- EPJ Web of Conferences
Transcription
- EPJ Web of Conferences
EPJ Web of Conferences 30, 03002 (2012) DOI: 10.1051/epjconf/20123003002 © Owned by the authors, published by EDP Sciences, 2012 Experiment and Modelling in Structural NMR November 28th – December 2nd 2011 INSTN – CEA Saclay, France Nicolas Birlirakis ICSN CNRS, France 3D modern techniques [03002] Organized by Thibault Charpentier Patrick Berthault Constantin Meis [email protected] [email protected] [email protected] Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20123003002 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lectures ORGANISATION History, General principles M. Goldman, CEA Saclay Formalism and Interactions H. Desvaux, CEA Saclay Molecular Modelling M. Nilges, Institut Pasteur Anisotropy for Conformational studies M. Blackledge, CEA Grenoble Oriented media D. Merlet, Univ. Paris-Sud 11 Techniques of solid-state NMR D. Massiot, CNRS Orléans NMR crystallography F. Taulelle, UVSQ • Coordinator for the INSTN - CEA Saclay Constantin MEIS, INSTN/DIR • Coordinators for the CEA Patrick BERTHAULT, DSM/IRAMIS Thibault CHARPENTIER, DSM/IRAMIS • Coordinators for the Universities Pierre Richard DAHOO, Versailles Univ., UVSQ Francis TAULELLE, Versailles Univ., UVSQ Eric SIMONI University Paris-Sud 11 Winter-School “Experiment and Modelling in Structural NMR” Denis MERLET, University Paris-Sud 11 3D Modern Techniques N. Birlirakis ICSN - CNRS Interactions ligandmacromolecules G. Lippens, University of Lille Bio-Solid State NMR H. Oschkinat, University of Berlin Bioinformatics-protein assembly R. Guérois, CEA Saclay Materials Modelling & Simulations C. Meis, INSTN - CEA, Saclay DFT calculations of NMR parameters. J. Yates, Oxford University Inorganic MaterialsCeramics S. Ashbrook, University of St Andrews • Secretary, Information and Registration Dominique PARISOT, INSTN - CEA Saclay Bat. 395 - PC N°35 Gif-sur-Yvette F-91191 : +33 1 69084882 email: [email protected] A limited number of scholarships can be obtained for PhD students contact : [email protected] Amorphous materials T. Charpentier, CEA Saclay Hyper-polarization G. De Paepe, CEA Grenoble Fast NMR N. Giraud, Univ. Paris-Sud 11 NMR Diffusometry : Dynamics in Complex Systems over many decades R. Kimmich, University of Ulm The aim of the school is to provide basic understanding on the coupling of theoretical Modelling and Simulation methods to the Experiments in structural NMR, for biology and material science. It is composed of Seminars in the morning and Practical Training in the afternoon involving both the theoretical and experimental aspects. November 28 - December 2, 2011 INSTN - CEA, Saclay http://www-instn.cea.fr (events 2011) 3D NMR experiments applied to proteins H H + H3N C* COO- +H N 3 R amino acid C C R1 O H H N C C R2 O H H N C COO- Rn peptide < 50aa < protein Essential