken considering the BLAST evaluations against the various data banks cited above. In the case of identical scores/e-values the best described sequence was chosen, giving priority to cowpea sequences or taxonomic most related organisms. The functional annotation was carried out using the Blast2GO tool (http://www.blast2go.org) [26], with default parameters and terms according to the Gene Ontology classification [27]. 4.4. Results and Discussion 4.4.1. Functional annotation For an efficient annotation of the SuperSAGE tags the best comparative source is a well annotated EST data bank of the own species, previously compared against the 64 Uniprot/Swiss-Prot,, since the tag-gene tag availability will facilitate the function recognition, also permitting the development of primers and probes for validation purposes. Therefore the comparison with 202,076 ESTs from three cowpea data banks (NordEST, NordEST, HarvEST and NCBI) permitted the identification of 36.715 unigenes u after BLASTx from which 15.865 (43%) Uniprot/Swiss-Prot Uniprot/Swiss Prot matched with known proteins with significant e-values values (≤ ( 10-10). From these, 15.141 unigenes (95%) could be successfully annotated using Blast2GO [27] 27] for the three main GO categories (“Biological (“Biolog Process” - BP, “Molecular Function” - MF and “Cellular Component” - CC) resulting in 30.659 GO terms.. Considering that the GO uses a hierarchical structure to describe function and localization of a given gene in the cell, the genes may be associated to more than one function or process, being therefore included in more than one GO category or subcategory [28, 29]. In the present approach the unigenes classified in more than one category were included separately in each of them, with 100% corresponding to the total number of occurrences in each category. The 30 most represented subcategories in PB, FM and CC, totalized 14,425 (47%) of the 30,659 GO terms. Considering the category Cellular Component 3,129 terms (69%) regarded “Intracellular Components”, represented by cytoplasmatic and nuclear organelles. The second subcategory was “Cell Wall Components” with 1,494 unigenes (26%). The subcategories “Extracellular Region” and “Cell Wall” were represented with 3.5% and 1.8%, respectively (Figure 1). 1.494 Figure 1. Distribution of the 30 most represented GO terms in the category “Cellular Component”, including absolute values and percentage. 65 For the ontology for the Molecular Function 3,792 unigenes (75%) were related “Ligation Activities” es” followed by 589 unigenes (12%) related to “Catalitic Activity”, while “Transporter Activity” and “Structural Molecular Activity” represented each 6% of the occurrences (data not shown). For the ontological category Biological Process (Figure 2), from 3,607 related terms, the most frequent was “Metabolism” with 1,809 unigenes (50%) in the biosynthetic and catabolic processes, processes, both at cellular as at organismal level. Still considering the “Metabolism” category (1,809 unigenes), the subcategories “Messenger “Messeng RNA Processing”, “Translation”, ”Fosforilation” and “Protein Folding” presented 700 occurrences (39%), followed by “Oxidation Reduction” with 543 occurrences (30%) and “Carbohydrate Metabolism” with 196 hits (10.83%). The second most frequent GO term in i the BP category was “Stress Response” with 590 matches (16%), from which 344 transcripts regarded terms associated to abiotic stresses, as “salt stress” (18%), water deficit (10%) or response against “other chemical stimuli” (31%). The biotic stress category category comprised 88 occurrences (15%), while the remaining hits regarded “response to stress in general”. The third most frequent GO term was “biological process regulation” with 417 matches (12%), including the subcategories “transcription regulation mechanism” mechanism” (58%), followed by terms related to “signaling cascades” (signal transduction), with 177 occurrences (42%). Figure 2. Distribution of 30 most represented GO terms in the category “Biological Process”, including absolute values and percentage. per Considering the annotated amount and diversified categories of the identified sequences, it is clear that the cowpea ESTs data bank from different sources (leaves, 66 roots, meristems, axillary buds, root nodules, seeds, etc.) with or without stress induction is adequate for anchoring 26 bp tags generated by SuperSAGE from V. unguiculata, allowing the annotation of 65% of the 10,907 unique tags. 4.4.2. Distribution of the differentially expressed SuperSAGE tags A total of 270,894 tags (26 pb) were sequenced, including 132,743 tags from the mechanical injured leaves (C2, bulk of four treatments with different times after stress) and 138,151 tags from the control experiment (C1). After exclusion of the tags with one or more undefined sequences (n) and also those considered singletons (appearing a single time in one of the both treatments) a total of 113,828 tags remained in the control library (C1) and 110,686 from the bulked injured treatments (C2). The tags were validated by the program DiscoverySpace (Figure 3A), that identified also 10,907 distinct unique tags, with 2,009 exclusive of the C2 library, 1,872 corresponding to the control (C1) and 7,026, common to both (Figure 3B). Figure 3. (A) Table with the representative sequenced tag number regarding the no stressed control (C1) and mix of mechanically injured leaves (probes from 30, 60, 90 minutes and 16 h), showing number of unique tags exclusive of each library. (B) Venn diagram showing the distribution of unique tags in both C1 and C2 libraries, as well as common tags for both. The absolute and relative amounts regarding the diverse categories of transcripts considering their abundance in the normalized libraries (100,000 tags•library-1), are represented in Figure 4. In both libraries, only about 1 to 1.44% of the tags presented frequencies higher than 100, while more than 90% presented frequencies of up to 20 times. Such observation is in accordance to other similar approaches [30, 31, 32] using the SAGE method in plants. The results reveal the 67 advantage of this method in the comparative and simultaneous detection transcripts with low expression levels. Tag Abundance ≥ 100 21-99 6-20 2-5 Total Library C1 Total % 128 1.44 593 6.66 2,293 25.77 5,884 66.13 8,898 100.00 Library C2 Total % 90 1.00 793 8.78 2,490 27.56 5,662 62.67 9,035 100.00 Figure 4. Quantitative distribution of SuperSAGE tags. Tag frequencies in relation number of copies per library (in %). Considering the transcription pattern comparing the absolute frequencies of the tags in the injured in relation to the control, it was possible to observe that of the 10,907 tags, 8,501 (77.49% of the unique tags) were expressed constitutively (without significant difference among both treatments (p < 0.05), probably regarding housekeeping genes involved in the basal physiological processes of the plant (Table 1). The differentially expressed transcripts represented 22.51% (2,406 tags) from which 1,404 tags (12.80% of the total) were activated after stress perception, while other 1,002 tags (9.13%) were repressed (Table 1). Taking the total of transcripts in account, 681 (48.5%) modulated their expression five times or more (FC ≥ 5) after stress, from which 486 beard increased expression already in the first hours after injury (up to 90 minutes), while 918 presented higher expression only 16 h after injury, indicating different sets of genes activated by the mechanical injury. By the other hand, 510 tags were detected exclusively in the injured library (being absent in the control), while 315 tags were exclusive of the control, indicating their silencing after the stress. 68 Table 1. Differentially expressed tags after comparison of the control versus stressed libraries. Differential Expression tags Total (%) Number of unique tags Constitutive Tags Differentially expressed Up regulated Down regulated 10,907 (100) 8,501 (77.5) 2,406 (22.5) 1,404 (12.8) 1,002 (9.13) Number of unique tags Tags annotated (score ≥42) 100% identity against cowpea Differentially expressed 10,907 (100) 7,056 (65) 5,481 (78) 1,503 (27) 4.4.3. Tag annotation and potential new genes The V. unguiculata EST data bank was previously annotated against the Uniprot/Swiss-Prot /TrEMBL data bank (as described in the item 3.1.) and was used for individual annotation of SuperSAGE tags, considering the previously mentioned criteria (best score/e-value, best description and taxonomic proximity), resulting in the identification of 10,907 unique tags and 7,056 tags (65%) with similarity (score ≥42) with previously annotated V. unguiculata ESTs. These results were similar to those obtained by Calsa and Figueira [33] analyzing sugarcane SAGE tags (14 pb) from sugarcane (Saccharum spp.). From 5,227 unique tags analyzed, 70% (3,659 tags) had the corresponding gene annotated against GenBank and the TIGR database. It is important to emphasize that such significant number of annotated tags was only possible due to the small number of tags and the high number of ESTs generated by the Sugarcane Transcriptome project (SUCEST). Our results were also superior to the obtained by Molina et al [34] that used SuperSAGE for expression profiling of abiotic stress in chickpea, annotating 22% of the 17,493 available tags against the Fabaceae ESTs available in public databanks. Another example regards the essay conducted by [35] that annotated 46% of 11,089 unique LongSAGE tags from Arabidopsis thaliana, using the Arabidopsis UniGene (NCBI) bank. From 7,056 tags (score ≥42), 5,485 tags presented 100% identity with V. unguiculata sequences from our annotated bank, being 1,503 differentially expressed (p < 0.05). From these, 909 were considered super-expressed (up-regulated) in the injured 69 library (C2), while 594 were repressed (down-regulated) in the same situation. Those tags are potential targets for RT-qPCR validation using cDNA from the same extractions used for the generation of the libraries, minimizing the need to use other approaches as 3’or 5’RACE with posterior sequencing [36]. For 3,851 tags no significant matches with V. unguiculata EST bank were observed. From these 1,692 presented alignments (score ≥42) with sequences from other annotated EST data banks (EST/NCBI; TIGR, etc.), with 416 classified under the super expressed and 321 under the repressed tags (p < 0.05); despite of that, many lacked the needed functional description for a good annotation. This high proportion of non annotated tags may be explained by the lack of differentially expressed but less abundant transcripts deposited in EST databases [37, 38] revealing a potential source for the discovery of new genes involved in the response against mechanical injury. This is also the case of the 2,159 tags without similarity to any sequence previously deposited in public databases, representing a source for novelty related to the here analyzed stress. 4.4.4. Categorization of the DNA sequences associated to the tags The functional annotation of the 1,137 differentially expressed transcripts (909 up regulated and 594 down regulated), via Blast2GO [39] was carried out considering the similarity to ESTs of cowpea related species and/or model plants. During this analysis a higher similarity was expected to unitags from leguminous plants considering their taxonomic proximity to cowpea [40, 41]. However, a higher similarity was observed with the model plant A. thaliana (37%), followed by Ricinus communis (10%), Vitis vinifera (7%), Populus trichocarpa (6%), Medicago truncatula and Glycine max (5%), Pisum sativa and Oryza sativa (4%), among other (12%)(Figure 5). This result may be explained by the abundance of Arabidopsis transcripts and also the availability of the whole genome sequence of Arabidopsis (important for the functional annotation of its own transcriptome), despite of its phylogenetic distance when compared with other Fabaceae species, many of them bearing only EST species. Similar results were obtained by Varshney et al [42] during the analysis of Chickpea unigenes (ESTs) revealing higher similarity to soybean (65.8%) as compared with the near related species Lotus tenuis (53.3%). 70 Figure 5. Best matches (in %) regarding differentially expressed tags that could not be annotated with the cowpea EST database, including leguminous and other far related species. The transcripts significantly aligned via BLASTx were annotated to the three GO categories [Biological Process (BP), ( ), Molecular Function (MF) and Cellular Component (CC)] resulting in 3,595 GO hits with 1,255 (35%) categorized transcripts under BP, B 1,307 (36%) under MF and 1,033 (29%) among a CC (Figure 6). Regarding the “Cellular Component” category in Figure 6, the repression of some housekeeping GO categories may be observed, as chloroplast and thylakoid; besides other categories presented higher expression, especially those associated with transport as it is the case of the membrane category that is generally demanded in stress situations. Among the 20 differentially expressed transcripts in the category “Molecular Function”, similar terms were observed for both up and down regulated terms: t protein ligation (7% up and 6% down); structural constituent (5% up and 3% down); ATP ligation (3% up and 4% down), zinc ion ligation (both 3%), transcription factors (3% up and 2% down). Despite of the frequent focus on the up-regulated u regulated stress response, respo the down-regulated regulated genes may lead to important processes regarding stress tolerance [43]. Especially repressed groups included electron carriers, magnesium ion ligation and ligation to chlorophyll. This last category (CAB - chlorophyll a/b binding) regard re proteins associated to the thylakoid membrane which expression is associated to light intensity [44], suggesting the repression of photosynthetic processes and electron transport after mechanical injury. 71 Figure 6. Distribution of the differentially expressed transcripts in absolute numbers within the three principal Gene Ontology categories considering the cellular component (CC) subcategory, the bars represent the number of GO terms relative to the up and down regulated ulated tags after comparison of both libraries (C1xC2). Numbers in the vertical regard the categories: (1) ribosome biogenesis, (2) nucleus, (3) plasma membrane, (4) integral to membrane, (5) cytoplasm, (6) chloroplast and (7) thylakoid. Figure 7 presentss the first 20 subcategories super expressed and repressed tags with respective GO terms regarding “Biological Process” (410 tags). The most represented five subcategories were: “response to any stress – biotic or abiotic” (136 tags); “protein processing and/or and/or degradation” (132 tags); “photosynthesis” (49 tags); “transcription regulation” (48 tags), and “transport” (45 tags). Category “response to any stress – biotic or abiotic” In this group were included those tags differentially expressed in the process of “oxidation reduction” (117 tags: 33 up regulated and 84 down regulated), as well as during the “response response to any stress – biotic or abiotic” (19 tags: 10 up regulated and 9 down regulated) (Table 3) (See additional file). 72 In the subcategory “oxidation reduction” five tags were annotated as dehydrogenases (alcohol, aldehyde, acid, glycols and retinol dehydrogenases) (FC>2< 7). Such dehydrogenases have been associated to the survival of some plants submitted to hypoxia [45], due to the necessity to suppress the energy deficit when the plant redirect the metabolic pathways to guarantee extra ATP production [46, 47]. In such situations, processes regarding catalysis of dehydrogenases (especially alcoholic and lactic dehydrogenases) are selectively induced [48, 49]. Alcohol dehydrogenases, among other transcripts, were also over expressed in a previous SAGE assay in Arabidopsis leaves submitted to cold stress [49]. Other transcripts presenting super expression regarded hydrophenilpyruvat dioxygenase – Hppd (FC>2) and a leucoanthocyanidin dioxygenase - Ldox (FC > 5), two enzymes that participate in the flavonoid biosynthesis, a function associated to pigmentation of flowers and fruits, but also active in the plant-bacteria symbiotic interaction during the process of nitrogen fixation [50], as well as in the plant defense against abiotic and abiotic stress, for example after wounding and ultraviolet light [51, 52]. The Hppd gene is also classified as a senescence gene, since it is associated to photosynthesis decay [53]. The analysis of this gene in barley leaves showed low levels in non senescent leaves and super expression in senescent leaves [54], an observation also reproduced in experiments with rice [55]. This observation may suggest the existence of a specific senescence mechanism regarding the injured leaves in cowpea, leading to their elimination and subsequent protection against pathogen invasion in the wounded sites. 73 Figure 7. Functional categorization of Vigna unguiculata unitags. 