7: Fourier Transforms: Convolution and Parseval`s Theorem
Transcription
7: Fourier Transforms: Convolution and Parseval`s Theorem
7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10 Fourier Series and Transforms (2014-5559) 7: Fourier Transforms: Convolution and Parseval’s Theorem Fourier Transform - Parseval and Convolution: 7 – 1 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem Question: What is the Fourier transform of w(t) = u(t)v(t) ? • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e E1.10 Fourier Series and Transforms (2014-5559) dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ w(t) = u(t)v(t) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh R∞ R +∞ R i2πf t dh df = f =−∞ h=−∞ U (h)V (f − h)e [swap ] E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh R∞ R +∞ R i2πf t dh df = f =−∞ h=−∞ U (h)V (f − h)e [swap ] R +∞ = f =−∞ W (f )ei2πf t df E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh R∞ R +∞ R i2πf t dh df = f =−∞ h=−∞ U (h)V (f − h)e [swap ] R +∞ = f =−∞ W (f )ei2πf t df R +∞ where W (f ) = h=−∞ U (h)V (f − h)dh E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh R∞ R +∞ R i2πf t dh df = f =−∞ h=−∞ U (h)V (f − h)e [swap ] R +∞ = f =−∞ W (f )ei2πf t df R +∞ where W (f ) = h=−∞ U (h)V (f − h)dh , U (f ) ∗ V (f ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh R∞ R +∞ R i2πf t dh df = f =−∞ h=−∞ U (h)V (f − h)e [swap ] R +∞ = f =−∞ W (f )ei2πf t df R +∞ where W (f ) = h=−∞ U (h)V (f − h)dh , U (f ) ∗ V (f ) This is the convolution of the two spectra U (f ) and V (f ). E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Question: What is the Fourier transform of w(t) = u(t)v(t) ? R +∞ i2πht Let u(t) = h=−∞ U (h)e dh and v(t) = R +∞ i2πgt V (g)e dg g=−∞ [Note use of different dummy variables] w(t) = u(t)v(t) R +∞ R +∞ i2πht dh g=−∞ V (g)ei2πgt dg = h=−∞ U (h)e R +∞ R +∞ = h=−∞ U (h) g=−∞ V (g)ei2π(h+g)t dg dh [merge e(··· ) ] Now we make a change of variable in the second integral: g = f − h R +∞ R +∞ = h=−∞ U (h) f =−∞ V (f − h)ei2πf t df dh R∞ R +∞ R i2πf t dh df = f =−∞ h=−∞ U (h)V (f − h)e [swap ] R +∞ = f =−∞ W (f )ei2πf t df R +∞ where W (f ) = h=−∞ U (h)V (f − h)dh , U (f ) ∗ V (f ) This is the convolution of the two spectra U (f ) and V (f ). w(t) = u(t)v(t) E1.10 Fourier Series and Transforms (2014-5559) ⇔ W (f ) = U (f ) ∗ V (f ) Fourier Transform - Parseval and Convolution: 7 – 2 / 10 Multiplication Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary u(t) = ( −at e 0 E1.10 Fourier Series and Transforms (2014-5559) t≥0 t<0 1 u(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem a=2 0.5 0 -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary u(t) = U (f ) = ( −at e 0 1 a+i2πf E1.10 Fourier Series and Transforms (2014-5559) 1 t≥0 t<0 u(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem a=2 0.5 0 -5 0 Time (s) 5 [from before] Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary U (f ) = −at e 0 1 a+i2πf E1.10 Fourier Series and Transforms (2014-5559) 1 t≥0 t<0 u(t) u(t) = ( a=2 0.5 0 [from before] |U(f)| 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 0 Frequency (Hz) 5 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = e 0 1 a+i2πf E1.10 Fourier Series and Transforms (2014-5559) 1 t≥0 t<0 u(t) u(t) = −at a=2 0.5 0 [from before] |U(f)| • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = e 0 1 t≥0 t<0 1 a+i2πf v(t) = cos 2πF t u(t) u(t) = −at a=2 0.5 0 [from before] |U(f)| • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 v(t) 1 0 -1 E1.10 Fourier Series and Transforms (2014-5559) -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = 1 a+i2πf t≥0 t<0 u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) -5 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 1 0 -1 E1.10 Fourier Series and Transforms (2014-5559) a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = 1 a+i2πf t≥0 t<0 u(t) e 0 1 a=2 0.5 0 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) |U(f)| u(t) = −at 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 1 0 |V(f)| -1 E1.10 Fourier Series and Transforms (2014-5559) -5 0.5 0.4 0.3 0.2 0.1 -5 v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.4 F=2 0.2 0 -5 -5 0 Time (s) 0.5 0 Frequency (Hz) 5 0.5 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = t≥0 t<0 1 a+i2πf u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) -5 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 1 0 -1 w(t) |V(f)| w(t) = u(t)v(t) E1.10 Fourier Series and Transforms (2014-5559) a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.4 F=2 0.2 0 -5 1 a=2, F=2 0.5 0 -0.5 -5 0 Time (s) 0.5 5 0.5 0 Frequency (Hz) 0 Time (s) 5 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = t≥0 t<0 1 a+i2πf u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) E1.10 Fourier Series and Transforms (2014-5559) -5 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 1 0 |V(f)| -1 w(t) w(t) = u(t)v(t) W (f ) = U (f ) ∗ V (f ) a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.4 F=2 0.2 0 -5 1 a=2, F=2 0.5 0 -0.5 -5 0 Time (s) 0.5 5 0.5 0 Frequency (Hz) 0 Time (s) 5 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = t≥0 t<0 1 a+i2πf u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) E1.10 Fourier Series and Transforms (2014-5559) -5 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 1 0 |V(f)| -1 0.5 a+i2π(f −F ) w(t) w(t) = u(t)v(t) W (f ) = U (f ) ∗ V (f ) 0.5 = a+i2π(f +F ) + a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.4 F=2 0.2 0 -5 1 a=2, F=2 0.5 0 -0.5 -5 0 Time (s) 0.5 5 0.5 0 Frequency (Hz) 0 Time (s) 5 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = t≥0 t<0 1 a+i2πf u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 0 |V(f)| -1 0.5 a+i2π(f −F ) |W(f)| E1.10 Fourier Series and Transforms (2014-5559) -5 1 w(t) w(t) = u(t)v(t) W (f ) = U (f ) ∗ V (f ) 0.5 = a+i2π(f +F ) + a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.4 F=2 0.2 0 -5 1 a=2, F=2 0.5 0 -0.5 -5 0.2 0.1 0 -5 0 Time (s) 0.5 5 0.5 0 Frequency (Hz) 0 Time (s) 0 Frequency (Hz) 5 5 5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = t≥0 t<0 1 a+i2πf u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) 0.5 0.4 0.3 0.2 0.1 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 0 |V(f)| -1 0.5 a+i2π(f −F ) |W(f)| <W(f) (rad/pi) E1.10 Fourier Series and Transforms (2014-5559) -5 1 w(t) w(t) = u(t)v(t) W (f ) = U (f ) ∗ V (f ) 0.5 = a+i2π(f +F ) + a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.4 F=2 0.2 0 -5 1 a=2, F=2 0.5 0 -0.5 -5 0.2 0.1 0 -5 0 Time (s) 0.5 5 0.5 0 Frequency (Hz) 0 Time (s) 5 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Multiplication Example U (f ) = t≥0 t<0 1 a+i2πf u(t) e 0 1 [from before] v(t) = cos 2πF t V (f ) = 0.5 (δ(f + F ) + δ(f − F )) 0.5 0.4 0.3 0.2 0.1 -5 E1.10 Fourier Series and Transforms (2014-5559) 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 0 |V(f)| -1 0.5 a+i2π(f −F ) |W(f)| <W(f) (rad/pi) If V (f ) consists entirely of Dirac impulses then U (f ) ∗ V (f ) iust replaces each impulse with a complete copy of U (f ) scaled by the area of the impulse and shifted so that 0 Hz lies on the impulse. Then add the