Fluid mechanics of turbulent flows - Markus Uhlmann
Transcription
Fluid mechanics of turbulent flows - Markus Uhlmann
Evolution of a round jet Boundary layer approximation Energy budget Fluid mechanics of turbulent flows Fluidmechanik turbulenter Strömungen Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu WS 2010/2011 Lecture 4 1/27 Evolution of a round jet Boundary layer approximation Energy budget LECTURE 4 Free shear flows 2/27 Evolution of a round jet Boundary layer approximation Energy budget Questions to be answered in the present lecture How does a turbulent flow develop away from solid boundaries? How can the equations be simplified for slow spatial evolution? What is the evolution in the self-similar region? What is the turbulence structure in a plane jet? 3/27 Evolution of a round jet Boundary layer approximation Energy budget Types of free shear flows Flows developing far from solid boundaries I wake I jet I mixing layer 4/27 Evolution of a round jet Boundary layer approximation Energy budget The round jet De He 200 | C.Braun | Institut für Hydromechanik | Experimente in der Ström Re ≈ 5000 (Deutsch & Haneka) Einleitung – Eigenschaften der Turbulenz Re = 3000 (van Dyke) Re = 13000 (van Dyke) (movie) 5/27 Evolution of a round jet Boundary layer approximation Energy budget Configuration and coordinate system r, V θ, W Steady round jet I ambient surroundings I nozzle diameter d I exit velocity UJ UJ d x, U → Reynolds: Re = UJ d/ν I statistically stationary, stat. axisymmetric flow I initial development (20d) then self-similar 6/27 Evolution of a round jet Boundary layer approximation Energy budget Mean velocity and self-similarity Observations from experiments I mean axial velocity hu(x, r)i → velocity decays on axis & jet spreads radially I profile shape remains similar I define centerline velocity: U0 (x) ≡ hu(x, 0)i I define jet half width r1/2 (x): hu(x, r1/2 )i = U0 (x)/2 (Re = 95500, Hussein et al. 1994) 7/27 Evolution of a round jet Boundary layer approximation Energy budget Mean velocity and self-similarity (2) Observations from experiments I scaling of radial coordinate: ξ ≡ r/r1/2 I scaling of velocity: f (ξ) ≡ hui(x, r)/U0 (x) → profiles collapse I I spreading rate S ≈ 0.094: r1/2 (x) = S(x − x0 ) velocity decay (B ≈ 5.8): U0 (x) = B · d · UJ /(x − x0 ) → local Reynolds is constant! Re0 = r1/2 (x)U0 (x)/ν (Re = 105 , Wygnanski & Fiedler 1969) 8/27 Evolution of a round jet Boundary layer approximation Energy budget Reynolds stresses Observations from experiments I coordinate system: x = (x, r, θ), u = (u, v, w) I due to symmetry: hwi = hu0 w0 i = hv 0 w0 i = 0 0 0 hu u i hu0 v 0 i 0 hu0 v 0 i hv 0 v 0 i 0 0 0 0 0 hw w i I self-similarity of hu0i u0j i/U02 I significant anisotropy (Hussein et al. 1994) 9/27 Evolution of a round jet Boundary layer approximation Energy budget Reynolds stresses CHAPTER 5: FREE SHEAR FLOWS Turbulent Flows Observations from experiments Stephen B. Pope Cambridge University Press, 2000 I c °Stephen B. Pope 2000 supposing stress-strain relation, shear stress can be written: hu0 v 0 i = −νT ∂hui ∂r 0.03 ν^ T 0.02 I positive eddy viscosity νT 0.01 I self-similarity: νT (x, r) ν̂T (r) ≡ U0 (x) r1/2 (x) 0.00 0.0 ⇒ plateau across jet 1.0 r/r1/2 0.0 (Hussein et al. 0.11994) η 2.0 0.2 Figure 5.10: Normalized turbulent diffusivity ν̂ T (Eq. (5.34)) in the self-similar round jet. From the curve fit to the experimental data 10/27 of Hussein et al. (1994). Evolution of a round jet Boundary layer approximation Energy budget Navier-Stokes equations in cylindrical coordinates Instantaneous equations 1 1 ∂x u + ∂r (rv) + ∂θ w r r w ∂t u + u∂x u + v∂r u + ∂θ u r w w2 ∂t v + u∂x v + v∂r v + ∂θ v − r r w vw ∂t w + u∂x w + v∂r w + ∂θ w + r r = 0 1 = − ∂x p + ν∇2 u ρ 1 v 2 2 = − ∂r p + ν ∇ v − 2 − 2 ∂θ w ρ r r 