20 most differentially expressed transcripts (up and down) in both categories “Biological Process” and “Molecular Function” after Gene Ontology evaluation of C1 (control) x C2 (mechanically injured) libraries. libr 74 Other over expressed gene (FC>4) regarded the enzyme lipoxigenase-3 (Lox3) of the PR (Pathogen Related) category. Lipoxygenases have been found in various plant parts, associated with different processes as wounding response [56], insect resistance and pathogen resistance [57]. One of the pathways regarding lipoxygenase hydroperoxide involves the fatty acid formation that are precursors of jasmonic acid, an important plant signal molecule in response to wounding, herbivory and pathogen attack. Two tags related to a superoxide dismutase (sodf) were also among the injury over expressed transcripts (FC>2<5) in the second time of injury (16 hours after stress). The frequent damages caused by stress (biotic or abiotic) lead to the production of oxygen reactive species (ROS) and may explain the sodf abundance, constituting a lasting response after stress perception [58]. Most intense ROS generation in plants has been associated to mechanical injury and insect feeding [59], as well as pathogen attack [60, 61]. In such situations superoxide dismutases (DOS) are among the key molecules in response to different stress situations [62, 63]. An additional important transcript was the cytochrome p450 (p450). This transcript was repressed considering the initial times (FC>0.2<0.5), but over expressed in the cowpea leaves 16 hours after injury (FC>5<11). p450 comprises a well conserved protein family, with more than 2,000 described sequences in plants. In Arabidopsis they are grouped in 44 families, comprising about 458 members in rice [64, 65]. The accumulation of p450 enzymes has been associated to many stress types (e.g. osmotic) including many high organisms types, including plants, occupying an essential role in the stress tolerance [65, 66]. The p450 transcripts were also activated in other wounding essays in plants [67, 68] as well as after pathogen attack [65, 70]. For example, Kong et al [71] related the accumulation of p450 transcripts in wheat (cultivar Ning7840) after infection with the phytopathogen Fusarium graminearum, with increased levels up to 14 times, as compared with the negative control. Among the super expressed transcripts in the subcategory “stress response” the glutathione S-transferase (GST) achieved significant expression (FC >35) in the injured library in the first 90 minutes (C2T123) after stress. Expression essays in plants have revealed that some members of this gene family respond to a variety of stimuli, including pathogen attack, herbicide application [62], drought [72] and ROS with H2O2 75 [73]. Evaluating the transcriptional response in chickpea after heat, cold and salinity stress Mantri et al [74] observed a GST super expression in the susceptible material and a repression in the tolerant. By the other hand, a micro array analysis in Arabidopsis permitted the identification of GSTs among wound induced genes [75]. This study permitted the identification of a clear association among different kind of stresses, including pathogen attack, abiotic stresses and hormonal changes. According to Sappl et al [76] the expression pattern observed for GST suggests their participation in different signaling pathways, a proposition supported also by Fujita et al [77] that emphasize the clear interaction of the signaling pathways regarding biotic and abiotic stresses. Another similar tag, the protein phosphatase (pp1), was also over expressed (FC>1<2). According to Luan [78] this protein represents an important role on the cell signaling after pathogen attack, among other stress types. Concerning the suppressed transcripts from the group “stress response” regarding “oxidative stress or in function of biotic and abiotic stimuli”, 46 tags deserve special mentioning among the 84 tags classified under “oxidative stress”, with similar behavior as the ribulose biphosphate carboxilase (rbs1) (FC≥1 ≤5). From this group nine regarded dehydrogenases (glyceraldehyde-3-phosphate dehydrogenase: four tags; glycerate dehydrogenase, glycine dehydrogenase mitochondrial; retinol dehydrogenase one tag each, and mannitol dehydrogenase: two tags) and to three citochrome p450. Environmental conditions as water deficit, temperature changes and salinity, affecting mechanisms associated to plant growth and other processes as the photosystem II repair and rbs, decreasing the photosynthetic efficiency [79]. The immediate decreasing of growth and the possible activation of senescence processes, previously discussed may justify the suppression of genes of the rbs family. The reductases (14 tags) figured also among the repressed genes, with emphasis on the thioredoxin reductase, a protein family those catalyses oxidoreductase reactions by using a dithiol-disulphide, aiming to reduce disulfide bridges in target proteins [80], as it is the case of the ribonucleotide reductases and phosphatases reductases (PAPs). This gene participate on acetate to the glyoxylate cycle being also identified as repressed by a methionin sulphoxide reductase (MSR), an important target regarding primary oxidation processes, including DNA repair after damaging due to the action of oxidant agents [81]. 76 Among the nine transcripts classified under “stress response” four have been related to heat shock proteins – HSP: one chaperone and three tags classified as drought-induced stress protein. The HSPs are part of the mechanisms involved in protein conformation, translocation and degradation, acting also in the plant protection against stress, reinforcing the cellular homeostasis by reestablishing the normal protein conformation [82]. The presence of these proteins reinforces the activation of common pathways regarding other stress types. Category: “Protein processing and/or degradation” This was the second largest category in GO terms, including 132 associated tags, including mechanisms as “translation” (85 tags), “protein folding” (19 tags) and “proteolysis” (28 tags) (Table 3) (See additional file). Regarding the “translation” subcategory, most tags (73%, or 62 out of 85) were associated to ribossomal proteins (30, 40 and 60S) with 47 super expressed tags and 15 repressed. Other nine tags were related to translation initiation factors (eIF1, eIF3, eIF4 and eIF5), with one of them (eIF6) being repressed. Among the observed eIFs, the eIF4 deserves special mentioning due to its special role in the resistance to viral infections in mutant lines of Arabidopsis [83, 84] and also in pepper (Capsicum annuum) [85] while the eIF5 has been shown to be essential to growth and differentiation by the regulation of cell divisions, growth and death [86]. Still in this subcategory, five EF-Tu elongation factors were found. The EF-Tu are proteins with 45-46 kD that participate of the polypeptide elongation during protein synthesis [87]; besides this function, its importance was also recognized in maize in association with heat tolerance (Zea mays) [88] with increased expression also observed in wheat (Triticum aestivum) mature leaves [89]. In the subcategory proteolysis 13 transcripts were super expressed, with differences reaching up to ca. 12 times. Among this group the cysteine-proteases figure as prevailing transcripts, being known to assume many complex physiological and metabolic roles, with emphasis on regulatory processes, justifying their presence in all eukaryotes previously analyzed. In plants and microorganisms the main activities regard gene expression regulation, programmed cell death and resistance against invading agents [90, 91]. It is interesting that proteins from this group bear distinct roles in plant defense, acting at the perception, signaling and execution levels [92]. One 77 example is the protein p34, represented among super expressed transcripts in the present evaluation. The p34 is a cysteine protease that binds to an elicitor probably conferring the capacity of recognizing this elicitor in resistant plants [93], being probably over expressed in cowpea as a preventive mean to avoid possible pathogen attack after wounding. Another type of expressed tag in the proteolysis category was also a cysteine proteinase named Oryzain alpha chain from rice (Oryza sativa) that was 23 times suppressed when compared with the negative control. Among the repressed transcripts two aspartic proteinases (AP) were observed, constituting a non expected situation, since they are normally over expressed and accumulate in the intracellular spaces under biotic or abiotic stresses. They are also considered important in the reuse of PR (Pathogen Related) proteins, also preventing their superaccumulation, regulating their biological function during stress [94]. Another well represented subcategory regarding up regulated and down regulated transcripts was the “protein folding” (38 tags). This subcategory included transcripts related to heat shock proteins (HSPs) and chaperones (six repressed and three super expressed). Such proteins are activated not only after exposition to heat but also during other types of stress, since many different agents lead to miss conformation of the proteins after stress, activating heat shock factors, what can be the case of the present cowpea injured libraries. “Photosynthesis” Category Most transcripts of this category were up regulated (with exception of only five out of 49 tags) after mechanical injury (Table 3). A previous work observing the relationships among the photosynthesis genes and the hypersensitive response (HR) in higher plants [95] reported the suppression of the chloroplast gene ftSH in the course of the HR triggered by the tobacco mosaic virus (TMV) in a resistant tobacco plant, being considered a remnant of an overall suppression of photosynthetic genes in Nicotiana benthamiana. In the present work the repression of photosynthetic genes after injury also reinforce the decrease in growth and activation of local senescence processes in the injured cowpea leaves. 78 Transcription Regulation This category included 48 differentially expressed tags including transcription factors, from which 31 (65%) were up and 17 (35%) down (Table 2) (See additional file). In this subcategory 12 tags deserve special mentioning due to their over expression higher than five times (FC>5<24), indicating the important paper of such factors under stress. Table 2 presents three tags (10%) regarding transcription factors. The first was the ethylene response factor (ERF), a facto associated to many kinds of stress, including pathogen and insect attack, exposition to toxic substances, low temperatures, and water deficit, leading to ethylene production above the basal level [96, 97], also justifying the ERF expression in cowpea injured leaves. Also considering the transcription factors, three repressed tags (InjC1C2_8108, InjC1C2_1573 and InjC1C2_3722) were identified, being similar to the apetala 2 (AP2/ERF) factor from Arabidopsis, also members of the ERF family. These sequences belong to a large family of conserved genes that act in central points of a regulatory network in plants being responsive to many biotic and abiotic stress types [98]. Another suppressed tag (InjC1C2_9656) is associated to the Dof (DNA-binding with One Finger) transcription factor that act in the regulation of important processes in higher plants, with emphasis on photosynthesis and carbohydrate metabolism. In the literature Dof factors were associated with drought stress, as well as lack or excess of light [99]. Therefore, its repression indicates a relationship among mechanical injury and water deficit, confirming observations from previous essays. Transport Category Among the differentially expressed transcripts 45 tags regarded the transport subcategory (Table 3), with emphasis on transcripts related to Photosystem II (9%), suggesting that injury stress may have affected electron transference system. In the case of both, Photosynthesis I and II, significant changes may occur under stress, fact justified by the light absorbance by excited pigments that transfer energy to photosynthesis reaction centers [100, 101]. Also the proteins associated to phosphatidylinositol are among important phospholipids, acting as membrane components and in the growth regulation especially under stress [102, 103] being recruited to mediate different mechanisms in such situations [104]. 79 The super expression of the tag InjC1C2_77 classified under the aquaporines (FC≥6) suggests a response aiming to redirect the water balance to specific plant organs during stress situations [105], also in consonance with the here studied injury stress, a situation that leads to water loss through increased evapo-transpiration. Other six transcripts were related to “pinta auxin”, being three up and three downregulated. Auxins are phytormone that have an essential role in coordination of many growth and behavioral processes in the plant life cycle. On the cellular level, auxins are essential for cell growth, affecting both cell division and cellular expansion [106], probably indicating reprogramming in the tissue growth and cell expansion in cowpea injured plants. 80 REFERENCES [1] Korth KL: Profiling the response of plants to herbivorous insects. Genome Biol 2003, 4 (7): 221. [2] Reymond P, Farmer EE: Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1998, 1: 404-411. [3] Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG: cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 2000, 12: 963-977. [4] Reymond P, Weber H, Damond M, Farmer EE: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 2000, 12: 707-719. [5] Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S: Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis. Plant Physiol 2002, 129: 661-677. [6] Denekamp M, Smeekens SC: Integration of Wounding and Osmotic Stress Signals Determines the Expression of the AtMYB102 Transcription Factor Gene Plant Physiol 2003, 132(3): 1415-1423. [7] Mewis I, Appel HM, Hom A, Raina R, Schultz JC: Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both PhloemFeeding and Chewing Insects Plant Physiol 2005, 138(2): 1149-1162. [8] Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, Howe GA. Regulation and Function of Arabidopsis JASMONATE ZIM-Domain Genes in Response to Wounding and Herbivory Plant Physiol 2008, 146(3): 952-964. [9] Shen S, Jing Y, Kuang T: Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 2003, 3: 527-535. 81 [10] Dombrowski JE: Salt Stress Activation of Wound-Related Genes in Tomato Plants. Plant Physiol 2003, 132: 2098-2107. [11] Creelman RA, Tierney ML, Mullet JE: Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 1992, 89(11): 4938-41. [12] Saravitz DM, Siedow JN: The differential expression of wound-inducible lipoxygenase genes in soybean leaves. Plant Physiol 1996, 110(1): 287-299. [13] Singh BB, Ehlers JD, Sharma B, Freire Filho FR: Recent Progress In Cowpea Breeding. In: Fatokun, CA, Tarawali SA, Singh BB, Kormawa PM and Tam’Ò M. (Eds.). Challenges and opportunities for enhancing sustainable cowpea production. Ibadan: IITA 2002: 22-40. [14] Bray EA: Abscisic acid regulation of gene expression during waterdeficit stress in the era of the Arabidopsis Genome. Plant Cell Environ 2002 25: 153-161. [15] Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhua T, Zou G, Katagiri F: Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 2003, 15: 317-330. [16] Benko-Iseppon AM, Galdino SL, Calsa-Junior T, Kido EA, Tossi A, Belarmino LC, Crovella S: Plant Antimicrobial Peptides. Current Protein & Peptide Science 2010: ISSN 1389-2037. [17] Velculescu VE, Vogelstein B, Kinzler KW: Analysing uncharted transcriptomes with SAGE. Trends Genet 2000, 16(10): 423-5. [18] Saha S, Sparks Ab, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE: Using the transcriptome to annotate the Genome. Nat Biotechnol 2002, 20(5): 508-12. 82 [19] Matsumura H, Reich S, Ito A, Saithoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R: Gene Expression Analysis Of Plant Host-Pathogen Interactions by SuperSAGE. Proc Natl Acad Sci USA 2003, 100(26): 15718-23. [20] Matsumura H, Reuter M, Krüger DH, Winter P, Kahl G, Terauchi R: SuperSAGE. Methods in Molecular Biology. In: Serial Analysis of Gene Expression (SAGE) Methods and Protocols 2005: 387. [21] Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P: SuperSAGE: The Drought stress- responsive transcriptome of Chickpea roots. Bmc Genomics 2008, 9: 553. [22] Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Reptr 1993, 11: 113-116. [23] Audic S, Claverie JM: The Significance of Digital gene expression profiles. Genome 1997, 7: 986-995. [24] Huang X, Madan A: “CAP3: A DNA Sequence Assembly Program”. Genome Res 1999, 9: 868-877. [25] Masoudi-Nejad A, Tonomura K, Kawashima S, Ito M, Kanehisa M, Endo T, Goto S: EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 2006, 34: 459– 462. [26] Conesa A, García-Gómez, Terol JMJ, Talón M, Robles M: Blast2go: A Universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21: 3674-3676. [27] Ahsburner M, Blacke CA, Botsein JA, Butlter D, Cherry H, Davis JM, Dolinski AP, Dwight K, Eppig SS, Harris JT, Hill MA, Isse-Tarver DP, Kasarskis L, Lewis A, Matese S, 83 Richardson JC, Ringwald JE, Rubin M, Sherlock GM: Gene Ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25(1): 25-9. [28]. Xie H, Wasserman A, Levine Z, Novick A, Grebinskiy V, Shoshan A, Mintz L: Largescale protein annotation trhough gene ontology. Genome Res 2002: 785-794. [29]. Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, Kersey P, Mulder N, Oinn T, Maslen J, Cox A, Apweiler R: The Gene Ontology Annotation (GOA) Project: Implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res 2003: 662-672. [30]. Gibbings JG, Cook BP, Dufault MR, Madden SL, Khuri S, Turnbull CJ, Dunwell JM: Global transcript analysis of rice leaf and seed using SAGE technology. Plant Biotechnol J 2003, 1: 271-285. [31]. Lee JY, Lee DH: Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 2003, 132: 517-529. [32]. Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, Sági L: SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 2005, 111(6): 1118-26. [33]. Calsa JrT, Figueira A: Serial Analysis of Gene Expression in SugarCane (Saccharum SPP.) Leaves Revelealed Alternative C4 Metabolism and Putative Antisense Transcripts. Plant Mol Biol 2007, 63: 745-762. [34]. Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P: SuperSAGE: The Drought stress- responsive transcriptome of Chickpea roots. Bmc Genomics 2008, 9: 553. 84 [35]. Byun YJ, Kim HJ, Lee DH: LongSAGE analysis of the early response to cold stress in Arabidopsis leaf. Planta 2009, 229(6): 1181-1200. [36]. Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierol U, Langridge P, Varshney RK, Wobus U, Graner A: Largescale analysis of the barley transcriptome based on expressed sequence tags. Plant J 2004, 40: 276-290. [37]. Sun M, Zhou G, Lee S, Chen J, Shi RZ, Wang SM: SAGE is far more sensitive than EST for detecting low-abundance transcripts. BMC Genomics 2004, 5: 1-4. [38]. Lee S, Bao J, Zhou G, Shapiro J, Xu J, Shi RZ, Lu X, Clark T, Johnson D, Kim YC, Wing C, Tseng C, Sun M, Lin W, Wang J, Yang H, Du W, Wu CI, Zhang X, Wang SM: Detecting novel low abundant transcripts in Drosophila. RNA 2005, 11: 939-946. [39]. Conesa A, García-Gómez , Terol JMJ, Talón M, Robles M: Blast2go: A Universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21: 3674-3676. [40]. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A: Molecular phylogeny of the "temperate herbaceous tribes" of papilionoid legumes: a supertree approach. In: P.S. Herendeen and A. Bruneau (editors). Advances in Legume Systematics 2000, 9: 277-298. [41]. Doyle JJ, Luckow MA: The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 2003, 131: 900-910. [42]. Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, David A Hoisington DA: A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 2009, 10: 523 85 [43]. Zhang J, Liu T, Fu J, Zhu Y, Jia J, Zheng J, Zhao Y, Zhang Y, Wang G: Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics 2007, 90: 121-131. [44]. Barros T, Kühlbrandt W: Crystallisation, structure and function of plant lightharvesting Complex II. Biochim Biophys Acta 2009, 1787(6): 753-72. [45]. Lemke-Keyes CA, Sachs MM: Anaerobic tolerant null: mutant that allows Adh1 nulls to survive anaerobic treatment. J. Hered 1989 80(4): 316-319. [46]. Davies DD: Anaerobic metabolism and the production of organic acids. In: D.D., Davies (Ed.). The Biochemistry of Plants: A Comprehensive Treatise. New York: Academic Press 1980: 581-611. [47]. Setter TL, Ella ES: Relationship between coleoptile elongation and alcoholic fermentation in rice exposed to anoxia. I. Importance of treatment conditions and different tissues. Ann Bot 1994, 74: 265-271. [48] Sachs MM, Freeling M, Okimoto R: The anaerobic proteins of Maize. Cell 1980, 20: 761-767. [49] Jung SH, Lee JY, Lee DH: Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 2003, 52(3): 553-567. [50] Koes RE, Quattrocchio F, Mol JNM: The Flavonoid Biosynthetic Pathway in Plants: Function and Evolution. Bioessays 1994, 16: 123-132. [51] Dixon RA, Paiva N: Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7: 1085-1097. [52] Winkel-Shirley B: Biosynthesis of Flavonoids and Effects of Stress. Curr Opin Plant Biol 2002, 5(3): 218-223. 86 [53]Quirino BF, Noh Y-S, Himelblau E, Amasino RM: Molecular aspects of leaf senescence. Trends Plant Sci 2000, 5: 278-282. [54] Kleber-Janke T, Krupinska K: Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 1997, 203: 332-340. [55] Lee RH, Wang CH, Huang LT, Chen SC: Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 2001, 52(358): 11171121. [56] Vieira AA, Oliveira MGA, José IC, Piovesan ND Rezende ST, Moreira MA, Barros EG: Biochemical evaluation of lipoxygenase pathway of soybean plant submitted to wounding. Rev Bras Fisiol Veg 2001, 13: 1-12. [57] Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM: Signal interections in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol Mol Plant Path 1999, 54: 97-114. [58] Chandru HK, Kim E, Kuk Y, Cho K, Han O: Kinetics of wound-induced activation of antioxidative enzymes in Oryza sativa: differential activation at differential growth stages. Plant Sci 2003, 164: 935–941. [59] Yu A, Ying-bai S, Zhi-xiang Z: Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves. Journal of Forestry Research 2009, 20(2): 156-160. [69] Bolwell GP, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F, Rowntree EG, Wojtaszek P: Recent advances in understanding the origin of the apoplastic oxidative burst in plant cells. Free Radical Research 1999, 31: 137-145. 87 [61] Fath A, Bethke P, Belligni V, Jones R.: Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot 2002, 53: 1273-1282. [62] Edwards R., Dixon DP, Walbot V: Plant glutathione S-transferases: Enzymes with multiple functions in sickness and in health. Trends Plant Sci 2000, 5: 193-198. [63] Alscher RG, Erturk N, Heath LS: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 2002, 53: 1331-1341. [64] Schuler M, Duan H, Bilgin M, Ali S: Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 2006, 5: 205-237. [65] Hamdane D, Zhang H, Hollenberg P: Oxygen Activation by Cytochrome P450 Monooxygenase. Photosynth Res 2008, 98(1-3): 657-666. [66] Mani S, Van de Cotte B, Van Montagu M, Verbruggen N: Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 2002, 128: 73-83. [67] Verbruggen N, Hermans C: Proline accumulation in plants: Amino Acids 2008, 35: 753-759. [68] Frank M, Deyneka JM, Schuler MA: Cloning of wound-induced cytochrome P450 monooxygenases expressed in Pisum sativum. Plant Physiol 1996, 110: 1035-1046. [69] Persans MW, Wang J, Schuler MA: Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol 2001, 125: 1126-1138. [70] Schuler MA: Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 1996, 15: 235-284. 88 [71] Kong L, Anderson JM, Ohm HW: Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome 2005, 48: 29-40. [72] Bianchi MW, Roux C, Vartanian N: Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant 2002, 116: 96-105. [73] Chen W, Chao G, Singh KB: The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites Plant J 1996, 10(6): 955-966. [74] Mantri NL, Ford R, Coram TE, Pang ECK: Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought BMC Genomics. 2007, 8: 303. [75] Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S: Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 2002, 129: 661-677. [76] Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 58(1): 53-68. [77] Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K: Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 2006, 9: 436-442. [78] Luan, S: Protein phosphatases and signaling cascades in higher plants. Trends in Plant Science 1998, 3 (7): 271-275. 89 [79] Saibo NJ, Lourenço T, Oliveira MM: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 2009, 103(4): 609-623. [80] Holmgren A: Thioredoxin and glutaredoxin systems. J Biol Chem 1989, 264: 13963-13966. [81] Stadtman ER, Arai H, Berlett BS: Protein oxidation by the cytochrome P450 mixed-function oxidation system. Biochem Biophys Res Commun 2005, 338(1): 432436. [82] Wang W, B Vinocur, Shoseyov O, Altman A: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 2004, 9: 244252. [83] Lellis AD, Kasschau KD, Whitham SA, Carrington JS: Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 2002, 12: 1046-1051. [84] Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I: Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 2005, 579: 1167-1171. [85] Ruffel S, Gallois JL, Lesage ML, Caranta C: The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 2005, 274: 346-353 [86] Feng H , Chen Q , Feng J, Zhang J , Yang X , Zuo J: Functional Characterization of the Arabidopsis Eukaryotic Translation Initiation Factor 5A-2 (eIF-5A-2) that plays a Crucial Role in Plant Growth and Development by Regulating Cell Division, Cell Growth and Cell Death. Plant Physiology 2007, 144(3): 1531-1545. 90 [87] Riis B, Rattan SIS, Clark BFC, Merrick WC: Eukaryotic protein elongation factors. Trends Biol Sci 1990, 15: 420-424. [88] Rao D, Momcilovic I, Kobayashi S, Callegari E, Ristic Z: Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. Eur J Biochem 2004, 271: 3684-3692. [89] Ristic Z, Bukovnik U, Momčilović I, Fu J, Vara PV: Prasad Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. Plant Physiol 2008, 165 (2): 192-202. [90] Tornero P, Conejero V, Vera P: Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J Biol Chem 1997, 272: 14412-14419. [91] Beers EP, Jones AM, Dickerman AW: The S8 serine, C1A cysteine, and A1 aspartic protease families in Arabidopsis. Phytochemistry 2004, 65: 43-58. [92] Van der Hoon RA, Leeuwenburgh MA, Bogyo M, Joosten MH, Peck SC: Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 2004, 135(3): 1170-1178. [93] Ji C, Boyd C, Slaymaker D, Okinaka Y, Takeuchi Y, Midland SL, Sims JJ, Herman E, Keen N: Characterization of a 34-kDa soybean binding protein for the syringolide elicitors. Proc Natl Acad Sci U S A 1998, 95(6): 3306-3311. [94] Simões I, Faro C: Structure and function of plant aspartic proteinases. Eur J Biochem 2004, 271: 2067-2075. [95] Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y: Reduced Levels of Chloroplast FtsH Protein in Tobacco Mosaic Virus–Infected Tobacco Leaves Accelerate the Hypersensitive Reaction. Plant Cell 2000, 12(6): 917932. 91 [96] Kazuo N, Kazuko Y-S: Regulons involved in osmotic stressresponsive and cold stress-responsive gene expression in plants. Physiologia Plantarum 2006, 126: 6271. [97] Qu LJ, Zhu YX: Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 2006, 9: 544-549. [98] Jin LG, Liu JY: Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiol Biochem 2008, 46(1): 46-53. [99] Shaw LM, McIntyre CL, Gresshoff PM, Xue GP: Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics 2009, 9(4): 485-498. [100] Krause GH, Winter K: Photoinhibition of photosynthesis in plants growing in natural tropical forest gaps. A chlorophyll fluorescence study. Botanical Acta 1996, 109: 456-462. [101] Maxwell K, Johnson GN: Chlorophyll fluorescence - a practical guide. J Exp Bot 2000, 51: 659-668. [102] Munnik T, Irvine RF, Musgrave A: Phospholipid signalling in plants. Biochim Biophys Acta 1998, 1389: 222-272. [103] Xue H, Chen X, Li G: Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 2007, 10: 483-489. [104] Xue H, Chen X, Mei Y: Function and regulation of phospholipid signalling in plants. Biochem J 2009, 421: 145-156. 92 [105] Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P: Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 2005, 59: 469-484. [106] Delker C, Raschke A, Quint M: Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta 2008, 227(5): 929-941. 93 Additional file 94 Table 2. Sequences of SuperTags (26 pb) differentially expressed after annotation using the annotated V. unguiculata EST database against transcription factors from Uniprot/Swiss-Prot/TrEMBL. Legend for abbreviations: Sc = Score; FC = fold change; Reg = regulation. TAG UNIPROT DESCRIPTION FC p-value Reg InjC1C2_7249 Q9H501 3,09 1,14E-02 UP InjC1C2_3500 Q6P2Z0 4,52 2,81E-02 UP InjC1C2_4421 Q9ZWL6 3,53 1,51E-03 UP InjC1C2_7461 O24542 5,42 1,38E-02 UP InjC1C2_10167 Q8BT14 3,50 8,33E-03 UP InjC1C2_4559 P24068 5,83 1,13E-03 UP InjC1C2_5852 P24068 3,09 2,16E-02 UP InjC1C2_8522 Q99090 10,84 1,94E-04 UP InjC1C2_5398 Q99090 10,54 2,58E-09 UP InjC1C2_5077 O14270 7,23 3,33E-03 UP InjC1C2_1437 Q9FWQ5 5,42 1,38E-02 UP InjC1C2_4115 Q8GTE5 3,95 0,00E+00 UP InjC1C2_5945 Q9LFY2 6,32 6,78E-03 UP InjC1C2_4769 Q9LYD3 chromosome 20 open reading frame 6 bzw1_basic leucine zipper and w2 domain-containing protein 1 etr1_ethylene receptor ax22d_auxin-induced protein 22d ccr4-not transcription subunit 4 isoform 2 octopine synthase binding factor1 octopine synthase binding factor1 cprf2_light-inducible protein cprf2 cprf2_light-inducible protein cprf2 fork head transcription factor fhl1 hac12_histone acetyltransferase of the cbp family 12 transcription factor erebp-like protein athb54 (A. thaliana homeobox protein 54) nucleic acid binding transcription factor tiny2 dna binding transcription factor hdt1_histone deacetylase e2f transcription factor 5 ccr4-not transcription subunit 1 predicted protein [Populus trichocarpa] ein3 (ethylene-insensitive3) transcription factor ccch-type zinc finger protein atcth transcription factor basic helix-loop-helix family protein ilr3 (iaa-leucine resistant3) dna binding transcription factor 4,52 2,81E-02 UP 4,46 1,04E-02 UP 4,52 2,81E-02 UP 4,63 3,32E-02 UP 4,11 5,66E-03 UP 4,32 9,49E-09 UP 2,19 1,80E-04 UP 23,49 9,22E-09 UP 6,43 4,97E-13 UP 5,14 1,90E-02 UP InjC1C2_2239 Q8LJS2 InjC1C2_8406 Q61502 InjC1C2_7758 A0JP85 InjC1C2_5962 A9P8K1 InjC1C2_6839 O24606 InjC1C2_7045 O82199 InjC1C2_7112 O82307 InjC1C2_10797 Q66GR3 InjC1C2_9552 Q9FH37 95 InjC1C2_7475 Q9SDQ3 InjC1C2_7835 Q9SQI2 InjC1C2_10096 P46604 InjC1C2_1178 Q9FKG2 InjC1C2_4048 P46668 InjC1C2_7367 Q42808 InjC1C2_191 Q02283 InjC1C2_7615 Q02283 InjC1C2_9780 Q02283 InjC1C2_124 Q00423 InjC1C2_9656 Q0GLC9 InjC1C2_5830 Q41109 InjC1C2_8108 A7PLE5 InjC1C2_3722 Q56XP9 InjC1C2_9758 Q9FY69 InjC1C2_10547 Q01085 InjC1C2_4255 Q7Y1B6 InjC1C2_4198 P42499 InjC1C2_2712 Q700D2 InjC1C2_9694 Q47894 InjC1C2_5376 Q9SUP6 InjC1C2_9325 Q39266 InjC1C2_9780 Q02283 InjC1C2_5318 A7PME6 InjC1C2_1573 P47927 scl1 (scarecrow-like 1) transcription factor gigan_protein gigantea homeobox protein hat22 ethylene responsive element binding factor athb6_dna binding transcription activator transcription factor tbp_tata-box-binding protein Homeobox-leucine zipper protein HAT5 Homeobox-leucine zipper protein HAT5 Homeobox-leucine zipper protein HAT5 hmgya_hmg-y-related protein Dof22 [Glycine max] regulator of mat2 transcription factor apetala2 ap2 domain-containing transcription factor family protein transcription factor transcription regulator tia-1 related protein isoform 1 gai_gibberellic acid-insensitive mutant protein phyb_phytochrome b jkd_ transcription factor zinc ion binding glnb_nitrogen regulatory protein p wrky53_transcription activator transcription factor zinc finger protein zfp7 Homeobox-leucine zipper protein HAT5 hypothetical protein [Vitis vinifera] apetala2 protein 6,32 6,78E-03 UP 4,46 1,04E-02 UP 6,17 6,39E-04 UP 7,88 3,37E-05 UP 4,52 6,56E-04 UP 3,23 3,87E-03 UP 7,23 3,33E-03 UP 1,56 6,16E-03 UP 0,00 4,57E-03 Down 0,00 1,77E-02 Down 0,17 8,99E-03 Down 0,00 1,77E-02 Down 0,00 6,02E-04 Down 0,00 3,47E-02 Down 0,21 2,64E-02 Down 0,04 2,09E-13 Down 0,53 2,78E-02 Down 0,07 4,33E-11 Down 0,23 4,46E-02 Down 0,00 6,02E-04 Down 0,00 6,02E-04 Down 0,00 3,47E-02 Down 0,00 4,57E-03 Down 0,00 3,47E-02 Down 0,35 2,30E-04 Down 96 Table 3. Functional classification of the differentially expressed genes from the “Biological Process” (BP) and the most represented subcategories. UNIPROT Translation Q6UNT2 Q68VN6 Q6UNT2 Q8RXX5 Q8VWX5 Q8VY91 Q9ASV6 Q9FJP3 Q9FWS4 Q9M4Y3 Q9SPB3 Q9XJ27 A4GGF8 O22795 O22795 O55135 O80439 P24929 P34811 P49163 P72749 Q43467 P56331 Q9SGA6 DESCRIPTION rl5_60s ribosomal protein l5 30s ribosomal protein s16 rl5_60s ribosomal protein l5 ribosomal protein l19 family protein small ribosomal subunit 30S plastid ribosomal protein chloroplast 30s ribosomal protein 50s ribosomal protein l29 emb2184_ structural constituent of ribosome rr10_30s ribosomal protein rl10_60s ribosomal protein l10 ribosomal protein s9 ribosomal protein l2 chloroplast 50s ribosomal protein l28 chloroplast 50s ribosomal protein l28 eukaryotic translation initiation factor 6 30s ribosomal protein s31 ribosomal protein l12-1a efgc_elongation factor c rk22_50s ribosomal protein elongation factor ef-g eftu1_elongation factor if1a_eukaryotic translation initiation factor 40s ribosomal protein s19 SC p-value FC Reg 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 2,76E-02 4,46E-02 2,76E-02 1,01E-03 9,36E-03 4,78E-09 8,99E-03 1,86E-02 2,81E-09 1,33E-02 1,01E-02 1,86E-02 1,69E-09 2,35E-02 6,99E-04 3,47E-02 4,51E-06 2,93E-09 1,85E-36 1,26E-03 2,96E-03 2,58E-26 2,52E-03 5,10E-03 0,58 0,23 0,58 0,31 0,43 0,11 0,17 0,44 0,06 0,47 0,70 0,34 0,09 0,29 0,28 0,00 0,31 0,21 0,02 0,23 0,15 0,05 2,10 3,70 Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Up Up 97 Q9SGA6 P49637 Q9FKC0 Q9SCM3 Q8VZB9 Q9LZ57 P51430 O82204 P41127 O22518 O22518 O65731 Q9M2F1 Q9C912 P81795 P81795 P24922 Q94JV4 Q94JV4 P35614 O23755 P25698 A7RWP6 Q9FLF0 Q9FY64 P49689 Q9SS17 P49690 P49211 P49204 Q6UNT2 B6IPJ8 Q5I7K3 B7FH86 B7FMI2 40s ribosomal protein s19 at1g70600 f5a18_22 60s ribosomal protein l13a 40s ribosomal protein s2 homolog ribosomal protein l10 60s ribosomal at5g10360 f12b17_290 60s ribosomal protein l28 60s ribosomal protein bbc1 protein rssa_40s ribosomal protein rssa_40s ribosomal protein rs5_40s ribosomal protein s5 ribosomal protein s27 ribosomal protein eukaryotic translation initiation factor eukaryotic translation initiation factor if5a2_eukaryotic translation initiation factor 5a-2 eukaryotic translation initiation factor eukaryotic translation initiation factor erf1-3 _translation release factor ef2_elongation factor 2 ef1a_elongation factor 1-alpha eif3e_eukaryotic translation initiation factor 3 40s ribosomal protein s9 ribosomal protein s15-like 40s ribosomal protein s30 at3g04920 t9j14_13 60s ribosomal protein l17 ribosomal protein l32-like protein 40s ribosomal protein s4 rl5_60s ribosomal protein l5 ribosomal protein l20 rs29_40s ribosomal protein s29 unknown [Medicago truncatula] unknown [Medicago truncatula] 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 1,38E-02 1,09E-09 9,45E-03 8,67E-04 4,95E-05 1,26E-05 1,17E-03 1,63E-03 5,90E-07 3,63E-03 1,38E-02 4,93E-02 4,88E-02 4,06E-06 6,78E-03 1,90E-02 1,48E-05 6,76E-10 1,20E-11 7,62E-05 1,26E-02 1,26E-02 4,93E-02 3,42E-02 2,87E-02 1,88E-02 3,71E-04 1,25E-02 2,50E-05 2,24E-05 2,57E-06 2,97E-02 8,31E-03 4,71E-02 1,90E-02 5,42 3,15 3,86 1,76 1,64 2,84 2,40 8,13 5,73 1,98 5,42 3,43 1,77 3,27 6,32 5,14 2,88 5,31 2,48 3,34 1,55 1,55 3,43 2,88 1,70 2,57 4,28 2,47 10,80 6,68 6,58 3,77 2,40 1,45 5,14 Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up 98 O22584 O22584 O65743 O65743 P34091 P34091 P35685 P35685 P46302 P46302 P49199 P62302 Q05462 Q9M573 Q9M5L0 Q9ZNS1 O50003 P17093 P62981 Q940B0 P60040 Q93VI3 Q42064 Q42064 Q40465 Q6UNT2 rs14_40s ribosomal protein s14 rs14_40s ribosomal protein s14 rl24_60s ribosomal protein l24 rl24_60s ribosomal protein l24 rl6_60s ribosomal protein l6 rl6_60s ribosomal protein l6 60s ribosomal protein l7a 60s ribosomal protein l7a ribosomal protein s28 ribosomal protein s28 40s ribosomal protein s8 ribosomal protein s13 rl27_60s ribosomal protein l27 rl31_60s ribosomal protein l31 rl35_60s ribosomal protein l35 rs7_40s ribosomal protein s7 rl12_60s ribosomal protein l12 rs11_40s ribosomal protein s11 ubiquitin extension protein 60s ribosomal protein ribosomal protein l7 60s ribosomal protein l17 ribosomal protein l8 ribosomal protein l8 if411_eukaryotic initiation factor 4a-11 rl5_60s ribosomal protein