constituents of all living organisms Linear chains consisting of 20 L-amino acids Their folding to particular 3D structures triggers their biological function Attractive targets for therapeutic applications once their structure-activity relationship is understood 03002-p.2 NMR studies of peptides (<50aa) General considerations - Chemically synthesized molecules (SPPS) - Isotopic labelling expensive → homonuclear 1H-1H 2D experiments Spectral assignment - Starting point for magnetisation transfer: backbone NH protons (experiments in H2O) - Spin system identification via scalar couplings: 2D COSY, RELAYS, TOCSY - Sequential assignement: 2D NOESY Extraction of geometrical informations - Dihedral angle φ determination from 3JHN-Hα couplings: 2D-COSY-DQF (Karplus equations) - Interproton distance determination: 2D NOESY (build up with several τm) P E COSY t1 RELAY t1 TOCSY t1 NOESY t1 M [ 1/4J A 1/4J ] antiphase transfer H H N C C H H O N C C CH3 O n CH H 3C CH3 in-phase transfer CSL τm t1 ROESY SL NMR studies of small proteins (50-100aa) General considerations - Favorable T2 relaxation - Increased 1H signal density → increased spectral complexity and peak overlapping (structuration dependent) Spectral assignment and structure elucidation - Same strategy as previously - Addition of one more dimension to increase resolution: first 3D experiment NOESY-TOCSY, Nature 332, 374 (1988) P E1 M1 E2 t1 τm t2 M2 A Breakthrough - Recombinant protein expression → affordable 15N labelling (natural abundance 0.366%) - The gene encoding the protein of interest is inserted to the plasmids - Plasmids contain genes confering resistance to antibiotics (selection) - Plasmids are inserted to the bacteria (transformation) - Use of rich media (LB) for cell replication - Induction in poor media (M9) containing 15NH4Cl Escherichia coli - Rare codons - Protein folding and inclusion bodies - Post-translational modifications 03002-p.3 NMR studies of small proteins (50-100aa) Heteronuclear 3D experiments - Resolve the 1HN overlapping by the use of 15NH frequency : 4ppm versus 30-35ppm Sensitivity considerations (S/N) S ~ n A (1/T) Bo3/2 γobs3/2 γexc T2 Cryoprobe technology: N↓ √Nscan n: sample quantity (v*c) A: active nuclei abundance NOESY(TOCSY) - fHSQC φ1 [ t1 1H 1H j ] τm y 1/4J WG 1/4J / 1H i 1/4J 1/4J t3 1HN φ2 t2 15N 15NH TOCSY mixing: use clean CSL schemes to suppress dipolar cross relaxation and NOESY/ ROESY artifacts i cpd i Gr Going from 2D to 3D 3D NOESY-HSQC H-H-N (τm=150ms) 8 scans 2D NOESY (τm=150ms) 4 scans ppm 0 F2 [ppm] 2 110 4 125 120 ] ppm F1 [ 10 8 6 4 2 0 ppm 03002-p.4 130 8 10 6 8 115 6 10 9 8 7 F3 [ppm] 3D data analysis clean TOCSY-HSQC (tm=70ms) or ROESY-HSQC ([email protected]°) NOESY-FHSQC (tm=150ms) A116QB-E113N-H A112QB-E113N-H E113HB#-N-H 2 2 E113HG3-N-H E113HG2-N-H E113HA-N-H ω1 - 1H (ppm) A112HA-E113N-H G110HA3-E113N-H 4 4 G110HA2-E113N-H M109HA-E113N-H 6 6 F114H-E113N-H L115H-E113N-H G110H-E113N-H 8 ? 