1 w 2 2 = − ∂θ p + ν ∇ w − 2 + 2 ∂θ v rρ r r with: 1 1 ∇2 = ∂xx + ∂r r∂r + 2 ∂θθ r r 11/27 Evolution of a round jet Boundary layer approximation Energy budget Reynolds-averaged Navier-Stokes in cylindrical coordinates Averaged equations I non-swirling, statistically stationary & axisymmetric 1 0 = ∂x hui + ∂r (rhvi) r D̄hui 1 1 = − ∂x hpi − ∂x hu0 u0 i − ∂r (rhu0 v 0 i) + ν∇2 hui ρ r D̄t D̄hvi 1 1 hw0 w0 i = − ∂r hpi − ∂x hu0 v 0 i − ∂r (rhv 0 v 0 i) + ρ r r D̄t hvi +ν ∇2 hvi − 2 r with: D̄ = ∂t + hui∂x + hvi∂r D̄t 12/27 Evolution of a round jet Boundary layer approximation Energy budget Boundary layer approximation Applicable to flows with slow spatial evolution I I small streamwise gradients: ∂x ∼ 1/L large cross-stream variation: ∂r ∼ 1/δ with L δ ⇒ simplification of Navier-Stokes equations Examples: I free shear flows (jet, wake, mixing layer) I wall-bounded flows (boundary layer) 13/27 Evolution of a round jet Boundary layer approximation Energy budget Boundary layer equations for round jet Perform order-of-magnitude analysis I U , V are reference velocities I continuity equation: 1 ∂ hui + ∂ (rhvi) = 0 | x{z } |r r {z } O( U L) O( V ) δ I balance of the terms: V ∼ Uδ L ⇒ reference velocity in radial direction: Uδ L 14/27 Evolution of a round jet Boundary layer approximation Energy budget Boundary layer equations for round jet (2) Radial momentum equation term ∂t hvi +hui∂x hvi +hvi∂r hvi = − ρ1 ∂r hpi −∂x hu0 v 0 i − 1r ∂r (rhv 0 v 0 i) + 1r hw0 w0 i +ν∂xx hvi +ν 1r ∂r (r∂r hvi) +ν r12 ∂θθ hvi −ν hvi r2 ⇒ 1 ρ ∂r hpi order O(·) 0 (stationary) U V /L = U 2 δ/L2 V 2 /δ = U 2 δ/L2 ∆pr /(ρδ) R12 /L R22 /δ R33 /δ νV /L2 = νU δ/L3 νV /δ 2 = νU/(δL) 0 (axisymmetric) νV /δ 2 = νU/(Lδ) O(·), divided by U 2 δ/L2 0 1 1 ∆pr L2 /(ρU 2 δ 2 ) R12 L/(U 2 δ) R22 L2 /(U 2 δ 2 ) R33 L2 /(U 2 δ 2 ) 1/Re dominant • • • 1 L2 Re δ 2 0 1 L2 Re δ 2 + 1r ∂r (rhv 0 v 0 i) − 1r hw0 w0 i = 0 15/27 Evolution of a round jet Boundary layer approximation Energy budget Boundary layer equations for round jet (3) Obtaining the streamwise pressure gradient I integrate the approximate radial momentum equation: Z ∞ 0 0 hpi p0 (x) hv v i hw0 w0 i = − hv 0 v 0 i + − dr0 0 0 ρ ρ r r r I 1 1 dp0 ∂x hpi = − ∂x hv 0 v 0 i + ∂x ρ ρ dx I Z r ∞ hv 0 v 0 i hw0 w0 i − r0 r0 dr0 neglecting streamwise gradients of Reynolds stresses: ∂x hpi ≈ dp0 dx 16/27 Evolution of a round jet Boundary layer approximation Energy budget Boundary layer equations for round jet (4) Streamwise momentum equation term ∂t hui +hui∂x hui +hvi∂r hui = − ρ1 ∂x hpi −∂x hu0 u0 i − 1r ∂r (rhu0 v 0 i) +ν∂xx hui +ν 1r ∂r (r∂r hui) +ν r12 ∂θθ hui ⇒ order O(·) 0 (stationary) U 2 /L V U/δ = U 2 /L ∆px /(ρL) R11 /L R12 /δ νU/L2 νU/δ 2 0 (axisymmetric) O(·), divided by U 2 /L 0 1 1 ∆px /(ρU 2 ) R11 /U 2 R12 L/(U 2 δ) 1/Re dominant • • • • 1 Reδ 2 0 hui∂x hui + hvi∂r hui = − ρ1 ∂x hpi − 1r ∂r (rhu0 v 0 i) 17/27 Evolution of a round jet Boundary layer approximation Energy budget Boundary layer equations for round jet – final result 1 ∂x hui + ∂r (rhvi) = 0 r hui∂x hui + hvi∂r hui = − 1 1 dp 0 − ∂r (rhu0 v 0 i) ρ dx r Using the BL approximation: I it can be shown that self-similarity implies: 1 (x − x0 ) ∼ x − x0 U0 ∼ r1/2 → consistent with experimental observations (cf. above) 18/27 Evolution of a round jet Boundary layer approximation Energy budget Closure of equations in BL approximation Assuming a uniform turbulent viscosity I define −hu0 v 0 i = νT ∂r hui I experiments show similarity: νT (x, r) = r1/2 (x)U0 (x)ν̂T (r) I ν̂T ≈ 0.028 across jet ⇒ assume ν̂T = cst. I BL equations closed ⇒ reasonable prediction of hui (disagreement near edge) νT = cst approx. vs. Hussein et al. 1994 19/27 Evolution of a round jet Boundary layer approximation Energy budget Kinetic energy equation Instantaneous kinetic energy I definition: Ek (x, t) ≡ 12 u · u I transport equation (cf. lecture 2): DEk = − (uj p/ρ),j + (2νui Sij ),j − 2νSij Sij Dt Mean kinetic energy I decomposition: 1 hui · hui hEi = |2 {z } ≡ Ē (due to mean flow) + 1 0 0 hu · u i |2 {z } ≡k (due to turbulence) 20/27 Evolution of a round jet Boundary layer approximation Energy budget Kinetic energy of mean flow and turbulence Transport equations ∂t Ē + huj iĒ + hui ihu0i u0j i + huj ihpi/ρ − 2νhui iS̄ij ,j 1 0 0 0 0 0 0 0 ∂t k + huj ik + hui ui uj i + huj p i/ρ − 2νhui Sij i 2 ,j I = −P − ε̄ = +P − ε production term: P ≡ −hu0i u0j i hui i,j ⇒ sink for Ē, source for k → exchange term! I I dissipation due to mean flow: ε̄ ≡ 2ν S̄ij S̄ij 0 S0 i dissipation due to turbulence: ε ≡ 2νhSij ij 21/27 Evolution of a round jet Boundary layer approximation Energy budget Scaling of dissipation Round jet flow I considering self-similarity of hui, hu0i u0j i I production term (BL approximation) scales as: P/(U03 /r1/2 ) ≈ − hu0 v 0 i r1/2 ∂r hui U02 U0 → turbulent dissipation will also scale as: ε̂ = ε/(U03 /r1/2 ) ⇒ dissipation defined as 2νhs0ij s0ij i, but found independent of ν! I finer scales at higher Re → higher gradients s0ij 22/27 Evolution of a round jet Boundary layer approximation Energy budget Finer scales with increasing Reynolds Re = 105 Re = 2 · 105 (Brown & Roshko 1974) 23/27 Evolution of a round jet Boundary layer approximation Energy budget Kolmogorov scales Why is dissipation independent of the value for viscosity? I define characteristic scales of smallest turbulent motion: 1/4 η ≡ ν 3 /ε , τη ≡ (ν/ε)1/2 , uη ≡ (νε)1/4 I Kolmogorov-scale Reynolds number: Reη ≡ η uη /ν = 1 I length scale decreases with Reynolds: η/r1/2 = Re0 → compensates changes in viscosity I more details on scaling in lecture 5 −3/4 −1/4 ε̂ 24/27 Evolution of a round jet Boundary layer approximation Energy budget Turbulent kinetic energy budget Observations from experiments I mean-flow convection: − (huj ik),j I turbulent transport: − 21 hu0i u0i u0j i + hu0j p0 i/ρ 0 i −2νhu0i Sij ,j I I production: P dissipation: −ε (Panchapakesan & Lumley 1993) 25/27 Evolution of a round jet Boundary layer approximation Energy budget Comparison of time scales in turbulent free shear flow Round jet data I I I I I reference scale: τ0 ≡ r1/2 /U0 mean shear: τS ≡ 1/∂r hU i τ0 /τ0 = 1 τS /τ0 ≈ 1.7 turbulence production: τP ≡ k/P τP /τ0 ≈ 6 turbulence dissipation: τε ≡ k/ε τε /τ0 ≈ 4.5 mean “flight time” from virtual origin: τJ ≡ 12 x/U0 τJ /τ0 ≈ 5.3 → turbulence is long-lived 26/27 Evolution of a round jet Boundary layer approximation Energy budget Other canonical free shear flows Plane jet Mixing layer Plane or axisymmetric wake Homogeneous shear flow Homogeneous-isotropic flow 27/27 Conclusion Summary Main questions of the present lecture I How does a turbulent flow develop away from solid boundaries? I How can the equations be simplified for slow spatial evolution? I I What is the evolution in the self-similar region? I I boundary layer approximation round jet: linear spreading, mean velocities ∼ 1/x Turbulence structure in the round jet: I I turbulent kinetic energy budget crude approximation with uniform turbulent viscosity 1/4 Conclusion Problem Derive the formula for the mean “flight time” of a fluid particle on the round jet axis, measured from the virtual origin x0 to a position x. (Answer: τJ = 12 x/U0 ) 2/4 Conclusion Outlook on next lecture: The scales of turbulence How are energy and anisotropy distributed among scales? Which physical processes occur on each scale? 3/4 Conclusion Further reading I S. Pope, Turbulent flows, 2000 → chapter 5 I H. Tennekes and J.L. Lumley, First Course in Turbulence, 1972 → chapter 5 4/4
Similar documents
Technikerschule - Baugewerbliche Berufsschule Zürich
Eine Höhere Fachschule für Technik
More information