l5 52 52 52 52 52 52 52 52 46,1 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 1,68E-07 2,81E-02 3,15E-03 1,04E-02 4,32E-02 3,42E-02 2,81E-02 1,56E-02 6,78E-03 3,29E-02 1,94E-04 2,13E-06 2,05E-02 2,92E-02 1,07E-04 5,66E-03 9,18E-05 4,35E-10 4,89E-02 6,78E-03 4,54E-02 1,08E-02 6,10E-03 4,35E-03 3,32E-02 2,57E-06 6,68 4,52 1,81 4,46 2,57 2,88 4,52 3,60 6,32 1,88 10,84 7,71 2,14 2,06 1,99 4,11 2,71 4,73 1,62 6,32 2,06 5,66 1,93 2,86 4,63 6,58 Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain 52 44,1 44,1 44,1 44,1 42,1 7,93E-05 2,83E-02 5,18E-03 2,81E-05 2,33E-03 9,35E-03 0,00 0,36 0,16 0,09 0,00 0,22 Down Down Down Down Down Down Reduction Oxidation P00865 P00865 P00865 P00865 P00865 P00865 99 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 O48927 O65012 O65837 O81360 O82515 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain rbs1_ribulose bisphosphate carboxylase small chain c78a3_cytochrome p450 c78a4_cytochrome p450 lcye_lycopene epsilon chloroplastic aba2_zeaxanthin chloroplastic mtdh_probable mannitol dehydrogenase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase 44,1 48,1 44,1 44,1 44,1 44,1 50,1 50,1 52 44,1 44,1 44,1 44,1 52 52 50,1 52 52 52 52 52 44,1 44,1 44,1 44,1 50,1 50,1 52 44,1 44,1 44,1 44,1 52 52 50,1 4,64E-04 3,02E-07 2,35E-02 5,34E-04 2,33E-03 4,57E-03 2,64E-02 7,22E-06 0,00E+00 1,55E-02 1,26E-03 2,33E-03 1,55E-02 2,19E-04 2,36E-125 3,47E-02 3,16E-02 4,26E-02 1,23E-03 2,35E-02 1,77E-02 2,35E-02 5,34E-04 2,33E-03 4,57E-03 2,64E-02 7,22E-06 0,00E+00 1,55E-02 1,26E-03 2,33E-03 1,55E-02 2,19E-04 2,36E-125 3,47E-02 0,21 0,20 0,29 0,12 0,00 0,00 0,21 0,11 0,17 0,19 0,23 0,00 0,24 0,15 0,08 0,00 0,45 0,39 0,21 0,29 0,00 0,29 0,12 0,00 0,00 0,21 0,11 0,17 0,19 0,23 0,00 0,24 0,15 0,08 0,00 Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down 100 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P00865 P08706 P12858 P12858 P12858 P12859 P13284 P13443 P24465 P25861 P26969 P28553 P31023 P39866 P51104 P51104 P51978 P72854 Q01289 Q01289 Q42807 Q42822 Q43155 Q4PGW7 Q55087 Q6MD85 Q8DJK9 Q8TC12 rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase rbs1_ribulose bisphosphate carboxylase g3pa_glyceraldehyde-3-phosphate dehydrogenase g3pa_glyceraldehyde-3-phosphate dehydrogenase g3pa_glyceraldehyde-3-phosphate dehydrogenase g3pb_glyceraldehyde-3-phosphate dehydrogenase gilt_gamma-interferon-inducible lysosomal thiol reductase dhgy_glycerate dehydrogenase c71a1_cytochrome p450 g3pc_glyceraldehyde-3-phosphate cytosolic gcsp_glycine dehydrogenase mitochondrial crti_phytoene chloroplastic chromoplastic dldh_dihydrolipoyl mitochondrial nia2_nitrate reductase 2 dfra_dihydroflavonol-4-reductase dfra_dihydroflavonol-4-reductase thioredoxin reductase sulfite reductase subunit beta por_protochlorophyllide chloroplastic por_protochlorophyllide chloroplastic stad_acyl- chloroplastic rbs_ribulose bisphosphate carboxylase gltb_ferredoxin-dependent glutamate ncb5r_nadh-cytochrome b5 reductase chlp_geranylgeranyl diphosphate reductase 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase methionine sulfoxide reductase b retinol dehydrogenase 11 (all-trans 9-cis 11-cis) 52 44,1 44,1 44,1 44,1 42,1 44,1 48,1 52 52 52 44,1 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 7,93E-05 2,83E-02 5,18E-03 2,81E-05 2,33E-03 9,35E-03 4,64E-04 3,02E-07 7,93E-05 4,06E-24 7,74E-56 1,05E-05 5,59E-03 2,96E-03 1,37E-13 1,55E-02 5,58E-04 2,29E-22 4,15E-02 4,66E-11 1,29E-02 1,91E-19 9,69E-07 2,19E-04 7,35E-04 2,81E-05 3,31E-03 3,50E-04 1,70E-05 5,78E-09 1,57E-05 6,02E-04 1,78E-02 1,62E-02 2,71E-06 0,00 0,36 0,16 0,09 0,00 0,22 0,21 0,20 0,00 0,14 0,09 0,00 0,21 0,15 0,13 0,24 0,56 0,13 0,28 0,08 0,42 0,19 0,16 0,15 0,20 0,09 0,19 0,44 0,15 0,08 0,22 0,00 0,72 0,36 0,00 Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down 101 Q945B7 Q948P6 Q9SEC2 Q9XG54 Q9XG54 Q9XG54 Q9ZRF1 Q9ZRF1 P17817 P13603 P09186 O23920 P32291 B1WTZ2 P35738 Q06215 P37115 O81974 Q2MJ15 A6TF98 P37221 P51615 A7PN93 Q06652 Q06652 Q05047 Q503L9 Q9FR99 P48621 P51091 O04892 B7FIB3 Q2HVL4 Q96558 P25795 crd1_magnesium-protoporphyrin ix monomethyl ester fri3_ferritin- chloroplastic msra_peptide methionine sulfoxide reductase opr1_12-oxophytodienoate reductase opr1_12-oxophytodienoate reductase opr1_12-oxophytodienoate reductase mtdh_probable mannitol dehydrogenase mtdh_probable mannitol dehydrogenase p5cr- pyrroline-5-carboxylate reductase adh1_alcohol dehydrogenase 1 lox3_ lipoxygenase-3 hppd_4-hydroxyphenylpyruvate dioxygenase fad3e_3 fatty acid endoplasmic reticulum 4-hydroxy-3-methylbut-2-enyl diphosphate reductase acid dehydrogenase e1 ppo_polyphenol oxidase chloroplastic tcmo_trans-cinnamate 4-monooxygenase c71d8_cytochrome p450 cytochrome p450 monooxygenase udp_glucuronic acid decarboxylase maom_dependent malic enzyme 62 kda mitochondrial maox_nadp-dependent malic enzyme hypothetical protein [Vitis vinifera] gpx4_phospholipid hydroperoxide glutathione peroxidase gpx4_phospholipid hydroperoxide glutathione peroxidase c72a1_secologanin synthase nxn_nucleoredoxin acco_1-aminocyclopropane-1-carboxylate oxidase fad3c_3 fatty acid chloroplastic ldox_leucoanthocyanidin dioxygenase cytochrome p450 unknown [Medicago truncatula] rna-binding region rnp-1 ugdh_udp-glucose 6-dehydrogenase al7a1_aldehyde dehydrogenase 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 44,1 52 52 52 52 52 52 52 52 52 52 3,31E-03 2,32E-12 6,76E-16 1,77E-02 3,47E-02 7,35E-04 4,66E-11 2,28E-05 6,78E-03 5,38E-04 2,81E-02 1,43E-02 1,11E-03 5,83E-12 7,69E-05 1,13E-05 1,09E-03 6,78E-03 2,50E-05 1,08E-02 1,38E-02 4,25E-02 3,36E-03 0,00E+00 2,30E-05 6,98E-08 0,00E+00 1,53E-03 3,84E-04 1,38E-02 1,83E-11 1,85E-02 2,81E-02 3,33E-03 3,65E-07 0,19 0,09 0,23 0,00 0,00 0,34 0,08 0,12 6,32 3,09 4,52 2,21 4,32 5,51 4,80 14,46 2,83 6,32 10,80 2,12 5,42 1,62 4,37 2,64 13,55 5,78 10,17 2,98 5,40 5,42 5,14 2,37 2,74 7,23 5,40 Down Down Down Down Down Down Down Down Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up 102 P28759 P28759 P00865 O62964 Q9HBH5 P00865 Regulation transcription Q9H501 Q6P2Z0 Q9ZWL6 O24542 Q8BT14 P24068 P24068 Q99090 Q99090 O14270 Q9FWQ5 Q8GTE5 Q9LFY2 Q9LYD3 Q8LJS2 Q61502 A0JP85 A9P8K1 O24606 O82199 O82307 Q66GR3 Q9FH37 Q9SDQ3 sodf_superoxide dismutase chloroplastic sodf_superoxide dismutase chloroplastic rbs1_ribulose bisphosphate carboxylase small chain rbl_ribulose bisphosphate carboxylase large chain retinol dehydrogenase 14 rbs1_ribulose bisphosphate carboxylase 52 52 52 52 52 52 1,42E-05 1,97E-03 2,43E-05 2,97E-02 1,88E-02 2,43E-05 2,63 4,63 4,11 3,77 2,57 4,11 Up Up Up Up Up Up chromosome 20 open reading frame 6 basic leucine zipper and w2 domain-containing protein etr1_ethylene receptor ax22d_auxin-induced protein 22d ccr4-not transcription subunit 4 isoform 2 octopine synthase binding factor1 octopine synthase binding factor1 cprf2_light-inducible protein cprf2 cprf2_light-inducible protein cprf2 fork head transcription factor fhl1 hac12 (histone acetyltransferase of the cbp family 12) h3 h4_ histone acetyltransferase transcription cofactor transcription factor erebp-like protein athb54 (arabidopsis thaliana protein 54) nucleic acid binding transcription factor tiny2 dna binding transcription factor hdt1_histone deacetylase e2f transcription factor 5 ccr4-not transcription subunit 1 predicted protein [Populus trichocarpa] ein3 (ethylene-insensitive3) transcription factor ccch-type zinc finger protein atcth transcription factor basic helix-loop-helix family protein ilr3_dna binding transcription factor scl1 (scarecrow-like 1) transcription factor 52 52 52 52 52 52 52 52 52 52 52 1,14E-02 2,81E-02 1,51E-03 1,38E-02 8,33E-03 1,13E-03 2,16E-02 1,94E-04 2,58E-09 3,33E-03 1,38E-02 3,09 4,52 3,53 5,42 3,50 5,83 3,09 10,84 10,54 7,23 5,42 Up Up Up Up Up Up Up Up Up Up Up 52 52 0,00E+00 6,78E-03 3,95 6,32 Up Up 52 52 52 52 52 52 52 52 52 52 52 2,81E-02 1,04E-02 2,81E-02 3,32E-02 5,66E-03 9,49E-09 1,80E-04 9,22E-09 4,97E-13 1,90E-02 6,78E-03 4,52 4,46 4,52 4,63 4,11 4,32 2,19 23,49 6,43 5,14 6,32 Up Up Up Up Up Up Up Up Up Up Up 103 Q9SQI2 P46604 Q9FKG2 P46668 Q42808 Q02283 Q02283 Q02283 Q00423 Q0GLC9 Q41109 A7PLE5 Q56XP9 Q9FY69 Q01085 Q7Y1B6 P42499 Q700D2 Q47894 Q9SUP6 Q39266 Q02283 A7PME6 P47927 gigan_protein gigantea homeobox protein hat22 ethylene responsive element binding factor athb6_transcription activator transcription factor tbp_tata-box-binding protein at3g01470 f4p13_2 at3g01470 f4p13_2 at3g01470 f4p13_2 hmgya_hmg-y-related protein Dof22 [Glycine max] regulator of mat2 transcription factor apetala2 ap2 domain-containing transcription factor family protein transcription factor transcription regulator tia-1 related protein isoform 1 gai_gibberellic acid-insensitive mutant protein phyb_phytochrome b jkd_ transcription factor zinc ion binding glnb_nitrogen regulatory protein p wrky53_transcription activator transcription factor zinc finger protein zfp7 at3g01470 f4p13_2 hypothetical protein [Vitis vinifera] apetala2 protein 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 1,04E-02 6,39E-04 3,37E-05 6,56E-04 3,87E-03 3,33E-03 6,16E-03 4,57E-03 1,77E-02 8,99E-03 1,77E-02 6,02E-04 3,47E-02 2,64E-02 2,09E-13 2,78E-02 4,33E-11 4,46E-02 6,02E-04 6,02E-04 3,47E-02 4,57E-03 3,47E-02 2,30E-04 4,46 6,17 7,88 4,52 3,23 7,23 1,56 0,00 0,00 0,17 0,00 0,00 0,00 0,21 0,04 0,53 0,07 0,23 0,00 0,00 0,00 0,00 0,00 0,35 Up Up Up Up Up Up Up Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down fenr1_ferredoxin--nadp fenr1_ferredoxin--nadp g chain improved model of plant photosystem i g chain improved model of plant photosystem i psbp_protein evolving system of photosystem h chain improved model of plant photosystem i h chain improved model of plant photosystem i cb23_chlorophyll a-b binding protein 52 48,1 52 52 52 52 52 52 2,17E-36 2,28E-05 7,00E-07 8,74E-33 1,12E-67 2,37E-20 3,47E-02 1,08E-15 0,08 0,12 0,00 0,05 0,05 0,23 0,00 0,18 Down Down Down Down Down Down Down Down Photosynthesis P10933 P10933 P12357 P12357 P16059 P22179 P22179 P27489 104 P27522 P27522 P27524 P27524 P27524 P27524 P32869 P46486 P46486 P54773 P72580 P72580 P80470 P80470 Q01289 Q01289 Q07473 Q40519 Q40519 Q41387 Q41387 Q55087 Q945B7 Q9RFD5 Q9S7W1 Q9SDM1 Q9SDM1 Q9SDM1 Q9XF89 Q9XF89 Q9XF89 Q9XF89 Q9XF89 Q9XF89 Q9ZT05 cb13_chlorophyll a-b binding protein cb13_chlorophyll a-b binding protein cb4a_chlorophyll a-b binding protein cp24 cb4a_chlorophyll a-b binding protein cp24 cb4a_chlorophyll a-b binding protein cp24 cb4a_chlorophyll a-b binding protein cp24 psad_photosystem i reaction center subunit psaf_photosystem i reaction center psaf_photosystem i reaction center psbs_photosystem ii 22 kda solanesyl diphosphate synthase solanesyl diphosphate synthase psby_photosystem ii core complex proteins psby_photosystem ii core complex proteins por_protochlorophyllide oxidoreductase por_protochlorophyllide oxidoreductase chlorophyll a b-binding protein cp29 psbr_photosystem ii 10 kda psbr_photosystem ii 10 kda psbw_photosystem ii reaction center w psbw_photosystem ii reaction center w chlp_geranylgeranyl diphosphate reductase crd1_magnesium-protoporphyrin ix monomethyl ester magnesium chelatase subunit h chlorophyll a b binding protein cb121_chlorophyll a-b binding protein 1b cb121_chlorophyll a-b binding protein 1b cb121_chlorophyll a-b binding protein 1b chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding psak_photosystem i reaction center subunit 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 44,1 44,1 52 52 42,1 50,1 44,1 52 52 52 6,46E-07 2,91E-03 8,99E-03 1,20E-07 6,89E-12 4,37E-02 4,72E-20 3,23E-39 1,04E-09 1,51E-32 1,25E-04 6,35E-14 2,82E-10 4,95E-23 2,81E-05 3,31E-03 3,29E-47 2,55E-02 5,48E-18 1,73E-26 2,12E-14 6,02E-04 3,31E-03 1,14E-03 5,67E-19 2,55E-02 1,77E-02 2,31E-70 7,81E-15 8,99E-03 1,77E-02 1,02E-06 3,21E-10 1,66E-09 2,57E-34 0,31 0,30 0,00 0,20 0,14 0,49 0,19 0,21 0,29 0,08 0,14 0,00 0,09 0,30 0,09 0,19 0,15 0,83 0,22 0,30 0,45 0,00 0,19 0,17 0,06 0,26 0,00 0,34 0,37 0,17 0,00 0,12 0,18 0,20 0,23 Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down 105 Q9ZT05 Q9XF89 Q9XF89 Q9XF89 Q9XF89 Q9XF89 psak_photosystem i reaction center subunit chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding chlorophyll a b-binding 50,1 44,1 52 44,1 44,1 50,1 3,47E-02 2,81E-02 0,00E+00 3,94E-04 3,94E-04 2,81E-02 0,00 4,52 2,67 9,94 9,94 4,52 Down Up Up Up Up Up Q9FY14 Q46036 Q2LAM0 Q2LAM0 P21727 P52178 Q6J163 Q6J163 O82316 Q9ZVX8 O05519 P07030 P07030 P07030 P07030 P07030 P10933 P10933 P29450 P29450 P29450 Q9ZR41 P52232 P0A3C7 P0A3C7 A4GYQ4 tip1_probable aquaporin 1 outer membrane lipoprotein blc fatty acid 2-hydroxylase fatty acid 2-hydroxylase tpt_triose phosphate phosphate tpt2_triose phosphate phosphate non-green 5ng4_pintaauxin-induced protein 5ng4 5ng4_pintaauxin-induced protein 5ng4 tip4 1 (tonoplast intrinsic protein 4 1) water channel plasma membrane intrinsic protein abc transporter (atp-binding protein) plas_chloroplastic plas_chloroplastic plas_chloroplastic plas_chloroplastic plas_chloroplastic fenr1_ferredoxin--nadp fenr1_ferredoxin--nadp thioredoxin f thioredoxin f thioredoxin f glrx_glutaredoxin thioredoxin m ferredoxin i ferredoxin i photosystem ii protein d2 52 52 52 52 52 52 52 52 52 52 52 52 50,1 50,1 50,1 52 52 48,1 52 50,1 44,1 52 52 52 52 52 4,81E-03 5,73E-03 3,47E-02 2,64E-02 3,16E-02 3,47E-02 6,25E-03 3,40E-03 2,33E-03 2,28E-05 2,64E-02 4,14E-65 1,77E-02 8,99E-03 1,05E-05 4,35E-04 2,17E-36 2,28E-05 5,96E-14 3,47E-02 2,89E-22 3,07E-14 1,21E-02 4,15E-02 4,57E-03 7,50E-05 0,57 0,44 0,00 0,21 0,45 0,00 0,54 0,23 0,00 0,12 0,21 0,12 0,00 0,00 0,00 0,19 0,08 0,12 0,16 0,00 0,19 0,53 0,32 0,28 0,00 4,41 Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Down Up Transport 106 Q5XIF3 P49098 Q6J163 Q6J163 Q94FN1 Q9SV31 Q1KUQ8 O22342 Q29RM1 P51132 O04066 O04066 Q9UG63 P27572 P35721 P29449 A4GYQ4 Q01366 Q01366 nadh dehydrogenase fe-s protein 4 cytochrome b5 5ng4_pintaauxin-induced protein 5ng4 5ng4_pintaauxin-induced protein 5ng4 phosphatidylinositol transfer-like protein iii aquaporin mip-like protein hypothetical protein [Cleome spinosa] adt1_adp atp translocase 1 solute carrier family member 19 ucri2_ubiquinol-cytochrome c reductase acbp_acyl- -binding protein acbp_acyl- -binding protein atp-binding sub-family member 2 isoform b nu4m_nadh-ubiquinone oxidoreductase succinate dehydrogenase subunit 3 trxh1_thioredoxin h-type 1 photosystem ii protein d2 photosystem ii protein d1 photosystem ii protein d1 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 4,93E-02 1,86E-03 3,36E-03 1,71E-13 2,97E-02 6,78E-03 1,13E-03 1,90E-02 9,45E-03 3,42E-02 2,97E-02 1,38E-02 5,10E-03 3,94E-04 1,13E-03 0,00E+00 7,50E-05 4,69E-05 1,90E-02 3,43 7,20 6,68 5,14 3,77 6,32 5,83 5,14 3,86 2,88 3,77 5,42 3,70 9,94 5,83 18,36 4,41 10,28 5,14 Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up O04057 O24326 O65351 P04825 P25776 P25776 P42211 P43508 Q766C3 Q766C3 O24325 Q8YV57 A0YSJ1 aspr_aspartic proteinase vpe2_vacuolar-processing enzyme cucumisin-like serine protease aminopeptidase n orya_oryzain alpha chain orya_oryzain alpha chain asprx_aspartic proteinase cathepsin b-like cysteine proteinase nep1_aspartic proteinase nepenthesin-1 nep1_aspartic proteinase nepenthesin-1 vpe1_legumain-like proteinase wd-40 repeat-containing protein hypothetical protein L8106_22426 52 52 52 52 52 42,1 52 52 52 52 52 52 52 2,71E-02 2,17E-14 2,60E-02 1,96E-02 1,38E-13 3,06E-04 6,59E-06 3,61E-04 4,99E-02 2,35E-02 2,16E-02 2,56E-02 3,36E-03 0,56 0,15 0,42 0,53 0,53 0,00 0,41 0,66 0,37 0,29 3,09 3,34 4,37 Down Down Down Down Down Down Down Down Down Down Up Up Up Proteolysis 107 A0YSJ1 Q8RY22 Q42384 Q42290 P12412 P22895 Q93Z89 Q40983 Q40983 Q40983 P13917 P13917 Q9M9Z2 O73944 P25776 hypothetical protein L8106_22426 Protease Do-like 7 prl1_Protein pleiotropic regulatory locus 1 Probable mitochondrial-processing peptidase cysep_cysteine proteinase p34_p34 probable thiol protease matrix metalloproteinase mmp2 metalloendopeptidase [Pisum sativum] metalloendopeptidase [Pisum sativum] metalloendopeptidase [Pisum sativum] 7sb1_basic 7s globulin 7sb1_basic 7s globulin tpp2_probable thylakoidal processing peptidase pyrrolidone-carboxylate peptidase orya_oryzain alpha chain 52 52 52 52 52 52 52 52 52 52 52 52 52 52 44,1 1,58E-07 1,38E-02 6,04E-03 1,38E-02 3,87E-03 1,04E-02 0,00E+00 1,38E-02 3,33E-03 6,87E-04 2,28E-10 2,10E-03 1,56E-02 1,63E-03 3,42E-02 19,88 5,42 4,80 5,42 3,23 4,46 66,59 5,42 7,23 2,06 5,48 3,21 3,60 8,13 2,88 Up Up Up Up Up Up Up Up Up Up Up Up Up Up Up unknown [Medicago truncatula] hsp72_heat shock cognate 70 kda protein 2 hsp80_heat shock cognate protein 80 lipc_drought-induced stress protein lipc_drought-induced stress protein lipc_drought-induced stress protein hsp7s_stromal 70 kda heat shock-related small heat shock protein hbl1_non-symbiotic hemoglobin clpb2_chaperone protein clpb 2 pp1_serine threonine-protein phosphatase pp1 al7a1_aldehyde dehydrogenase family 7 hsp7m_heat shock 70 kda mitochondrial arg2_indole-3-acetic acid-induced protein arg2_indole-3-acetic acid-induced protein usp-like protein af281656_1 transcription factor 52 52 52 52 44,1 50,1 52 52 52 52 52 52 52 52 52 52 52 6,98E-03 8,17E-09 2,35E-02 1,49E-07 2,33E-03 1,18E-03 1,82E-02 6,96E-15 2,55E-02 3,36E-03 3,68E-02 3,65E-07 1,90E-02 7,79E-08 1,01E-12 1,85E-02 9,50E-12 0,33 0,26 0,29 0,64 0,00 0,00 0,64 0,26 0,26 6,68 1,92 5,40 5,14 15,43 6,01 2,37 3,22 Down Down Down Down Down Down Down Down Down Up Up Up Up Up Up Up Up Response to stress B7FH14 P27322 P36181 P80471 P80471 P80471 Q02028 Q4UKR8 Q9FVL0 Q8YM56 P48490 P25795 Q01899 P32292 P32292 Q07A28 Q94G23 108 Q94G23 P32110 af281656_1 transcription factor gstx6_probable glutathione s-transferase 44,1 52 1,63E-03 0,00E+00 8,13 35,99 Up Up heat shock cognate 70 kda protein 2 predicted protein [Populus trichocarpa] cyph_peptidyl-prolyl cis-trans isomerase enpl_endoplasmin homolog enpl_endoplasmin homolog hsp80_heat shock cognate protein 80 hsp7s_stromal 70 kda heat shock-related sura_chaperone sura dnaj_chaperone protein dnaj molecular chaperone peptidyl-prolyl cis-trans isomerase cyclophilin Chaperone protein dnaJ 