9.0 8.5 7.5 8.0 7.0 9.0 8.5 8 ? A112H-E113N-H ? 8.0 7.5 7.0 9.0 8.5 8.0 7.5 7.0 ω3 - 1H (ppm) Heteronuclear correlation building blocks refocused HSQC (JSS, T2S) HMQC (JII, JSS, T2I, T2S) y 1H 1/2J -Iy t2 1/2J 2Ix,ySz 2Ix,ySz 1H Iy 1/4J -Iy φ1 1/4J 1/4J cpd 2IxSz 1/4J 1/4J 1/4J 1/4J 2IxSz Iy t2 φ1 t1 15N 1/4J cpd -2Ix,ySy 15N t1 -2IzSy cpd Sx HSQC (JSS, T1I, T2S) y 1H 1/4J -Iy 1/4J 1/4J 2IxSz 2IySz 2IySxS φ1 15N t1 -2IzSy 1/4J Axial peak suppression: φ1 and rec cycled x, -x t2 Quadrature detection at the indect dimension using φ1 incrementation: -Ix 2IySx TPPI (axial peak at the edges, folding) States (axial peak in the middle, aliasing) States-TPPI (axial peak at the edges, aliasing) cpd -2IzSy -2IzSx 03002-p.5 Heteronuclear correlation building blocks refocused HSQC (JSS, T2S) HMQC (JII, JSS, T2I, T2S) y 1/2J -Iy t2 1/2J 2Ix,ySz 2Ix,ySz 1H Iy 1/4J -Iy 1/4J φ1 cpd -2Ix,ySy -2IzSy -Iy 1/4J 1/4J 2IxSz 2IySz 2IySxS t1 -2IzSy 1/4J 1/4J 2IxSz Iy t2 cpd Sx y φ1 15N 1/4J sensitivity enhanced HSQC (JSS, T1I, T2S) y 1/4J 1/4J cpd t1 15N HSQC (JSS, T1I, T2S) 1H 1/4J φ1 t1 15N 1/4J 2IxSz 1/4J t2 -Ix 2IySx 1/4J -Iy 1/4J 1/4J 15N 1/4J 1/4J t2 1/4J 2IxSz φ1 cpd -2IzSy -2IzSx 1H y ±y t1 -2IzSy cpd -2IzSy 2IySz -2IzSx 2IySx -Ix Iz -Iz 2IySx ±2IySz ±2IySz Iy Ix ± 1H SUMMATION → 2Iy DIFFERENCE → 2Ix Increase S/N : √2 (neglecting relaxation) NMR studies of medium size proteins (100-200aa) - Due to increased spectral complexity, peak assignement is difficult through 3D H-H-N TOCSY/NOESY-HSQC experiments - Slow molecular tumbling results in rapid T2 proton relaxation: COSY and TOCSY HN → Hα magnetisation transfer fails especially in helical regions (3JHN-Hα ~ 3Hz) 03002-p.6 NMR studies of medium size proteins (100-200aa) - Recombinant expression of 13C, 15N labelled proteins using 15NH4Cl and 13C6-glucose → access to triple-resonance experiments H 90Hz Hα H 140Hz 90Hz Cα N 35Hz 55Hz C 15Hz N 7Hz Cβ Hα 140Hz 11Hz Cα 55Hz C <1Hz Cβ O i-1 O i - Resolve the 1HC overlapping by using 13CH frequency: 5ppm versus 65-70ppm for the aliphatics - Use of heteronuclear couplings 1H-15N, 1H-13C, 13C-13C, 15N-13C (1J and 2J) for unambiguous intra- and inter-residual assignment - Magnetisation transfers implicating slowly relaxing nuclei Backbone assignment via out and back 3D experiments HNCO (100) H N Hα H Cα C i-1 O N HN(CA)CO (13/4) Hα H Cα C i O N Hα Cα C i-1 O HNCA (50/15) H N Hα H Cα C i-1 O N N Hα H Cα C Cβ O i-1 N N Hα Cα C i O HN(CO)CA (71) H Hα Cα C i O N Hα C i-1 O H C Cβ O N Hα Cα C i O HN(CO)CACB (13-9) Hα Cα H Cα HNCACB (4-1.7/1.3/0.5) H H N i Hα Cα C Cβ O i-1 03002-p.7 H N Hα Cα C Cβ O i The HNCA experiment y 1 15 H (I) ∆1 y -x ∆1 2∆1 2∆1 ∆1 WALTZ-y -Iy 2IxSz y ∆2 N (S) ∆2−t1/2 -2IzSy 2SyTz t2/2 13 t1/2 2SyTz y φ2 ∆1 -Ix 2IySz y φ1 ∆2 