overlapping complex spectra. -5 1 w(t) w(t) = u(t)v(t) W (f ) = U (f ) ∗ V (f ) 0.5 = a+i2π(f +F ) + a=2 0.5 0 |U(f)| u(t) = −at v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( <U(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem -5 0.4 F=2 0.2 0 -5 1 a=2, F=2 0.5 0 -0.5 -5 0.2 0.1 0 -5 0 Time (s) 0.5 5 0.5 0 Frequency (Hz) 0 Time (s) 5 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 Fourier Transform - Parseval and Convolution: 7 – 3 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) define dual waveforms x(t), y(t) and z(t) as follows: x(t) = U (t) ⇔ X(f ) = u(−f ) E1.10 Fourier Series and Transforms (2014-5559) [duality] Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) define dual waveforms x(t), y(t) and z(t) as follows: x(t) = U (t) ⇔ X(f ) = u(−f ) y(t) = V (t) ⇔ Y (f ) = v(−f ) E1.10 Fourier Series and Transforms (2014-5559) [duality] Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) define dual waveforms x(t), y(t) and z(t) as follows: x(t) = U (t) ⇔ X(f ) = u(−f ) y(t) = V (t) ⇔ Y (f ) = v(−f ) z(t) = W (t) ⇔ Z(f ) = w(−f ) E1.10 Fourier Series and Transforms (2014-5559) [duality] Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) define dual waveforms x(t), y(t) and z(t) as follows: x(t) = U (t) ⇔ X(f ) = u(−f ) y(t) = V (t) ⇔ Y (f ) = v(−f ) z(t) = W (t) ⇔ Z(f ) = w(−f ) [duality] Now the convolution property becomes: w(−f ) = u(−f )v(−f ) ⇔ W (t) = U (t) ∗ V (t) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) define dual waveforms x(t), y(t) and z(t) as follows: x(t) = U (t) ⇔ X(f ) = u(−f ) y(t) = V (t) ⇔ Y (f ) = v(−f ) z(t) = W (t) ⇔ Z(f ) = w(−f ) [duality] Now the convolution property becomes: w(−f ) = u(−f )v(−f ) ⇔ W (t) = U (t) ∗ V (t) [sub t ↔ ±f ] E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution Theorem: w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) Convolution in the time domain is equivalent to multiplication in the frequency domain and vice versa. Proof of second line: Given u(t), v(t) and w(t) satisfying w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) define dual waveforms x(t), y(t) and z(t) as follows: x(t) = U (t) ⇔ X(f ) = u(−f ) y(t) = V (t) ⇔ Y (f ) = v(−f ) z(t) = W (t) ⇔ Z(f ) = w(−f ) [duality] Now the convolution property becomes: w(−f ) = u(−f )v(−f ) ⇔ W (t) = U (t) ∗ V (t) [sub t ↔ ±f ] Z(f ) = X(f )Y (f ) ⇔ z(t) = x(t) ∗ y(t) [duality] E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 4 / 10 Convolution Example 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise E1.10 Fourier Series and Transforms (2014-5559) 1 u(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 -2 0 2 Time t (s) 4 6 Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 E1.10 Fourier Series and Transforms (2014-5559) 1 u(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 -2 0 2 Time t (s) 4 6 Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10 Fourier Series and Transforms (2014-5559) 1 u(t) ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary 1 u(t) ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 w(t) = u(t) ∗ v(t) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary 1 u(t) ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary 1 u(t) ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary 1 u(t) ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 min(t,1) = [(2 − τ ) eτ −t ]τ =0 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 u(t) 1 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0 w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 min(t,1) = [(2 − τ ) eτ −t ]τ =0 t<0 0 = 2 − t − 2e−t 0 ≤ t < 1 (e − 2) e−t t≥1 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 u(t) 1 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 w(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.3 0.2 0.1 0 min(t,1) = [(2 − τ ) eτ −t ]τ =0 t<0 0 = 2 − t − 2e−t 0 ≤ t < 1 (e − 2) e−t t≥1 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 u(t) 1 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 w(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.3 0.2 0.1 0 1 ∫ = 0.307 0.5 0 -2 u(τ) 0 t=0.7 v(0.7-τ) 2 Time τ (s) 4 6 min(t,1) = [(2 − τ ) eτ −t ]τ =0 t<0 0 = 2 − t − 2e−t 0 ≤ t < 1 (e − 2) e−t t≥1 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 min(t,1) u(t) 1 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 0.5 0 0.3 0.2 0.1 0 1 ∫ = 0.307 0.5 0 = [(2 − τ ) eτ −t ]τ =0 t<0 0 = 2 − t − 2e−t 0 ≤ t < 1 (e − 2) e−t t≥1 E1.10 Fourier Series and Transforms (2014-5559) 0.5 0 v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 w(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 1 -2 ∫ = 0.16 0.5 0 -2 u(τ) 0 u(τ) 0 t=0.7 v(0.7-τ) 2 Time τ (s) 4 t=1.5 v(1.5-τ) 2 Time τ (s) 6 4 6 Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 min(t,1) u(t) 1 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 0.5 0 0.3 0.2 0.1 0 1 ∫ = 0.307 0.5 0 = [(2 − τ ) eτ −t ]τ =0 t<0 0 = 2 − t − 2e−t 0 ≤ t < 1 (e − 2) e−t t≥1 E1.10 Fourier Series and Transforms (2014-5559) 0.5 0 v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 w(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 1 -2 ∫ = 0.16 0.5 0 1 -2 ∫ = 0.059 0.5 0 -2 u(τ) 0 u(τ) 0 2 Time τ (s) 4 2 Time τ (s) 4 v(2.5-τ) 2 Time τ (s) 6 t=1.5 v(1.5-τ) u(τ) 0 t=0.7 v(0.7-τ) 4 6 t=2.5 6 Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Example w(t) = u(t) ∗ v(t) R∞ = −∞ u(τ )v(t − τ )dτ R min(t,1) (1 − τ )eτ −t dτ = 0 min(t,1) u(t) 1 0.5 0 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 -2 0 2 Time t (s) 4 6 1 v(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary ( 1−t 0≤t<1 u(t) = 0 otherwise ( e−t t ≥ 0 v(t) = 0 t<0 0.5 0 w(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.3 0.2 0.1 0 1 ∫ = 0.307 0.5 0 = [(2 − τ ) eτ −t ]τ =0 t<0 0 = 2 − t − 2e−t 0 ≤ t < 1 (e − 2) e−t t≥1 1 -2 ∫ = 0.16 0.5 0 1 -2 ∫ = 0.059 0.5 0 -2 u(τ) 0 u(τ) 0 2 Time τ (s) 4 2 Time τ (s) 4 v(2.5-τ) 2 Time τ (s) 6 t=1.5 v(1.5-τ) u(τ) 0 t=0.7 v(0.7-τ) 6 t=2.5 4 6 Note how v(t − τ ) is time-reversed (because of the −τ ) and time-shifted to put the time origin at τ = t. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 5 / 10 Convolution Properties 7: Fourier Transforms: Convolution and Parseval’s Theorem R∞ Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) 3) Distributive over addition: w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) 3) Distributive over addition: w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t) 4) Identity Element or “1”: u(t) ∗ δ(t) = δ(t) ∗ u(t) = u(t) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) 3) Distributive over addition: w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t) 4) Identity Element or “1”: u(t) ∗ δ(t) = δ(t) ∗ u(t) = u(t) 5) Bilinear: (au(t)) ∗ (bv(t)) = ab (u(t) ∗ v(t)) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) 3) Distributive over addition: w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t) 4) Identity Element or “1”: u(t) ∗ δ(t) = δ(t) ∗ u(t) = u(t) 5) Bilinear: (au(t)) ∗ (bv(t)) = ab (u(t) ∗ v(t)) Proof: In the frequency domain, convolution is multiplication. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) 3) Distributive over addition: w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t) 4) Identity Element or “1”: u(t) ∗ δ(t) = δ(t) ∗ u(t) = u(t) 5) Bilinear: (au(t)) ∗ (bv(t)) = ab (u(t) ∗ v(t)) Proof: In the frequency domain, convolution is multiplication. Also, if u(t) ∗ v(t) = w(t), then 6) Time Shifting: u(t + a) ∗ v(t + b) = w(t + a + b) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Convolution Properties R∞ 7: Fourier Transforms: Convolution and Parseval’s Theorem Convloution: w(t) = u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Convolution behaves algebraically like multiplication: 1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t) 2) Associative: u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t)) 3) Distributive over addition: w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t) 4) Identity Element or “1”: u(t) ∗ δ(t) = δ(t) ∗ u(t) = u(t) 5) Bilinear: (au(t)) ∗ (bv(t)) = ab (u(t) ∗ v(t)) Proof: In the frequency domain, convolution is multiplication. Also, if u(t) ∗ v(t) = w(t), then 6) Time Shifting: u(t + a) ∗ v(t + b) = w(t + a + b) 1 7) Time Scaling: u(at) ∗ v(at) = |a| w(at) How to recognise a convolution integral: the arguments of u(· · · ) and v(· · · ) sum to a constant. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 6 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = E1.10 Fourier Series and Transforms (2014-5559) R δ(f − g)ei2πf t df Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = E1.10 Fourier Series and Transforms (2014-5559) R δ(f − g)ei2πf t df = ei2πgt Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t ⇒ X(f ) = e e dt E1.10 Fourier Series and Transforms (2014-5559) R Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt E1.10 Fourier Series and Transforms (2014-5559) R Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) E1.10 Fourier Series and Transforms (2014-5559) R Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df E1.10 Fourier Series and Transforms (2014-5559) ∗ Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df E1.10 Fourier Series and Transforms (2014-5559) and v(t) = R +∞ g=−∞ V (g)ei2πgt dg Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df and v(t) = R +∞ g=−∞ V (g)ei2πgt dg Now multiply u∗ (t) = u(t) and v(t) together and integrate over time: E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df and v(t) = R +∞ g=−∞ V (g)ei2πgt dg Now multiply u∗ (t) = u(t) and v(t) together and integrate over time: R∞ ∗ u (t)v(t)dt t=−∞ E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df and v(t) = R +∞ g=−∞ V (g)ei2πgt dg [Note use of different dummy variables] Now multiply u∗ (t) = u(t) and v(t) together and integrate over time: R∞ ∗ u (t)v(t)dt t=−∞ R +∞ R +∞ R∞ ∗ −i2πf t df g=−∞ V (g)ei2πgt dgdt = t=−∞ f =−∞ U (f )e E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df and v(t) = R +∞ g=−∞ V (g)ei2πgt dg [Note use of different dummy variables] Now multiply u∗ (t) = u(t) and v(t) together and integrate over time: R∞ ∗ u (t)v(t)dt t=−∞ R +∞ R +∞ R∞ ∗ −i2πf t df g=−∞ V (g)ei2πgt dgdt = t=−∞ f =−∞ U (f )e R∞ R +∞ R +∞ ∗ = f =−∞ U (f ) g=−∞ V (g) t=−∞ ei2π(g−f )t dtdgdf E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df and v(t) = R +∞ g=−∞ V (g)ei2πgt dg [Note use of different dummy variables] Now multiply u∗ (t) = u(t) and v(t) together and integrate over time: R∞ ∗ u (t)v(t)dt t=−∞ R +∞ R +∞ R∞ ∗ −i2πf t df g=−∞ V (g)ei2πgt dgdt = t=−∞ f =−∞ U (f )e R∞ R +∞ R +∞ ∗ = f =−∞ U (f ) g=−∞ V (g) t=−∞ ei2π(g−f )t dtdgdf R +∞ R +∞ ∗ = f =−∞ U (f ) g=−∞ V (g)δ(g − f )dgdf [lemma] E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Parseval’s Theorem 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Lemma: X(f ) = δ(f − g) ⇒ x(t) = δ(f − g)ei2πf t df = ei2πgt R i2πgt −i2πf t R i2π(g−f )t ⇒ X(f ) = e e dt = e dt = δ(g − f ) R R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df ∗ Proof: R +∞ Let u(t) = f =−∞ U (f )ei2πf t df and v(t) = R +∞ g=−∞ V (g)ei2πgt dg [Note use of different dummy variables] Now multiply u∗ (t) = u(t) and v(t) together and integrate over time: R∞ ∗ u (t)v(t)dt t=−∞ R +∞ R +∞ R∞ ∗ −i2πf t df g=−∞ V (g)ei2πgt dgdt = t=−∞ f =−∞ U (f )e R∞ R +∞ R +∞ ∗ = f =−∞ U (f ) g=−∞ V (g) t=−∞ ei2π(g−f )t dtdgdf R +∞ R +∞ ∗ = f =−∞ U (f ) g=−∞ V (g)δ(g − f )dgdf [lemma] R +∞ = f =−∞ U ∗ (f )V (f )df E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 7 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem R∞ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10 Fourier Series and Transforms (2014-5559) ∗ Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R +∞ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: E1.10 Fourier Series and Transforms (2014-5559) t=−∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: E1.10 Fourier Series and Transforms (2014-5559) R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = e−at t ≥ 0 0 t<0 u(t) 1 0 E1.10 Fourier Series and Transforms (2014-5559) a=2 0.5 -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = h −2at i∞ R e−at t ≥ 0 2 ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 u(t) 1 0 E1.10 Fourier Series and Transforms (2014-5559) a=2 0.5 -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = h −2at i∞ R e−at t ≥ 0 2 = ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 u(t) 1 a=2 0.5 0 E1.10 Fourier Series and Transforms (2014-5559) 1 2a -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = U (f ) = h −2at i∞ R e−at t ≥ 0 2 = ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 1 a+i2πf [from before] 1 u(t) 7: Fourier Transforms: Convolution and Parseval’s Theorem a=2 0.5 |U(f)| 0 E1.10 Fourier Series and Transforms (2014-5559) 1 2a 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 0 Frequency (Hz) 5 5 Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = h −2at i∞ R e−at t ≥ 0 2 = ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 1 U (f ) = a+i2πf R R 2 ⇒ |U (f )| df = E1.10 Fourier Series and Transforms (2014-5559) [from before] 1 u(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ 1 2a a=2 0.5 0 df 2 a +4π 2 f 2 |U(f)| 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 0 Frequency (Hz) 5 5 Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = h −2at i∞ R e−at t ≥ 0 2 = ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 1 U (f ) = a+i2πf [from before] R R 2 df ⇒ |U (f )| df = a2 +4π 2f 2 −1 2πf ∞ tan ( a ) = 2πa 1 u(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ 1 2a a=2 0.5 0 |U(f)| 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 0 Frequency (Hz) 5 5 −∞ E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = h −2at i∞ R e−at t ≥ 0 2 = ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 1 U (f ) = a+i2πf [from before] R R 2 df ⇒ |U (f )| df = a2 +4π 2f 2 −1 2πf ∞ tan ( a ) π = = 2πa 2πa 1 u(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ 1 2a a=2 0.5 0 |U(f)| 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 0 Frequency (Hz) 5 5 −∞ E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Conservation ∗ R∞ ∗ R +∞ Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df For the special case v(t) = u(t), Parseval’s theorem becomes: R +∞ u (t)u(t)dt = f =−∞ U ∗ (f )U (f )df R +∞ R∞ 2 2 ⇒ Eu = t=−∞ |u(t)| dt = f =−∞ |U (f )| df t=−∞ Energy Conservation: The energy in u(t) equals the energy in U (f ). Example: ( u(t) = h −2at i∞ R e−at t ≥ 0 2 = ⇒ Eu = |u(t)| dt = −e2a 0 0 t<0 1 U (f ) = a+i2πf [from before] R R 2 df ⇒ |U (f )| df = a2 +4π 2f 2 −1 2πf ∞ tan ( a ) 1 π = = = 2πa 2πa 2a 1 u(t) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary R∞ 1 2a a=2 0.5 0 |U(f)| 7: Fourier Transforms: Convolution and Parseval’s Theorem 0.5 0.4 0.3 0.2 0.1 -5 -5 0 Time (s) 0 Frequency (Hz) 5 5 −∞ E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 8 / 10 Energy Spectrum 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 E1.10 Fourier Series and Transforms (2014-5559) w(t) Energy Spectrum 1 a=2, F=2 0.5 0 -0.5 -5 0 Time (s) 5 Fourier Transform - Parseval and Convolution: 7 – 9 / 10 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 W (f ) = 0.5 a+i2π(f +F ) E1.10 Fourier Series and Transforms (2014-5559) + w(t) Energy Spectrum 1 a=2, F=2 0.5 0 -0.5 -5 0 Time (s) 5 0.5 a+i2π(f −F ) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 W (f ) = = 0.5 a+i2π(f +F ) + w(t) Energy Spectrum 1 a=2, F=2 0.5 0 -0.5 -5 0 Time (s) 5 0.5 a+i2π(f −F ) a+i2πf a2 +i4πaf −4π 2 (f 2 −F 2 ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) E1.10 Fourier Series and Transforms (2014-5559) |W(f)| • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: <W(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 Fourier Transform - Parseval and Convolution: 7 – 9 / 10 ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) 2 |W (f )| = E1.10 Fourier Series and Transforms (2014-5559) |W(f)| • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: <W(f) (rad/pi) 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0.5 0 -0.5 -5 a2 +4π 2 f 2 (a2 −4π 2 (f 2 −F 2 ))2 +16π 2 a2 f 2 Fourier Transform - Parseval and Convolution: 7 – 9 / 10 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) 2 |W (f )| = E1.10 Fourier Series and Transforms (2014-5559) 2 2 a +4π f |W(f)| ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 <W(f) (rad/pi) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: |W(f)| 2 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 2 (a2 −4π 2 (f 2 −F 2 ))2 +16π 2 a2 f 2 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0 Frequency (Hz) 5 0.5 0 -0.5 -5 0.06 0.04 0.02 0 -5 Fourier Transform - Parseval and Convolution: 7 – 9 / 10 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) 2 |W (f )| = 2 2 a +4π f |W(f)| ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 <W(f) (rad/pi) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: |W(f)| 2 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 2 (a2 −4π 2 (f 2 −F 2 ))2 +16π 2 a2 f 2 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0 Frequency (Hz) 5 0.5 0 -0.5 -5 0.06 0.04 0.02 0 -5 2 • The units of |W (f )| are “energy per Hz” so that its integral, R∞ Ew = −∞ |W (f )|2 df , has units of energy. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) 2 |W (f )| = 2 2 a +4π f |W(f)| ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 <W(f) (rad/pi) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: |W(f)| 2 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 2 (a2 −4π 2 (f 2 −F 2 ))2 +16π 2 a2 f 2 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0 Frequency (Hz) 5 0.5 0 -0.5 -5 0.06 0.04 0.02 0 -5 Energy Spectrum 2 • The units of |W (f )| are “energy per Hz” so that its integral, R∞ Ew = −∞ |W (f )|2 df , has units of energy. 