20 ruba_60 kda chaperonin subunit alpha heat shock cognate 70 kda protein 2 dnjh2_protein homolog 2 dnjh2_protein homolog 2 hsp7m_heat shock 70 kda mitochondrial peptidylprolyl isomerase calx_calnexin homolog 52 52 52 52 50,1 52 52 52 52 52 52 52 52 52 52 52 52 52 52 8,17E-09 2,81E-05 2,92E-12 2,78E-158 8,99E-03 2,35E-02 1,82E-02 4,57E-03 1,77E-02 1,47E-02 2,86E-08 5,10E-03 1,73E-03 8,31E-03 5,91E-06 6,78E-03 1,90E-02 8,03E-04 2,97E-02 0,26 0,09 0,26 0,08 0,00 0,29 0,64 0,00 0,00 0,27 0,20 3,70 2,44 2,40 2,12 6,32 5,14 9,03 3,77 Down Down Down Down Down Down Down Down Down Down Down Up Up Up Up Up Up Up Up Protein Folding P22954 A9PH85 O49886 P35016 P35016 P36181 Q02028 Q5WZN0 Q75VW3 Q8RB67 Q9ASS6 Q9SDN0 P08926 P22954 P42824 P42824 Q01899 Q38867 Q39817 109 CAPÍTULO 2 The analysis of differential expression in Vigna unguiculata (L.) Walp. to the severe mosaic virus (CPSMV) revealed by SuperSAGE To be submitted to the journal BMC Genomics 110 ABSTRACT Background: Cowpea (Vigna unguiculata L. Walp.) is a widely adapted, stress tolerant grain legume, vegetable, and fodder crop grown on about 7 million ha in warm to hot regions of Africa, Asia, and the Americas. However, biotic stress such as virus stress limits plant growth and crop productivity, including those of legumes. We anticipate that studies on Vigna unguiculata will shed light on other economically important legumes across the world and innovative molecular tools such as transcriptome analyses providing insight into stress-related gene activity, which combined with molecular markers and expression QTL mapping may contributed knowledge-based breeding. In this report, we describe the genes identified by SuperSAGE that are up or down regulated during the early resistance response to CPSMV in cowpea. Results: Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, differentially expressed genes were identified that were involved in numerous biological pathways and functions including transcription regulation and response to defense, including response to biotic stress. Among the stress inducible genes identified, we found 356 distinct tags corresponding the regulatory auxin genes, transcription factor, involved pathway to jasmonate, genes involved in antioxidant activities, heat shock, and oxidative stress, suggesting that various transcriptional regulatory mechanisms function in the stress signal transduction pathways. Conclusion: This work significantly contributes to our understanding of the molecular mechanisms of genes response to stress and, to our knowledge, this is the first essay to analyze differential gene expression of the Vigna unguiculata. Keywords: Vigna unguiculata, viral diseases, SuperSAGE, transcriptome, expression profile. 111 1. INTRODUCTION Cowpea [Vigna unguiculata (L.) Walp.], is an important legume grown as a grain, vegetable, fiber, or fodder crop in the tropical and subtropical world [1]. In the Brazil, the culture of cowpea represents an important alternative in the supplement of the proteins necessities of small agriculturists in the North and Northeast regions. The crop has a considerable ability to adapt to high temperatures and drought compared to other crop species [2]. However, like most crop plants, cowpea production is limited by numerous biotic and abiotic factors and, among several diseases, those caused by viruses are considered of great importance, becoming one of the most important problem for the production this crop [3]. The Cowpea severe mosaic vírus (CPSMV) - a comovirus [4] transmitted by more than ten species of beetles [5] stands out as most important virus affecting cowpea. Significant yield losses associated with CPSMV infections can vary from as little as 2% to as much as 85%, depending on the time of inoculation, season, and cultivar [1]. Despite its economic and social importance, cowpea improvement programs have directed efforts in the screening of sources of resistance genes in wild and cultivated germoplasm, to development of desirable agronomic traits cultivars, such as those governing the abiotic and biotic stresses [6]. Although progress had been made in cowpea breeding for CPSMV resistance, the generation of resistant varieties is a difficult and time consuming task. In addition, CPSMV presents a large biological variability with a wide host range in the leguminous family [5] and/ or genotypes with higher and lower degree of resistance and susceptibility to each isolate, suggesting evidence of new strains of CPSMV developed over the years by genetic mutation, rearrangement of genome components and adaptation to new cowpea cultivars or leguminous species [7]. Understanding of molecular mechanisms underlying host-pathogen interactions is of primary importance in the definition of strategies to control diseases [8]. Until recently, few evaluations regarding the genus Vigna have appeared in the literature examining differential gene regulation during growth and development or in response to several stresses [6]. Consequently, the developing of innovative biotechnology for cowpea improvement requires not only an understanding of its genome organization and complexity, but also of its gene structure and function. The most significant studies in legume genomics have been made for model species as M. truncatula and L. japonicus, 112 [9, 10] and for soybean (G. max), the economically most important legume crop species [11]. In this context, progress in the development of genome-scale data sets for several legume species offers important possibilities for crop improvement, allowing more rapidly and precisely access to target genes associated to a series of abiotic and biotic stresses [12]. For this purpose, a number of methods have been used to isolate differentially expressed plant genes. One of the most powerful gene expression analysis techniques is the serial analysis of gene expression (SAGE) as developed by Vesculescu et al [13]. Although SAGE is a useful technique for transcriptomics, the size of the SAGE tag (15 bp) is frequently too short to unequivocally identify the corresponding gene. To circumvent this problem, a novel method called SuperSAGE was introduced as a modification of the conventional SAGE procedure, whereby the tag size of 15 bp of the latter is increased to 26 bp [8, 14]. Its tag length is advantageous in tag-to-gene annotation with higher specificity, thereby allowing the application of the technique for expression profiling in organisms in which little genome information is available [15, 16]. The present work reports genes identified by SuperSAGE that are up or down regulated during the early resistance response to CPSMV in resistant and susceptible cowpea cultivars, bringing some new insights regarding the response to pathogen attack in this species as compared with other legumes and higher plants. The importance of the here identified genes in the resistance response is discussed. 2. MATERIAL AND METHODS 2. 1. Plants, virus inoculation, RNA extraction Cowpea plants (cultivar BR-14 Mulato, developed by EMBRAPA-CPMN, Teresina, Brazil) were cultivated in a greenhouse under anti-aphid net. The substrate was composed by two parts of organic soil to three parts of river sand. The experiment included 45 pods with five seeds per pod, grown under 12/12 h photoperiod and temperature varying from 28 to 32°C. The virus isolate used in this procedure (CPSMVCowpea severe mosaic virus) was obtained from the plant viruses collection of the Department of Plant Pathology at the Federal Rural University of Pernambuco - UFRPE, 113 Brazil (under the coordination of Dr. Gilvan Pio-Ribeiro). Cowpea plants were inoculated with CPSMV 20 days after the plantlet emergence, when all plants contained the two first true leaves emerged after the cotyledons. Leaves were harvested 30, 60, 90 min and 16 h after mechanical wounding with Carborundum™ and virus inoculation. Negative controls consisted of plants both neither infected nor mechanically injured. All leaves from each treatment were harvested, immediately frozen in liquid nitrogen and stored at -80ºC until RNA extraction. 2.2. RNA isolation and construction of SuperSAGE libraries Total RNA was extracted from cowpea leaves using a CTAB extraction followed by precipitation in LiCl solution, as described by Chang et al [17], followed by DNAse treatment and checking of the RNA quality and amount in 1,5% (p/v) agarose gel as well as in the Qubit (INVITROGEN®, USA) fluorometer. From approximately 1 mg of total RNA, poly (A) RNA was purified using the Oligotex mRNA Mini Kit (QIAGEN®) according to the manufacturer's batch protocol. Subsequent steps for construction of SuperSAGE libraries were performed as detailed by [8, 18]. However, instead of concatenation of ditags and subsequent cloning and sequencing, amplified ditags were directly sequenced by 454 Life Sciences, Branford, CT, USA. 2.3. SuperSAGE data analysis The statistical tests were used to determine tags with significant temporal changes in abundance from the Two SuperSAGE libraries. The statistical analysis of SAGE data for identification of genes differentially expressed was carried out using the DiscoverySpace 4.01 software (Canada's Michael Smith Genome Sciences Centre, available at http://www.bcgsc.ca/discoveryspace), using a procedure of Audic and Claverie [19] for identification of tags appearing exclusively in a given library and that differentially transcribed (p-value; p>0.05). The frequency ratio was calculated the counted tags of inoculated library BRM (BRMT123+BRMT4) in relation to the control C1. The R ratio was considered the modulation value of the transcriptional expression (FC; Fold Change) when R > 1 when super expressed and 1/R when repressed. Each library was normalized to 100,000 total counts per library prior to loading into Cluster 3.0. 114 2.4. Annotation of SuperSAGE Tags The unigenes were annotated using a local BLASTx tool (e-value ≤ 10-10) against the UNIPROT-Swiss-Prot/TrEMBL (http://www.uniprot.org/; release 15.7) database. Best scores were taken considering the BLAST evaluations against the various data banks cited above. In the case of identical scores/e-values the best described sequence was chosen, giving priority to cowpea sequences or taxonomic most related organisms. The functional annotation was carried out using the Blast2GO tool (http://www.blast2go.org;) [20], with default parameters and terms according to the Gene Ontology classification [21]. 2.5. Cluster analysis and functional category distribution analysis To generate an overall picture of genes involved in category response to stress expression patterns in Vigna, a hierarchical clustering approach was applied using normalized data (100,000 total counts per library ) and a graphic representation constructed with the aid of the software package Cluster 3.0 (http://rana.lbl.gov/Eisen Software.htm). A distance matrix for the R (ln) was calculated with Pearson's correlation distance method. Dendrograms including both axes (using the weighted pair-group for each gene class and library) were generated by the TreeView program [22]. In the diagrams (figure 7, see Results), black means no expression and red all degrees of expression. 3. RESULTS AND DISCUSSION A total of 6,801,062 26-bp tags were generated, from which 1,011,380 tags regarded the BRC1 library while 5,789,682 tags belonged the BRM (BRMT123+BRMT4). Regarding BRM library, 2,974,661 tags regarded the initial times regarded the three initial virus stress times (BRMT123) while 2,815,021 tags regarded the later collections after inoculation (BRMT4) (Table 1). The number of singletons (tags appearing only once) regarded 353,175, representing approximately 6% of the total generated in all three libraries. This number is slightly lower than that observed by McIntosh et al [23] in wheat (Triticum aestivum) 115 libraries of various development stages (8 to 40 dpa; days post anthesis) anthesis and sequenced 96,441 LongSAGE tags from which 29,261 were singletons. Table 1. Summary of SuperSAGE libraries of Vigna unguiculata Library BRC1 BMCT123 BMCT4 Total sequenced 1,101,845 3,099,384 2,953,007 Total analyzed 1,011,380 2,974,661 2,815,021 Singletons 90,466 124,723 137,986 Unique to a given library 43,978 70,523 70,626 Tags The most abundant tags with 100 copies or more corresponded to about 6% (11,951) of the total tag number, while most transcripts occurred in 2-5 2 copies, representing about 55% (100,491) of the tags exclusive of a given library (Figure 1). Figure 1. Distribution of unique tags (axis Y) in relation to tag copy number (axis X). Only tags with a copy number ≥ 2 were plotted on the graph. A total of 107,161 unique (non redundant) tags were available for analysis using the program DiscoverySpace, from which 24,026 were exclusive to the library BRMT123, whilst 24,304 tags were exclusive to the library and 9,333 tags appeared only in the BRC1 (control) library, against 28,468 tags that were occurred in all three libraries. Considering only inoculated libraries (BRMT123 and BRMT4) a total of 14,853 were shared by both treatments (Figure 2). 116 Figure 2. Venn diagram showing the tag distribution istribution among the three SuperSAGE libraries for each stress treatment (1) BMCT123 (30, ( 60, 90 min); (2) BMCT4 (16 h); ); (3) BRC1 (control). Primary annotation The first annotation routine was against the cowpea EST data bank previously annotated Uniprot-Swiss-Prot/TrEMBL. Prot/TrEMBL. The tags that could be not annotated against cowpea were evaluated against other plants considering the adopted (higher score/escore/e value, best description scription and taxonomic proximity). From the 107,161 unique tags analyzed, 27,514 could be annotated (score ≥40), from which 17,928 (65%) tags presented 100% identity (score=52) with cowpea sequences available in the database (Table 2). These tags will be potentially useful to develop primers and probes for gene validation via RT-qPCR qPCR using the cDNAs used to generate the libraries, probably without need of further approaches as 3’ or 5’RACE and sequencing [24]. A group of 3,368 tags presented alignments with with the established parameters (score ≥40), including 2,249 tags with 100% identity (score=52) with Uniprot-SwissProt/TrEMBL sequences; despite of that, they did not present informative descriptions, being annotated but not categorized (Table 2). Regarding the same 2,249 tags (100% identity), 684 tags were differentially expressed, being 347 super expressed and 337 repressed. 117 Another group of 31,600 SuperSAGE tags presented no functional annotation against Uniprot-SwissProt/TrEMBL, despite of that they presented alignments (score ≥40) with sequences from other databases (EST/NCBI; TIGR, etc.). From these, 8,904 tags presented 100% identity (score=52) (Table 2). This high proportion may be due to a significant fraction of low expression level transcripts that could not be detected by previous approaches [25, 26] indicating the potential the SuperSAGE method for gene discovery. Similarly, 44,680 tags did not present the required similarity (no hit) with sequences available in public data banks (Table 2), bearing also an important for new gene discovery regarding virus resistance. Table 2. Annotation primary of tags SuperSAGE Annotation Uniprot Others databases No description Uniprot No hits Score=52 Score ≥40 Total 17,928 8,904 2,249 -- 9,586 22,696 1,119 44,681 27,514 36,488 3,368 4,681 Antisense Transcripts The orientation of each SuperSAGE tag is generally in the sense orientation, an assumption also consistent with other SAGE-related methods [23, 27, 28]. Despite of that, the present work revealed some reverse tags (reverse perfect or fuzzy) that aligned in the antisense direction of the DNA transcript. The antisense transcripts normally regard about 25-30% of all identified gene products [29, 30] being typically associated to gene silencing, transcription occlusion and direction of methylation that may result in the reduction of sense transcripts. Additionally, the antisense transcription may be associated with alternative splicing processes and polyadenylation, what may have an effect also regarding the sense transcripts [31, 32, 33]. Based on the parameters adopted to note antisense tags, this work annotated potential antisense 4,776 transcripts, corresponding to 4% of the total (107,161) unique tags analyzed. For 530 antisense tags, despite of being not differentially expressed (p>0.05), it was possible to identify the putative functions, revealing that 91 tags presented Fold Change ≥2. Among the 30 most abundant antisense tags (FC ≥2; Table 3) are proteins known for their involvement with gene regulation as the H4 histone, the 118 histone deacetylase 19, ubiquitin-conjugating enzyme, and an X-linked inhibitor of apoptosis protein. Other additionally important proteins regarded cellular transport, structure, function and signaling. Table 3. Summary of 30 most abundant antisense tags, including Uniprot/SwissProt/TrEMBL identification, protein description, FC and p-value. Tag Uniprot ID Protein description FC p-value AllCMV_60948 sp|O23969|SF21_HELAN Pollen-specific protein SF21 6,9 6,8E-02 AllCMV_9600 sp|Q76H85|H4_SILLA Histone H4 6,2 9,4E-02 AllCMV_29198 sp|Q9LRR9|GOX2_ARATH 1,1E-01 AllCMV_82696 sp|P17067|CAHC_PEA Probable peroxisomal (S)-2-hydroxy-acid oxidase 2 5,9 Carbonic anhydrase 5,9 1,1E-01 AllCMV_16739 sp|Q9LVM5|TTHL_ARATH Uric acid degradation bifunctional protein 5,5 1,3E-01 AllCMV_15013 sp|P52232|THIO1_SYNY3 Thioredoxin-like protein 5,5 1,3E-01 AllCMV_29527 sp|Q93VI3|RL171_ARATH 60S ribosomal protein 5,5 1,3E-01 AllCMV_20119 sp|O22446|HDA19_ARATH Histone deacetylase 19 5,2 1,5E-01 AllCMV_15014 sp|P52232|THIO1_SYNY3 Thioredoxin-like protein 4,8 1,8E-01 AllCMV_48855 sp|P28759|SODF_SOYBN Superoxide dismutase [Fe] 4,8 1,8E-01 AllCMV_42904 sp|Q43681|NLTP_VIGUN Probable non-specific lipid-transfer protein 4,8 1,8E-01 AllCMV_61541 sp|Q9LYN8|EXS_ARATH Leucine-rich repeat receptor protein kinase 4,8 1,8E-01 AllCMV_25317 sp|P27489|CB23_SOLLC Chlorophyll