WG ∆2 CPD -2IzSy t2/2 Cα (T) -2SzTy CO 13 BS BS Gz T:+1 T:0 T:-1 T:+1 T:0 T:-1 T:+1 T:0 T:-1 S:+1 I:+1 S:0 S:-1 T:+1 T:0 T:-1 T:+1 T:0 T:-1 T:+1 T:0 T:-1 S:+1 I:0 S:0 S:-1 T:+1 T:0 T:-1 T:+1 T:0 T:-1 T:+1 T:0 T:-1 S:+1 I:-1 S:0 S:-1 The HNCA experiment y 1 H ∆1 y -x ∆1 2∆1 2∆1 ∆1 WALTZ-y HNi N φ1 y ∆2 15 NHi t2/2 t1/2 15NH y φ1 ∆1 1HN y ∆2−t1/2 ∆2 WG t2/2 ∆2 i CPD i Cα 13 13Cα CO 13 i,i-1 BS BS Gz Water magnetization at z prior to WATERGATE module Proton decoupled version (longer T2 relaxation for 15N, 13C nuclei) Constant time at 15N dimension 1 JCαCβ couplings not refocused during t2 ∆1 = 1/41JHN = 2.7m ∆2 = 12m (relaxation optimized, 1/4 JNCα ~ 22m) Same sequence for HNCO experiment (via Cα-CO channel interconversion) 03002-p.8 Experimental aspects of triple resonance experiments - Shaped pulses - Pulsed field gradients - Water suppression Hard pulses Excitation profile of a rectangular 90° pulse τp = 1ms 1/τp B1 τp t 600 θ X B1 -600 sinc (=sinx/x) Z Flip angle θ depends on γB1τp 0 Y 15000 10000 75 50 5000 25 0 -5000 -10000 -15000 0 -25 -50 -75 Hz ppm (DRX-800, 13C) Rectangular hard pulses (polychromatic): γB1/2π >>> ∆F Typical hard pulse lengths @ 800MHz, max admitted power: 1H → 7-...µs 15N → 39.5µs 13C → 14µs 03002-p.9 Shaped selective pulses Amplitude modulation: first trials Rectangle Sinc Triangle Amplitude Amplitude Amplitude Phase Phase Phase 200 3000 400 2000 1000 600 0 800 -1000 -2000 200 [points] -3000 3000 Hz 400 2000 600 1000 90° 0 800 -1000 -2000 200 [points] -3000 3000 Hz 400 2000 1000 600 0 -1000 800 -2000 [points] -3000 90° 90° Shaped selective pulses Amplitude modulation: peak selection Gaussian_1 Gaussian_1 Gaussian_1 Amplitude Amplitude Amplitude Phase Phase Phase 200 3000 2000 400 1000 600 0 90° -1000 800 -2000 -3000 200 [points] Hz 3000 400 2000 1000 600 0 800 -1000 -2000 270° -3000 200 [points] 3000 Hz 400 2000 1000 0 180° 180°y, -y 90° Gaussian δ and J evolution during pulse: 600 270° 90°x τp τp 03002-p.10 τp/2 -1000 800 -2000 -3000 [points] Hz Hz Shaped selective pulses Amplitude/phase modulation: band selection (top-hat profile) Gaussian Cascade and BURP famillies Cascade Q3 Cascade Q5 U-BURP 2 Amplitude Amplitude Amplitude Phase Phase Phase 200 6000 400 4000 2000 600 0 90° 800 -2000 -4000 -6000 [points] Hz 200 6000 400 4000 2000 600 0 -2000 800 -4000 -6000 200 [points] Hz 6000 4000 400 2000 180° 600 0 -2000 800 -4000 -6000 [points] Hz 90° Shaped selective pulses Amplitude/phase modulation: band selection (top-hat profile) Gaussian Cascade family - Universal pulses: Q5 (90°, 6.18) and Q3 (180°, 3.41/3.448) - Excitation pulse: G4 (7.82) - Inversion pulse: G3 (3.556) BURP famillies - Universal pulses: U-BURP (90°, 4.666) and RE-BURP (180°, 4.64/5.814) - Excitation pulses: E-BURP1 (4.514) and E-BURP2 (4.952) - Inversion pulses: I-BURP1 (4.498) and I-BURP2 (4.53) Figure of merit (depends