2 • The quantity |W (f )| is called the energy spectral density of w(t) at frequency f and its graph is the energy spectrum of w(t). E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) 2 |W (f )| = 2 2 a +4π f |W(f)| ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 <W(f) (rad/pi) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: |W(f)| 2 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 2 (a2 −4π 2 (f 2 −F 2 ))2 +16π 2 a2 f 2 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0 Frequency (Hz) 5 0.5 0 -0.5 -5 0.06 0.04 0.02 0 -5 Energy Spectrum 2 • The units of |W (f )| are “energy per Hz” so that its integral, R∞ Ew = −∞ |W (f )|2 df , has units of energy. 2 • The quantity |W (f )| is called the energy spectral density of w(t) at frequency f and its graph is the energy spectrum of w(t). It shows how the energy of w(t) is distributed over frequencies. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 W (f ) = = 0.5 a+i2π(f +F ) + 0.5 a+i2π(f −F ) a+i2πf 2 a +i4πaf −4π 2 (f 2 −F 2 ) 2 |W (f )| = 2 2 a +4π f |W(f)| ( e−at cos 2πF t t ≥ 0 w(t) = 0 t<0 <W(f) (rad/pi) • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary Example from before: |W(f)| 2 7: Fourier Transforms: Convolution and Parseval’s Theorem w(t) Energy Spectrum 2 (a2 −4π 2 (f 2 −F 2 ))2 +16π 2 a2 f 2 1 a=2, F=2 0.5 0 -0.5 -5 0.25 0.2 0.15 0.1 0.05 -5 0 Time (s) 5 0 Frequency (Hz) 5 0 Frequence (Hz) 5 0 Frequency (Hz) 5 0.5 0 -0.5 -5 0.06 0.04 0.02 0 -5 Energy Spectrum 2 • The units of |W (f )| are “energy per Hz” so that its integral, R∞ Ew = −∞ |W (f )|2 df , has units of energy. 2 • The quantity |W (f )| is called the energy spectral density of w(t) at frequency f and its graph is the energy spectrum of w(t). It shows how the energy of w(t) is distributed over frequencies. 2 • If you divide |W (f )| by the total energy, Ew , the result is non-negative and integrates to unity like a probability distribution. E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 9 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) ◦ w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) ◦ w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) R +∞ R∞ ∗ • Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) ◦ w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) R +∞ R∞ ∗ • Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df • Energy Spectrum: E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) ◦ w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) R +∞ R∞ ∗ • Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df • Energy Spectrum: 2 ◦ Energy spectral density: |U (f )| (energy/Hz) E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) ◦ w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) R +∞ R∞ ∗ • Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df • Energy Spectrum: 2 ◦ Energy spectral density: |U (f )| (energy/Hz) R R ◦ Parseval: Eu = |u(t)|2 dt = |U (f )|2 df E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10 Summary 7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary • Convolution: R∞ ◦ u(t) ∗ v(t) , −∞ u(τ )v(t − τ )dτ ⊲ Arguments of u(· · · ) and v(· · · ) sum to t ◦ Acts like multiplication + time scaling/shifting formulae • Convolution Theorem: multiplication ↔ convolution ◦ w(t) = u(t)v(t) ⇔ W (f ) = U (f ) ∗ V (f ) ◦ w(t) = u(t) ∗ v(t) ⇔ W (f ) = U (f )V (f ) R +∞ R∞ ∗ • Parseval’s Theorem: t=−∞ u (t)v(t)dt = f =−∞ U ∗ (f )V (f )df • Energy Spectrum: 2 ◦ Energy spectral density: |U (f )| (energy/Hz) R R ◦ Parseval: Eu = |u(t)|2 dt = |U (f )|2 df For further details see RHB Chapter 13.1 E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10