a-b binding protein 13 4,8 1,8E-01 AllCMV_106025 sp|P00551|KKA1_ECOLX Aminoglycoside 3'-phosphotransferase 4,8 1,8E-01 AllCMV_91998 sp|Q96451|1433B_SOYBN 14-3-3-like protein B 4,8 1,8E-01 AllCMV_79098 tr|B9RE37|B9RE37_RICCO X-linked inhibitor of apoptosis protein 4,5 2,1E-01 AllCMV_68159 sp|P81898|PNAA_PRUDU Peptide N4 asparagine amidase A 4,5 2,1E-01 AllCMV_80644 sp|Q9LY00|WRK70_ARATH Probable WRKY transcription factor 70 4,1 2,5E-01 AllCMV_68042 sp|Q39459|MT2_CICAR Metallothionein-like protein 4,1 2,5E-01 AllCMV_51261 sp|Q42521|DCE1_ARATH Glutamate decarboxylase 1 4,1 2,5E-01 AllCMV_26923 sp|P35135|UBC4_SOLLC Ubiquitin-conjugating enzyme 3,8 2,9E-01 AllCMV_7803 sp|Q6I581|GH35_ORYSJ Probable indole-3-acetic acid-amido synthetase 3,8 2,9E-01 AllCMV_29229 sp|O04834|SAR1A_ARATH GTP-binding protein SAR1A 3,8 2,9E-01 AllCMV_67987 sp|A6Q0K5|CP12_CHLRE Calvin cycle protein CP12 3,8 2,9E-01 AllCMV_83554 sp|Q8GYB8|OPR2_ARATH 12-oxophytodienoate reductase 2 3,8 2,9E-01 AllCMV_93732 sp|P62313|LSM6_MOUSE U6 snRNA-associated Sm-like protein 3,5 3,4E-01 AllCMV_18314 sp|Q01289|POR_PEA Protochlorophyllide reductase 3,5 3,4E-01 AllCMV_41589 sp|P55880|THIJ_SALTY Protein thiJ 3,5 3,4E-01 AllCMV_7802 sp|Q6I581|GH35_ORYSJ Probable indole-3-acetic acid-amido synthetase 3,5 3,4E-01 AllCMV_55702 sp|P43309|PPO_MALDO Polyphenol oxidase 3,5 3,4E-01 A transcript associated to a peroxisomal (S)-2-hydroxy-acid oxidase 2 (Hao 2) (FC=5,9) was also found among the antisense tags. The Hao2 belongs to an enzyme 119 family that acts in the glyoxilat cycle with putative contribution to fatty acids αoxidation catalyzing the oxidation of glycolat in glyoxilat [34]. Transcripts related to oxyreduction activities were also found (AllCMV_15014; AllCMV_48855; AllCMV_83554), as well as ribossomal proteins (AllCMV_29527) and a putative WRKY transcription factor 70 (AllCMV_80644). Considering the important role of the antisense transcripts in the gene regulation, an accurated analysis of such gene products is necessary aiming to explain the processes associated to their expression, a scenario where the SuperSAGE approach may contribute significantly. Functional categorization of SuperSAGE tags The functional categorization was carried out with 8,268 differentially expressed tags (p>0.05), corresponding to 30% of the 27,514 annotated tags against the Uniprot/Swiss-Prot/TrEMBL. From these, 3,182 were considered up-regulated and 5,086 down-regulated, as shown comparatively in Figure 3. The differentially expressed transcripts were annotated using the program BLAST2GO [21], with automatic annotation regarding the Gene Ontology (GO) categories: [Biological Process (BP), Molecular Function (MF) and Cellular Component (CC)] generating 10,933 annotations with 5,700 tags characterized in at least one category. Regarding the CC category, most over expressed transcripts regarded chloroplast compartments (582), plasma membrane (504), cytoplasm (409) and nucleus (376) (data not shown). In the MF category the 20 most represented subcategories included tags associated to ligation proteins, as for example zinc ion, magnesium, DNA, RNA, GTP, and calcium ligation, among other, within 440 upregulated tags. Other well represented terms in this category were tags associated to serine/threonine proteins (75) and to electron carrier activity (73). Considering 20 most represented upregulated tags in the BP category, most depicted subcategories included translation (213), oxidation reduction (204), transcription regulation (144), defense response (114) and transport (84) (Figure 4). 120 Figure 3. Functional categorization of Vigna unguiculata unitags. 20 most differentially expressed tags (up and downregulated) classified in the Gene Ontology categories “biological processes” and “molecular function”, considering the comparison of the Control (BRC1) and Virus-Inoculated (BRM). 121 Many of the upregulated subcategories also appeared as downregulated, sometimes with downregulated in higher proportion. This was also the case, for example, of Cytokinin (CK) in rice (Oryza ( sativa), ), probably due to the association with a regulating gene (OsRR6) that in transgenic plants was able to change the morphology and the metabolism of CK. Such regulator genes play a particular role in the plant response to hormones, being sometimes activated in response to pathogen attack and sometimes due to abiotic stress, with a parallel up and down regulation in the same category [35]. Considering the overall subcategories presented in Figure 4, it is noteworthy that a high number of tags are associated to to stress responsive genes, being grouped according to GO in distinct subcategories. Considering the need to understand the GO subcategories, they were grouped in a new category named “Stress Response”, which included 356 distinct tags divided in 14 subcategories egories (Figure 5). From these, the most represented subgroups regarded stress response (47), response to bacteria (41), response to cold (39), response to injury (33), response to saline stress (29) and defense response (28). Figure 4. Response to stress stress category in SuperSAGE libraries from V. unguiculata,, including 14 subcategories according to the Gene Ontology classification. Numbers represent the amount of 26 bp tags annotated to each subcategory. 122 For this category modulation values (Fold Change; FC) FC) observed varied from FC≥2 to FC≥100. Additionally, for the discussion of this new category the tags with modulation value (FC) higher than 10 were used to generate a differential expression graphical analysis (Figure 6). ). Figure 5. Fold change in Vigna unguiculata tags, showing significant changes in expression following BMCT123 and BMCT4 inoculation with CPSMV. CPSMV Significant changes in expression were determined by BMCT4/BMCT123 of six independent replicates. A total of 11 tags associated to the TIFY protein from Arabidopsis appeared distributed among the following subcategories: wounding (1), response to bacterium (5) and response to jasmonic acid (5). The tag associated to “response to wounding” (AllCMV_59591)) was ca. 40 times over expressed (FC=38.71) in the BRM library as compared to the control (BRC1), also corresponding to TIFY10a from Arabidopsis. The remaining 10 tags corresponded to TIFY10b from Arabidopsis and presented modulation values varying from ≥11 to ≥50. The TIFY gene family is plant-specific plant specific and was first described in Arabidopsis, being considered a regulatory factor of the phytormone category of the auxins, associated with plant growth and root development [36]. Additionally the TIFY10a belongs to a TIFY subfamily known as JAZ (Jasmonate Zim-domain) domain) which is a key molecule in the regulation of the hormone jasmonate in Arabidopsis [37, 38]. Recent studies in rice have revealed a role for the TIFY10a family in response to abiotic stress, including cluding jasmonic acid treatment, mechanical injury associated to the TIFY transcriptional modulation showing that this gene varies not only in response to abiotic 123 stresses but also during jasmonate expression modulation different developmental stages [38]. In Arabidopsis the over expression of TIFY motifs lead to the repression of the jasmonate signaling pathway through an alternative splicing of the JAS domain [39]. However, in the present work, the subcategories response to jasmonic acid and response to water, four tags were associated to lox2 (lipoxygenase 2). The lipoxygenases are related to the jasmonate (JA) pathway that in turn is induced in plants exposed to biotic and abiotic stresses. One of the best characterized functions of the jasmonate signalization pathway is the protective response against damages caused by herbivory. JA levels increase rapidly in response to herbivory and mechanical [40]. Additionally, the JA signaling cascade is also important to activate genes associated to pathogen invasion [41, 42], as it is the case of virus diseases. Therefore, the modulation of the expression regarding the above mentioned gene families is perfectly in consonance with the expectations in cowpea, indicating their role in response to mosaic virus infection. The tag AllCMV_2055 presented FC=170.99 and was identified as an endochitinase, a protein from the PR-3 category (that included chitinases class I, II, IV). Such enzymes degrade and hydrolyze β(1,4) chitin bonds, occurring in a variety of organisms including virus, bacteria, fungi, insects, plants and animals. In plants such enzymes are associated to defense and development while in virus they are associated to the pathogenesis [43, 44, 45]. The activation of this gene in the present essay may be associated to the feeding of the insect vectors, responsible for the CPSMV infection. Associations with transcription factors (TFs) were found for 23 tags that presented modulation values varying from 10 to 27. Such tags were distributed within the subcategories response to salt stress, response to fungus, response to bacterium, response to cold, response to wounding, response to chitin and response to jasmonic acid. From the 23 tags, 14 were related to the WRKY transcription factors (WRKY 33; WRKY 40; WRKY 70 and WRKY 11), a large TF gene family described for more than 10 plant species. They have been associated to defense against bacteria, fungi, virus and oomycetes [46, 47, 48, 49], being also active during the response against abiotic stress, including mechanical injury [50, 51], drought [52] and cold [19, 53, 54]. Furthermore, some members of this family play an important role in the regulation of morphogenesis and embryogenesis of trichomes, in senescence, dormancy, and pathways associated to plant growth [55, 56, 57]. 124 Moreover, four tags (AllCMV_88878, AllCMV_52405, AllCMV_88840, AllCMV_100174) were related with NAC, another TF family belonging to subfamily ATAF1. NAC transcription factors (NAM, ATAF and CUC) belong to a plant specific gene family that play an important role in the plant development and stress response [58, 59]. Members of the subfamily ATAF (ATAF1 and ATAF2) were described by the first time in the negative response to drought and injury in fungi [60] suggesting that this subfamily is associated to the response to abiotic stress. However, studying these genes in the plant pathogen infection of Arabidopsis with the fungus Blumeria graminis f. sp. hordei, Jansen et al. [61] observed a co-regulation of its expression in situations as injury, infection, levels of methyl jasmonate, abscisic aid, hydrogen peroxide, cold, drought, salinity and osmotic stress, indicating that this gene family responds collectively to biotic and abiotic stimuli. Another transcription factor of the MYB category (AllCMV_10553) was found in the category “response to salt stress” in the subcategory “response to jasmonic acid”. The TF MYB family is one of the most abundant in plants, being essential especially under abiotic stress [62]. The expression of MYB32 was already reported in many tissues, with emphasis on anther tapetum, stigma papillae, and lateral root primordia, uncovering its tissue specific action [63]. Besides their importance in the response to environmental stresses, a correlation to cell death was also reported in association with the hypersensitive response after pathogen attack [64]. The presence of this tag in different subcategories may be explained by the redundancy regarding BLAST2GO outputs, since the same tag can be associated to different ontological terms. The gene-specific transcription regulation is fundamental for the understanding the integration of extracellular and intracellular signals to elicit an appropriate gene expression response [65], a system known as combinatorial control [66]. Both genetic and physical interactions have shown that MYB and bHLH (basic helix-loop-helix) proteins are associated [66, 67]. A bHLH-like protein (AllCMV_51098) was found in the subcategory response to wounding suggesting the relation among both regulators also in cowpea. Another important TF, the “Ethylene responsive factor transcription” (ERF) was here represented by two tags in the subcategory response to chitin. The ERF family belongs to a TFs superfamily named AP2/ERF, including two subfamilies as: CBF/DREB and ERF [68]. Previous essays have shown that ERF members are responsible for the 125 response against biotic stress. Berrocal-Lobo et al. [69] demonstrated that the over expression of ERF1 induced the expression of PDF1.2, b_CHI and Thi2.1, resulting in increased resistance against Botrytis cinerea and Pseudomonas syringae in tomato. Other works have shown that different members of the ERF family assume different functions in the biotic and abiotic stress response [68, 70, 71]. In tomato (Solanum lycopersicum [f. sp. Lycopersicon esculentum]) and tobacco (N. tabacum) a co-expression of both factors TERF2/LeERF2 in the ethylene pathway has lead to an increased cold tolerance [72, 73]. Two tags [AllCMV_88380 (FC=24,18) and AllCMV_8274 (FC=20,73)] have shown similarity to patatins, proteins known by their lipolytic activity similar to phospholipase A2 [74, 75]. The patatins present approximately 40-45 kDa constituting the main protein storage factor in potato (Solanum tuberosum L.) [76, 77]. Among the main roles attributed to patatins some activities stand out, as acyltransferase, lipid acyl hydrolase and antioxidant action [76, 78]. Five tags of the subcategory “response to stress” were similar to heat shock proteins (HSPs), two regarding the HSP11 (11 kDa heat shock protein), one similar to HSP70 (70 kDa heat shock protein) and one to “small heat shock proteins” (smHSPs). The HSPs, also known as chaperones, are present under normal circumstances in basal levels, being over expressed under stress situations in order to assure the maintenance of the functional protein conformation and for prevention protein degradation [79, 80]. HSPs, including HSP70, are fundamental for the plant protection under biotic and abiotic stresses, reestablishing the cellular homeostase while interacting with a large number of co-chaperones and proteases [32]. In Arabidopsis an analysis of the transcriptional profile under oxidative stress revealed an increased HSP activity, including HSP70, HSP17.6 and smHSPs. Besides, transcription factors associated to heat shock (HSf4A and HsfA2) were also co-expressed, being important regulators of the stress response [81, 82]. Considering that the virus inoculation in cowpea depends on the injury of the leaves to permit the virus penetration, the activation of HSPs fits perfectly under the expected transcripts within the here analyzed stress. Still in the subcategory “response to stress” three tags were associated to a “universal stress protein A” (UspA), a class of phosphoproteins responsible by the autophosphorilation of Escherichia coli, a conserved protein family of bacteria (Usp family) [83, 84]. UspA coding genes have been also observed in multiple copies in Arabidopsis (data extracted from The Sanger Centre) [85]. In E. coli the UspA was 126 described in the resistance to DNA degrading agents [85], but its function is still uncovered in plants. Three proteins observed in the subcategories “response to fungus” and “response to bacterium” belonged to the “heat stable proteins”, also known as “lateembryogenesis-abundant” (LEA) – one of them with modulation value of 102.06. Their super expression has been described in response to drought, and also saline and cold stress [86, 87]. The presence of these high modulated proteins in inoculated cowpea plants indicates their participation in the process of injury and possibly also response to pathogen in this species. During stress, a common feature in plants is the activation of genes associated to oxidative stress. In the present work a super expression of five tags similar to a reticulin oxidase was observed in the subcategory “response to oxidative stress”, presenting modulation values from 11 to 27. The reticulin oxidase is a key component in the alkaloid pathway, being essential for the formation of benzophenanthridine alkaloid during the defense against pathogen attack [88, 89] Higher plants produce a variety of secondary metabolites including terpenoids, phenolic compounds and alkaloids [90] that may be exploited in agriculture to produce cultivars with increased resistance against pathogens, besides the exploitation of enzymes, especially those stereospecific as the reticulin [91] important for the alkaloid regulation and accumulation in plants [92]. The increased expression of this alkaloid in cowpea may be justified by its role in the prevention against insect feeding, a step intimately associated with virus infections, including the here studied cowpea mosaic virus. The present evaluation represents the first high through output evaluation of a leguminous genome using an open transcription platform, as it is the case of SuperSAGE analysis. It is evident that the transcriptional modulation in such a complex situation – as the primary reaction of the plant to injury associated to virus infection – will demand efforts not only in the annotation of the modulated genes, but also in their differential structural and functional features. However, this first insight permitted the identification of a huge amount of genetic factors, associated to different pathways, many related to biotic and abiotic stress responses, as observed in other higher plants. Among the most interesting candidates are those genes especially activated during the first hours after virus inoculation, probably responsible not only to the ‘quality’ of the defense genes subsequently activated, but also probably regarding the differences in the 127 timing and magnitude of their expression or, still, the contemporary expression of different sets of genes comparing resistant and susceptible plants during future qRTPCR essays. 