on the shape): FM = τp∆Ω Frequency shifted (laminar) pulses : ∆φ = 2π τp ∆F / k 03002-p.11 Examples of selective excitation Advantages - of a spectral region • zoom into a precise spectral region • suppression of indesired signals (solvent) • speed-up experiments • resolution increase - precise measurement of δ et J - refocusing of homonuclear couplings • posibility to direct transfers • possibility to treat an homonuclear system as heteronuclear - of several peaks - of two peaks - of one peak 1D spectrum of strychnine in CDCl3 8.0 7.0 6.0 5.0 4.0 3.0 2.0 ppm Examples of 2D selective experiments 90° classical NOESY 90° t1 90° t2 tm F1 1D selective NOESY 90° 90° 90° t1 90° tm 90° t2 semi-soft NOESY F2 90° soft NOESY 90° t1 03002-p.12 tm 90° t2 90° tm t2 Selective excitation in triple resonance experiments - Differentiation between 13Cα (or 13Caliph) and 13CO regions Use of rectangular pulses: τ180° = √3 / 2∆Ω and τ90° = √15 / 4∆Ω where ∆Ω is de difference of pulse carrier and the first null point Problems: inhomogenous excitation/inversion and cryoprobe arcing if executed simultaneously high power 13C and 15N pulses Use of universal top-hat pulses (or interleaved G4 and G4tr) 90° pulse comparison: 36µs square and 300µs G4 180° pulse comparison: 33µs square and 200µs Q3 0.80 0.80 0.60 0.60 0.40 0.40 0.20 0.20 -0.00 -0.00 -0.20 CO -0.20 -0.40 Caliph CO -0.60 -0.40 Caliph -0.60 -0.80 30000 20000 10000 0 -10000 -20000 -30000 ATTENTION Offset-dependent transient Bloch-Siegert phase shifts in homorefocusing -0.80 Hz 30000 20000 10000 0 -10000 -20000 -30000 Hz - Selective perturbation of 1HN region (BEST experiments) - Solvent selection (flipback or suppression) Broadband inversion and decoupling - High field spectrometrs → large 13C spectral width in Hz → imperfect inversion/decoupling → use of adiabatic pulses: smoothed CHIRP and WURST families 180° pulse comparison: 28µs square and 500µs CA-WURST-4 0.80 Adiabatic decoupling: 0.60 0.40 0.20 -0.00 -0.20 Caliph+arom -0.40 -0.60 -0.80 30000 20000 10000 0 -10000 -20000 -30000 Use P4M5 supercycle Use bi-level decoupling for reduction of sidebands in 1H-1H-13C and 1H-1H-15N experiments Homonuclear decoupling → offset dependent Bloch-Siegert frequency shifts Hz - Adiabatic 15N inversion and decoupling is used to reduce power and thus probe heating, important in rapid scan conditions - Adiabatic pulses are tolerant to Rf inhomogeneity - Interesting pseudoadiabatic pulses: Bip and power-BIBOP for inversion and power-BEBOP for excitation 03002-p.13 Pulsed field gradients Linear variation of B0 at a certain direction - Coherence transfer pathway selection: - Artifact suppression per scan ie 1H12C Σ γi pi Gi = 0 artifacts with short phase cycling (...substraction) - Solvent suppression and control of water magnetisation (radiation damping) - Translational diffusion measurements - Magnetic Resonance Imaging gradient sensitivity enhanced HSQC (JSS, T1I, T2S) y 1H 1/4J y 1/4J 1/4J φ1 1/4J 1/4J t2 1/4J ±y t1 15N cpd 80 ±8 Water suppression Strong water (~50M) signal deteriorates spectral dynamic range High fields + cryoprobes → strong radiation damping → large water signal Strategies - Observe an heteroatom - Presaturation: forbitten in the case of fastly exchangable protons - Coherence selection with gradients - Return of water at z axis: polynomial sequences (jump and return...), water selective flip-back pulses, manipulation of radiation dumping - Dynamic filters: based on the differences in relaxation rates or diffusion coefficients - Selective defocusing of water via a gradient echo (WATERGATE, excitation sculpting) - Purging pulses: B0 or Rf gradient y 90°y -y 1H 90°y 1H 15N Gr Gr 03002-p.14 1/4J 1/4J -Iy -Iy 2IxSz Iy SLx 2IzSz Iy φ1 The HN(CA)CO experiment y 1 H ∆1 y -x ∆1 2∆1 2∆1 ∆1 WALTZ-y HNi 15 y ∆2 N ∆2−t1/2 NHi 13 13 Cα 13Cα ∆3 ∆3 ∆2 15NH ∆3 i CPD i BS i,i-1 y φ2 t2/2 CO 1HN t1/2 y y ∆3 ∆1 y φ1 ∆2 WG t2/2 BS BS 13CO i,i-1 Gz INEPT version ∆1 = 1/41JHN = 2.7m ∆2 = 12m (relaxation optimized, 1/4 JNCα ~ 22m) ∆3 = 3.5-4m (relaxation optimized, 1/4 JCOCα = 4.5m) The HN(CO)CA experiment y 1 H ∆1 y -x ∆1 2∆1 2∆1 ∆1 WALTZ-y HNi 15 N y ∆2 ∆2−t1/2 NHi 13 CO Cα 13 t1/2 15NH ∆3 13CO i,i-1 ∆3 BS y φ2 t2/2 ∆2 i 13CO i,i-1 t2/2 BS 13Cα i,i-1 (DQ) Gz mixed INEPT / DQ version ∆1 = 1/41JHN = 2.7m ∆2 = 13.5m (relaxation optimized, 1/4 JNCO = 33m) ∆3 = 8m (relaxation optimized, 1/2 JCOCα = 9m) 03002-p.15 ∆1 1HN y φ1 ∆2 WG i CPD The HNCACB experiment y -x ∆1 2∆1 2∆1 ∆1 y 1 ∆1 H WALTZ-y HNi φ1 y ∆2 N 15 NHi φ3 φ1 ∆3 13Cα,β i,i-1 t2/2 ∆3 1HN t1/2 ∆2 15NH y y t2/2 ∆3 ∆1 y ∆2−t1/2 ∆2 WG ∆3 i CPD i Cα 13 13Cα 13Cα i,i-1 CO 13 i,i-1 BS BS Gz mixed INEPT / RELAY sequence ∆1 = 1/41JHN = 2.7m ∆2 = 12m (relaxation optimized, 1/4 JNCα ~ 22m) ∆3 = 3.6m (relaxation optimized, 1/4 JCαCβ = 7.1m) 1 JCαCβ and 1JCβCγ couplings not refocused during t2 Cα, Cβ peaks of opposite sign Rapid pulsing - BEST experiments - In 1H-15N correlation experiments 1HN longitudinal dipolar relaxation is accelerated if the rest of the protein protons (aliphatics) and 1H2O are unperturbed (at z axis) - Substitution of 1H hard pulses with shaped ones (top-hat ). BEST-HSQC (JSS, T1I, T2S) SOFAST-HMQC ( J SS, T2I, T2S) y 1H 1/2J 1/2J t2 1H φ1 15N 1/4J 1/4J 1/4J 1/4J t2 φ1 t1 cpd 15N t1 : PC9 pulse (flip-angle 120°, Ernst angle) band-selective excitation pulse : PC9 pulse (flip-angle 90°) band-selective 90° pulse : band-selective universal 180° pulse : band-selective universal 180° pulse 03002-p.16 cpd Rapid pulsing - BEST experiments SOFAST-HMQC 10 9 BEST-HSQC 8 7 105 105 110 110 115 115 120 120 125 125 130 130 ppm 10 90° pulse → 1770µs Q5.1000 1 180° pulse → 1260µs Q3.1000 9 8 7 ppm H carrier frequency @ 7.999ppm P5M4 15N decoupling using 2ms CA-WURST-2 adiabatic pulse 1scan, 128 transients, AQ=70ms, RD=300ms, Total Experimental Time: 55s Fast out and back experiments: BEST-HNCA y ∆1 1 H ∆1 y ∆1 2∆1 y y 15 N ∆2 y φ1 t1/2 ∆2 ∆1 ∆2−t1/2 ∆2 CPD y φ2 t2/2 t2/2 Cα 13 CO 13 BS BS Gz : 180° broadband inversion pulse → 155µs power-BIBOP pulse 10kHz inversion, tolerant to 20% inhomogeneity 03002-p.17 3D spectra for some BEST out and back experiments BEST-HNCO: 4scans, 58min F2[ppm] 115 110 pm] F1 [p 40 50 60 130 125 120 115 pm] F1 [p 174 176 125 120 130 8 7 F3[ppm] 9 10 8 7 F3[ppm] BEST-HN(CA)CO: 4scans, 59min 10 7 F3[ppm] 10 7 F3[ppm] 115 125 190 130 F1 170 ] [ppm 120 115 pm] F1 [p 54 56 58130 125 120 8 8 110 F2[ppm] 110 F2[ppm] 110 115 120 125 9 9 BEST-HN(CO)CACB: 4scans, 4h 9min F2[ppm] 9 180 130 pm] F1 [p 110 F2[ppm] 110 115 pm] F1 [p 55 60 65130 125 120 10 BEST-HN(CO)CA: 4scans, 2h 10 BEST-HNCACB: 4scans, 3h 54min F2[ppm] BEST-HNCA: 4scans, 1h 53min 9 8 7 F3[ppm] 10 9 8 7 Conclusions on BEST out and back experiments - Usefull for protonated proteins < 150aa (above, fractional deuteration is required) - Other fast methods are based on reduced sampling at the indirect dimensions: Spectrum compression through folding Exponential sampling and maximum entropy Projection reconstruction (radial sampling) Hadamard transform Filter Diagonalisation Method Sharc NMR ... 03002-p.18 F3[ppm] Backbone and side chain assignment via transfer 3D experiments HBHA(CBCACO)NH H In H2O: Hα N Cα Hβ O H C N Hα Cα (H)CC(CO)NH-TOCSY / H(CCCO)NH-TOCSY O H C N Cα Hβ Cβ Hγ Cγ Cβ i-1 i Hδ Hα O H C N Hα Cα O C Cδ i-1 i In D2O: HACACO H N Hα HACACO-TOCSY H Cα C i-1 O N H Hα Cα C i O N Hα Cα O H C N i-1 H(C)CH-TOCSY / (H)CCH-TOCSY O H Cα C N Cβ Hα Hα H C N Hα O Cα C Hβ Cβ Hβ Cγ Hγ Cγ Hγ Cδ Hδ Cδ Hδ i Cα O i-1 i The HCCH-TOCSY experiment δ → t1 J → 2∆1 H 1 ∆1 y ∆1 t1/2 t1/2 ∆1 y 13 C 13CO ∆1/2 t2/2 ∆1/2 t2/2 ∆1 -y FLOPSI ∆1/2 ∆1/2 BS Gr purging Refocused INEPT / z-TOCSY Constant time at both indirect dimensions ∆1 = 1/21JHC = 37m (optimized for CH2) Purging of residual water magnetization with B0 and RF gradients 03002-p.19 CPD NMR studies of large proteins (>200aa) - Decrease transverse 13CH relaxation rates through deuteration: Expression in D2O → up to 70% deuteration (isotopic effect) Expression in D2O+U[13C, D]-glucose → up to ~100% deuteration Use of pyruvate or α-ketobutyrate/α-ketoisovalerate for production of methyl protonated perdeuterated proteins. (back-exchange of ND to NH, introduction of D decoupling) - Decrease transverse 15N1H relaxation rates through TROSY effect at high field: Selection of the slower relaxing component due to the destructive interference of cross-correlated relaxation (DD - CSA) Decoupled HSQC Non-decoupled HSQC TROSY 15 N 1H - At high fields transverse 13CO relaxation rates increase due to CSA Use i-HNCA instead of HN(CO)CA 03002-p.20