128 Figure 6. Heat map representing expression profiles in the subcategory stress response in Vigna unguiculata. The map shows experimental treatments along the horizontal axis (BRC1; BMCT123; BMCT6) and hierarchical clustering of SuperSAGE tags along the vertical axis of 92 up regulated genes. Colored bars represent the expression profile reflecting the magnitude of the log2 expression ratio (Cy5/Cy3) for each transcript at each time point (see color scale). 129 4. REFERENCES [1] Booker HM, Umaharan P, McDavid CR: Effect of Cowpea severe mosaic virus on Crop Growth Characteristics and Yield of Cowpea. Plant Disease 2005, 89(5): 512520. [2] Ehlers JD, Hall AE: Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 1997 53: 187–204. [3] Freire-Filho FR, Ribeiro VQ, Barreto PD, Santos CAF: Melhoramento genético de Caupi (Vigna unguiculata (L.) Walp.) na Região do Nordeste. In: QUEIROZ MA, GOEDERT CO, Ramos SRR (Ed.). Recursos genéticos e melhoramento de plantas para o Nordeste brasileiro. Embrapa-CPATSA 1999. Não paginado. Disponível em: <http://www.cpatsa.embrapa.br/catalogo/livrorg/index.html>. Acesso em: [4] Chen X, Bruening G: Nucleotide sequence and genetic map of cowpea severe mosaic virus RNA2 and comparisons with RNA2 of other comoviruses. Virology 1992, 187: 682-692. [5] Lima JAA, Sittolin IM, Lima RCA: Diagnose e estratégias de controle de doenças ocasionadas por vírus. In: Freire Filho, F.R., Lima, J.A.A., Silva, P.H.S., Ribeiro, V.Q. (Eds.) Feijão caupi: Avanços tecnológicos. Embrapa Informação Tecnológica 2005: 404-459. [6] Timko MP, Ehlers JD, Roberts PA: Cowpea. In: Genome Mapping and Molecular Breeding in Plants, Pulses, Sugar and Tuber Crops Volume 3. Edited by: Kole C. Berlin: Springer-Verlag 2007, 49-68. [7] Camarço RFEA,, Nascimento AKQ, Andrade EC, Lima JAA: Biological, serological and molecular comparison between isolates of Cowpea severe mosaic virus. Tropical Plant Pathology 2009, 34(4): 239-244. 130 [8] Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R: Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 2003, 100: 15718-15723. [9] Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S: Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 2005, 137: 1174-1181. [10] Sato S, Tabata S: Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 2006, 9: 128-132. [11] Nunberg A, Bedell JA, Budiman MA, Citek RW, Clifton SW, Fulton L, Pape D, Cai Z, Joshi T, Nguyen H, Xu D, Stacey G: Survey sequencing of soybean elucidates the genome structure, composition and identifies novel repeats. Functional Plant Biology 2006, 33: 765-773. [12] Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, David A Hoisington DA: A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 2009, 10: 523. [13] Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995, 270(5235): 484-487. [14] Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R: SuperSAGE. Cell Microbiol 2005, 7: 11–18. [15] Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, Sági L: SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 2005, 111: 1118–1126. 131 [16] Matsumura H, Krüger DH, Kahl G, Terauchi R: SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechnol 2008, 9(5): 368-374. [17] Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Reptr 1993, 11: 113–116. [18] Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P: SuperSAGE: The Drought stress- responsive transcriptome of Chickpea roots. Bmc Genomics 2008, 9: 553. [19] Huang T, Duman JG: Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 2002, 48: 339-350. [20] Masoudi-Nejad A, Tonomura K, Kawashima S, Ito M, Kanehisa M, Endo T, Goto S: EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 2006, 34: 459– 462. [21] Conesa A, García-Gómez S, Terol J, Talón M, Robles M: Blast2go: A Universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21: 3674-3676. [22] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1): 25-9. [23] McIntosh S, Watson L, Bundock P, Crawford A, White J, Cordeiro G, Barbary D, Rooke L, Henry R: SAGE of the developing wheat caryopsis. Plant Biotech J. 2007, 5:69–83. 132 [24] Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH: Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol Biol. 2004, 54(3):353-72. [25] Sun M, Zhou G, Lee S, Chen J, Shi RZ, Wang SM: SAGE is far more sensitive than EST for detecting low-abundance transcripts. BMC Genomics 2004, 5: 1–4. [26] Lee JY, Lee DH: Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiology 2003, 132(2):517–529. [27] Nielsen KL, Grønkjær K , Welinder KG, Emmersen J: Global transcript profiling of potato tuber using LongSAGE. Plant Biotechnology Journal 2005, 3:175 – 18. [28] Poole R, Barker G, Werner K, Biggi G, Coghill J, Gibbings JG, Berry S, Dunwell J, Edwards K: Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription. BMC Genomics 2008, 9: 475. [29] Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MMH, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 2003, 302:842–846. [30] Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW: Genome-wide transcription analyses in rice using tiling microarrays. Nature Genet 2006, 38:124–129. 133 [31] Jen C, Michalopoulos I, Westhead DR, Meyer P: Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biol 2005, 6:R51. [32] Wang W, B Vinocur, Shoseyov O, Altman A: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 2004, 9: 244252. [33] Brantl S: Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 2007, 10: 102-109. [34] Jones JM, Morrell JC, Gould SJ: Identification and Characterization of HAOX1, HAOX2, and HAOX3, Three Human Peroxisomal 2-Hydroxy Acid Oxidases. J Biol Chem 2000, 275(17): 12590-7. [35] Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H: Over expression of a Type-A Response Regulator Alters Rice Morphology and Cytokinin Metabolism. Plant Cell Physiol 2007, 48(3): 523-539 [36] Vanholme B, Grunewald W, Bateman A, Gheysen TKG: The tify family previously known as ZIM. Trends Plant Sci 2007, 12(6): 239-244. [37] Staswick PE: JAZing up jasmonate signaling. Trends Plant Sci 2008, 13: 66-71. [38] Ye H, Du H, Tang N, Li X, Xiong L: Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 2009, 71: 291-305. [39] Chung HS, Howe GA: A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis. Plant Cell 2009, 21: 131-145. 134 [40] Reymond P, Weber H, Damond M, Farmer EE: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 2000, 12: 707-719. [41] Delessert C, Wilson IW, Van Der Straeten D, Dennis ES, Dolferus R: Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol Biol 2004, 55:165–181. [42] Howe GA: Jasmonates as signals in the wound response. J Plant Growth Regul 2005, 23:167–169. [43] Graham LS, Sticklen MB: Plant chitinases. Can J Bot 1994, 72: 1057-1083. [44]Patil SR, Ghormade V, Deshpande MV: Chitinolytic enzymes: an exploration. Enzyme Microb Technol 2000, 26: 473-483. [45] Adams DJ: Fungal cell wall chitinases and glucanases. Microbiology 2004, 150: 2029-2035. [46] Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, SiAmmour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T: Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002, 14:559574. [47] Dong J, Chen CH, Chen ZX: Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 2003, 51: 21–37. [48] Kalde M, Barth M, Somssich IE, Lippok B: Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 2003, 16: 295–305. 135 [49] Berri S, Abbruscato P, Faivre-Rampant O, CM Brasileiro A, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè ME, Piffanelli P: Characterization of WRKY coregulatory networks in rice and Arabidopsis. BMC Plant Biol 2009, 9: 120. [50] Hara K, Yagi M, Kusano T, Sano H: Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 2000, 263: 30–37. [51] Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S: Transcriptional profiling reveals novel interactions betweenwounding, pathogen, abiotic stress, and hormonal responses inArabidopsis. Plant Physiol 2002, 129:661–677. [52] Rizhsky L, Liang H, Mittler R: The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 2002, 130: 1143-1151. [53] Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R: Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 2002, 31: 319-330. [54] Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L: Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 2004, 55(3): 399-416. [55] Hinderhofer K, Zentgraf U: Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 2001, 213: 469–473. [56] Robatzek S, Somssich IE: Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 2002, 16: 1139-1149. [57] Johnson CS, Kolevski B, Smyth DR: Transparent testa glabra2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 2002, 14: 1359-1375. 136 [58] Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290(5499):2105-10. [59] Olsen AN, Ernst HA, Leggio LL, Skriver K: NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 2005, 10: 79-87. [60] Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R: The transcription factor ATAF2 represses the expression of pathogenesisrelated genes in Arabidopsis. Plant J 2005, 43: 745-757. [61] Jensen MK, Hagedorn PH, Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF: Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 2008, 56: 867-880. [62] Stracke R, Werber M, Weisshaar B: The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 2001, 4(5):447-456. [63] Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW: AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 2004, 40:979-995. [64] Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylidès C, Roby D: R2R3MYB gene, AtMYB30, A acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attach. Proc Natl Acad Sci USA. 2002, 99: 10179-84. [65] Winkel-Shirley B: Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 2002, 5: 218-223. 137 [66] Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX: Biochemical and Molecular Characterization of Plant MYB Transcription Factor Family. Biochemistry 2009, 74(1): 1-11. [67] Pattanaik S, Xie CH, Yuan L: The interaction domains of the plant Myc-like BHLH transcription factors can regulate the transactivation strength. Planta 2008, 227: 707-715. [68]Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 2006, 140: 411-432. [69] Berrocal-Lobo M, Molina A, Solano R: Constitutive expression of ethyleneresponse-factor 1 in arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 2002, 29:23-32. [70] Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH: Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 2001, 13: 10351046. [71] Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX: An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 2005, 59: 853-868. [72] Zhang Z, Zhang H, Quan R, Wang XC, Huang R: Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 2009, 150(1): 365-77. [73] Zhang Z, Huang R: Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol. 2010 (in press). 138 [74] Dijkstra BW, Kalk KH, Hol WGJ, Drenth J: Structure of bovine pancreatic phospholipase-A2 at 1.7A resolution. J Mol Biol 1981, 147(1):97-123. [75] Hirschberg HJ, Simons JW, Dekker N, Egmond MR: Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur J Biochem 2001, 268: 5037–5044. [76] Liu YW, Han CH, Lee MH, Hsu FL, Hou WC: Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro. J Agric Food Chem 2003, 51: 4389-4393. [77] Bauw G, Nielsen HV, Emmersen J, Nielsen KL, Jørgensen M, Welinder KG:Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. FEBSJ.2006, 273(15): 3569-84. [78] Andrews DL, Beames B, Summers MD, Park WD: Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J 1988, 252: 199-206. [79] Craig EA, Huang P, Aron R, Andrew A: The diverse roles of proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 2006, 156: 1-21. [80] Swindell WR, Huebner M, Weber AP: Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 2007, 8:125. [81] Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM: Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 2008, 66: 361-378. [82] Scarpeci TE, Zanor MI, Valle EM: Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 2008, 3(10): 856–857. 139 [83] NystroÈm T, Gustavsson N: Maintenance energy requirement: what is required for stasis survival of Escherichia coli? Biochim Biophys Acta 1998, 1365: 225-231. [84] Freestone P, Trinei M, Clarke SC, NystroÈm T, Norris V: Tyrosine phosphorylation in Escherichia coli. J Mol Biol 1998, 279: 1045-1051. [85] Diez A, Gustavsson N, Nyström T: The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway . Molecular Microbiology 2000, 36(6): 1494-1503(10). [86] Wise MJ: LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 2003, 4: 52. [87] Tunnacliffe A, Lapinski J, McGee B: A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 2005, 546: 315-321. [88] Dittrich H, Kutchan TM: Molecular-cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. PNAS 1991, 88: 9969–9973. [89] Liscombe DK, Facchini PJ: Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr Opin Biotechnol 2008, 19: 173-180. [90] Croteau R, Kutchan TM and Lewis NG: Natural products In: Buchanan B, Gruissem W and Jones R (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiology 2000:1250-1318. [91] Wink M: Biochemistry of Plant Secondary Metabolism. Annual Plant Reviews, Edited by Michael Wink, Sheffield Academic Press 1999, 2: 358. 140 [92] Ziegler J, Facchini PJ: Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 2008, 59: 735-69. 141 6. CONSIDERAÇÕES FINAIS Considerando o esclarecimento dos mecanismos regulatórios da expressão gênica e elucidação das funções de genes em diferentes tecidos e/ou situações, este trabalho evidencia o potencial da técnica de SAGE em gerar perfis transcricionais complexos e caracterizar funcionalmente diferentes processos celulares. Além disso, a utilização da técnica permitiu o acesso a transcritos de baixa abundância, identificando genes exclusivamente expressos em determinado tratamento e permitindo a diferenciação de possíveis isoformas de localização celular específica. A comparação dos perfis transcricionais permitiu a amostragem de uma lista de genes potenciais, caracterizados ou não, ligados a diferentes processos metabólicos e fisiológicos, como síntese de proteínas, resposta a estresse, resposta a defesa, estresse oxidativo, regulação transcricional, entre outros, que podem ser grandes alvos usados em programas de melhoramento da cultura do feijão-caupi. Como esperado, o stresse provocado pela inoculação do isolado do CPSMV (Cowpea Severo Mosaic Virus; Vírus do Mosaico Severo do Feijão-Caupi) desencadeou uma série de respostas específicas de estresses bióticos, bem como outras tradicionalmente associadas a estresses abióticos. Da mesma forma, a simples injúria mecânica induziu respostas típicas associadas a fatores classificados como abióticos, ativando também genes reconhecidos por conferirem resistência a patógenos em modelos previamente testados. No conjunto, tais constatações confirmam a íntima relação das respostas de vegetais a estes dois tipos de estresses, já propostas principalmente com base em estudos prévios envolvendo organismos-modelo. Outra contribuição deste trabalho, refere-se à disponibilização das sequências tags para a comunidade cientifica, possibilitando não só o conhecimento sobre o padrão de expressão gênica, como a ampliação em números de genes identificados e que podem ser comparados a outras espécies vegetais, em especial, as leguminosas. Além disso, a identificação e a posterior validação de transcritos potencialmente antisenso, podem favorecer o entendimento nos mecanismos da regulação pós transcricional da expressão dos genes fornecendo respostas na interação planta-patógeno. Não obstante, a seleção de tags úteis identificadas neste trabalho para validação por RT-qPCR, poderá não só confirmar os resultados obtidos pela técnica de superSAGE, como identificar diferentes categorias ligadas as processos metabólicos de interesse. 142 7. 1. INSTRUÇÕES PARA AUTORES DA REVISTA BMC GENOMICS General information File formats The following word processor file formats are acceptable for the main manuscript document: • • • • • • Microsoft Word (version 2 and above) Rich text format (RTF) Portable document format (PDF) TeX/LaTeX (use BioMed Central's TeX template) DeVice Independent format (DVI) Publicon Document (NB) Users of other word processing packages should save or convert their files to RTF before uploading. Many free tools ls are available which ease this process. TeX/LaTeX users: We recommend using BioMed Central's TeX template and BibTeX stylefile. stylefile If you use this standard format, you can submit your manuscript in TeX TeX format (after you submit your TEX file, you will be prompted to submit your BBL file). If you have used another template for your manuscript, or if you do not wish to use BibTeX, then please submit your manuscript as a DVI file. We do not recommend converting to RTF. Note that figures must be submitted as separate image files, not as part of the submitted DOC/ PDF/TEX/DVI file. Article types When submitting your manuscript, you you will be asked to assign one of the following types to your article: Research article Database Methodology article Software Please read the descriptions of each of the article types, choose which is appropriate for your article and structure it accordingly. If in doubt, your manuscript should be classified as a Research article, the structure for which is described below. Manuscript sections for Research articles Manuscripts for Research articles submitted to BMC Genomics should be divided into the following sections: • • • • • • • • • • • • Title page Abstract Background Results Discussion Conclusions Methods (can also be placed after Background) List of abbreviations used(if used any) Authors' contributions Authors' information (if any) Acknowledgements References 143 • • • Figure legends (if any) Tables and captions (if any) Description of additional data files (if any) You can download a template (Mac and Windows compatible; Microsoft Word 98/2000) for your article. For instructions on use, see below. The Accession Numbers of any nucleic acid sequences, protein sequences or atomic coordinates cited in the manuscript should be provided, in square brackets and include the corresponding database name; for example, [EMBL:AB026295, EMBL:AC137000, DDBJ:AE000812, GenBank:U49845, PDB:1BFM, SwissProt:Q96KQ7, PIR:S66116]. The databases for which we can provide direct links are: EMBL Nucleotide Sequence Database (EMBL), DNA Data Bank of Japan (DDBJ ), GenBank at the NCBI (GenBank), Protein Data Bank (PDB), Protein Information Resource (PIR) and the Swiss-Prot Protein Database (Swiss-Prot). Title page This should list: the title of the article, which should include an accurate, clear and concise description of the reported work, avoiding abbreviations; and the full names, institutional addresses, and e-mail addresses for all authors. The corresponding author should also be indicated. Abstract The abstract of the manuscript should not exceed 350 words and must be structured into separate sections: Background, the context and purpose of the study; Results, the main findings; Conclusions, brief summary and potential implications. Please minimize the use of abbreviations and do not cite references in the abstract. Background The background section should be written from the standpoint of researchers without specialist knowledge in that area and must clearly state - and, if helpful, illustrate - the background to the research and its aims. The section should end with a very brief statement of what is being reported in the article. Results and Discussion The Results and Discussion may be combined into a single section or presented separately. They may also be broken into subsections with short, informative headings. Conclusions This should state clearly the main conclusions of the research and give a clear explanation of their importance and relevance. Summary illustrations may be included. Methods This should be divided into subsections if several methods are described. List of abbreviations If abbreviations are used in the text, either they should be defined in the text where first used, or a list of abbreviations can be provided, which should precede the authors' contributions and acknowledgements. Authors' contributions In order to give appropriate credit to each author of a paper, the individual contributions of authors to the manuscript should be specified in this section. An "author" is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; and 3) have given final approval of the version to be published. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of funding, collection of data, or general supervision of the research group, alone, does not justify authorship. We suggest the following kind of format (please use initials to refer to each author's contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and 144 participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript. All contributors who do not meet the criteria for authorship should be listed in an acknowledgements section. Examples of those who might be acknowledged include a person who provided purely technical help, writing assistance, or a department chair who provided only general support. Authors' information You may choose to use this section to include any relevant information about the author(s) that may aid the reader’s interpretation of the article, and understand the standpoint of the author(s). This may include details about the authors' qualifications, current positions they hold at institutions or societies, or any other relevant background information. Please refer to authors using their initials. Note this section should not be used to describe any competing interests. Acknowledgements Please acknowledge anyone who contributed towards the study by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include their source(s) of funding. Please also acknowledge anyone who contributed materials essential for the study. Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements. Please list the source(s) of funding for the study, for each author, and for the manuscript preparation in the acknowledgements section. Authors must describe the role of the funding body, if any, in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication. References All references must be numbered consecutively, in square brackets, in the order in which they are cited in the text, followed by any in tables or legends. Reference citations should not appear in titles or headings. Each reference must have an individual reference number. Please avoid excessive referencing. If automatic numbering systems are used, the reference numbers must be finalized and the bibliography must be fully formatted before submission. Only articles and abstracts that have been published or are in press, or are available through public eprint/preprint servers, may be cited; unpublished abstracts, unpublished data and personal communications should not be included in the reference list, but may be included in the text and referred to as "unpublished data", "unpublished observations", or "personal communications" giving the names of the involved researchers. Notes/footnotes are not allowed. Obtaining permission to quote personal communications and unpublished data from the cited author(s) is the responsibility of the author. Journal abbreviations follow Index Medicus/MEDLINE. Citations in the reference list should contain all named authors, regardless of how many there are. Examples of the BMC Genomics reference style are shown below. Please take care to follow the reference style precisely; references not in the correct style may be retyped, necessitating tedious proofreading. Links Web links and URLs should be included in the reference list. They should be provided in full, including both the title of the site and the URL, in the following format: The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do] BMC Genomics reference style Style files are available for use with popular bibliographic management software: • • • BibTeX EndNote style file Reference Manager Article within a journal 145 1. Koonin EV, Altschul SF, Bork P: BRCA1 protein products: functional motifs. Nat Genet 1996, 13:266-267. Article within a journal supplement 2. Orengo CA, Bray JE, Hubbard T, LoConte L, Sillitoe I: Analysis and assessment of ab initio threedimensional prediction, secondary structure, and contacts prediction. Proteins 1999, 43(Suppl 3):149170. In press article 3. Kharitonov SA, Barnes PJ: Clinical aspects of exhaled nitric oxide. Eur Respir J, in press. Published abstract 4. Zvaifler NJ, Burger JA, Marinova-Mutafchieva L, Taylor P, Maini RN: Mesenchymal cells, stromal derived factor-1 and rheumatoid arthritis [abstract]. Arthritis Rheum 1999, 42:s250. Article within conference proceedings 5. Jones X: Zeolites and synthetic mechanisms. In Proceedings of the First National Conference on Porous Sieves: 27-30 June 1996; Baltimore. Edited by Smith Y. Stoneham: Butterworth-Heinemann; 1996:16-27. Book chapter, or article within a book 6. Schnepf E: From prey via endosymbiont to plastids: comparative studies in dinoflagellates. In Origins of Plastids. Volume 2. 2nd edition. Edited by Lewin RA. New York: Chapman and Hall; 1993:53-76. Whole issue of journal 7. Ponder B, Johnston S, Chodosh L (Eds): Innovative oncology. In Breast Cancer Res 1998, 10:1-72. Whole conference proceedings 8. Smith Y (Ed): Proceedings of the First National Conference on Porous Sieves: 27-30 June 1996; Baltimore. Stoneham: Butterworth-Heinemann; 1996. Complete book 9. Margulis L: Origin of Eukaryotic Cells. New Haven: Yale University Press; 1970. Monograph or book in a series 10. Hunninghake GW, Gadek JE: The alveolar macrophage. In Cultured Human Cells and Tissues. Edited by Harris TJR. New York: Academic Press; 1995:54-56. [Stoner G (Series Editor): Methods and Perspectives in Cell Biology, vol 1.] Book with institutional author 11. Advisory Committee on Genetic Modification: Annual Report. London; 1999. PhD thesis 12. Kohavi R: Wrappers for performance enhancement and oblivious decision graphs. PhD thesis. Stanford University, Computer Science Department; 1995. Link / URL 13. The Mouse Tumor Biology Database [http://tumor.informatics.jax.org/mtbwi/index.do] Microsoft Word template Although we can accept manuscripts prepared as Microsoft Word, RTF or PDF files, we have designed a Microsoft Word template that can be used to generate a standard style and format for your article. It can be used if you have not yet started to write your paper, or if it is already written and needs to be put into BMC Genomics style. Download the template (compatible with Mac and Windows Word 97/98/2000/2003/2007) from our site, and save it to your hard drive. Double click the template to open it. How to use the BMC Genomics template The template consists of a standard set of headings that make up a BMC Genomics Research article manuscript, along with dummy fragments of body text. Follow these steps to create your manuscript in the standard format: 146 • • • • Replace the dummy text for Title, Author details, Institutional affiliations, and the other sections of the manuscript with your own text (either by entering the text directly or by cutting and pasting from your own manuscript document). If there are sections which you do not need, delete them (but check the rest of the Instructions for Authors to see which sections are compulsory). If you need an additional copy of a heading (e.g. for additional figure legends) just copy and paste. For the references, you may either manually enter the references using the reference style given, or use bibliographic software to insert them automatically. We provide style files for EndNote and Reference Manager. For extra convenience, you can use the template as one of your standard Word templates. To do this, put a copy of the template file in Word's 'Templates' folder, normally C:\Program Files\Microsoft Office\Templates on a PC. The next time you create a new document in Word using the File menu, the template will appear as one of the available choices for a new document. Preparing illustrations and figures Figures should be provided as separate files. Each figure should comprise only a single file. There is no charge for the use of color. Please read our figure preparation guidelines for detailed instructions on maximising the quality of your figures, Formats The following file formats can be accepted: • EPS (preferred format for diagrams) • PDF (also especially suitable for diagrams) • PNG (preferred format for photos or images) • Microsoft Word (figures must be a single page) • PowerPoint (figures must be a single page) • TIFF • JPEG • BMP • CDX (ChemDraw) • TGF (ISIS/Draw) Figure legends The legends should be included in the main manuscript text file immediately following the references, rather than being a part of the figure file. For each figure, the following information should be provided: Figure number (in sequence, using Arabic numerals - i.e. Figure 1, 2, 3 etc); short title of figure (maximum 15 words); detailed legend, up to 300 words. Please note that it is the responsibility of the author(s) to obtain permission from the copyright holder to reproduce figures or tables that have previously been published elsewhere. Preparing tables Each table should be numbered in sequence using Arabic numerals (i.e. Table 1, 2, 3 etc.). Tables should also have a title that summarizes the whole table, maximum 15 words. Detailed legends may then follow, but should be concise. Smaller tables considered to be integral to the manuscript can be pasted into the end of the document text file, in portrait format (note that tables on a landscape page must be reformatted onto a portrait page or submitted as additional files). These will be typeset and displayed in the final published form of the article. Such tables should be formatted using the 'Table object' in a word processing program to ensure that columns of data are kept aligned when the file is sent electronically for review; this will not always be the case if columns are generated by simply using tabs to separate text. Commas should not be used to indicate numerical values. Color and shading should not be used. Larger datasets can be uploaded separately as additional files. Additional files will not be displayed in the final, published form of the article, but a link will be provided to the files as supplied by the author. Tabular data provided as additional files can be uploaded as an Excel spreadsheet (.xls) or comma separated values (.csv). As with all files, please use the standard file extensions. 147 Preparing additional files Although BMC Genomics does not restrict the length and quantity of data in a paper, there may still be occasions where an author wishes to provide data sets, tables, movie files, or other information as additional information. These files can be uploaded using the 'Additional Material files' button in the manuscript submission process. The maximum file size for additional files is 20 MB each, and files will be virus-scanned on submission. Any additional files will be linked into the final published article in the form supplied by the author, but will not be displayed within the paper. They will be made available in exactly the same form as originally provided. If additional material is provided, please list the following information in a separate section of the manuscript text, immediately following the tables (if any): • • • • File name File format (including name and a URL of an appropriate viewer if format is unusual) Title of data Description of data Additional datafiles should be referenced explicitly by file name within the body of the article, e.g. 'See additional file 1: Movie1 for the original data used to perform this analysis'. Formats and uploading Ideally, file formats for additional files should not be platform-specific, and should be viewable using free or widely available tools. The following are examples of suitable formats. • • • • Additional documentation o PDF (Adobe Acrobat) Animations o SWF (Shockwave Flash) Movies o MOV (QuickTime) o MPG (MPEG) Tabular data o XLS (Excel spreadsheet) o CSV (Comma separated values) As with figure files, files should be given the standard file extensions. This is especially important for Macintosh users, since the Mac OS does not enforce the use of standard extensions. Please also make sure that each additional file is a single table, figure or movie (please do not upload linked worksheets or PDF files larger than one sheet). Mini-websites Small self-contained websites can be submitted as additional files, in such a way that they will be browsable from within the full text HTML version of the article. In order to do this, please follow these instructions: 1. 2. 3. 4. 5. Create a folder containing a starting file called index.html (or index.htm) in the root Put all files necessary for viewing the mini-website within the folder, or sub-folders Ensure that all links are relative (ie "images/picture.jpg" rather than "/images/picture.jpg" or "http://yourdomain.net/images/picture.jpg" or "C:\Documents and Settings\username\My Documents\mini-website\images\picture.jpg") and no link is longer than 255 characters Access the index.html file and browse around the mini-website, to ensure that the most commonly used browsers (Internet Explorer and Firefox) are able to view all parts of the miniwebsite without problems, it is ideal to check this on a different machine Compress the folder into a ZIP, check the file size is under 20 MB, ensure that index.html is in the root of the ZIP, and that the file has .zip extension, then submit as an additional file with your article 148 Style and language Currently, BMC Genomics can only accept manuscripts written in English. Spelling should be US English or British English, but not a mixture. Gene names should be in italic, but protein products should be in plain type. There is no explicit limit on the length of articles submitted, but authors are encouraged to be concise. There is no restriction on the number of figures, tables or additional files that can be included with each article online. Figures and tables should be sequentially referenced. Authors should include all relevant supporting data with each article. BMC Genomics will not edit submitted manuscripts for style or language; reviewers may advise rejection of a manuscript if it is compromised by grammatical errors. Authors are advised to write clearly and simply, and to have their article checked by colleagues before submission. In-house copyediting will be minimal. Non-native speakers of English may choose to make use of a copyediting service. Help and advice on scientific writing The abstract is one of the most important parts of a manuscript. For guidance, please visit our page on "Writing titles and abstracts for scientific articles" Tim Albert has produced for BioMed Central a list of tips for writing a scientific manuscript. MedBioWorld also provides a list of resources for science writing. Abbreviations Abbreviations should be used as sparingly as possible. They can be defined when first used or a list of abbreviations can be provided preceding the acknowledgements and references. Typography • • • • • • • • • Please use double line spacing. Type the text unjustified, without hyphenating words at line breaks. Use hard returns only to end headings and paragraphs, not to rearrange lines. Capitalize only the first word, and proper nouns, in the title. All pages should be numbered. Use the BMC Genomics reference format. Footnotes to text should not be used. Greek and other special characters may be included. If you are unable to reproduce a particular special character, please type out the name of the symbol in full. Please ensure that all special characters used are embedded in the text, otherwise they will be lost during conversion to PDF. Units SI Units should be used throughout (liter and molar are permitted, however). 149
Similar documents
DEFENSINAS VEGETAIS: ROTINA DE IDENTIFICAÇÃO E ANÁLISE
Silva, Luís Carlos Belarmino da Defensinas vegetais : rotina de identificação e análise in silico / Luís Carlos Belarmino da Silva. – Recife: O Autor, 2010.
More information