slides - Sheffield Department of Computer Science
Transcription
slides - Sheffield Department of Computer Science
HumanpercepHonand listeningbymachines Cleo Pike (Chair) SchoolofPsychologyandNeuroscience,UniversityofStAndrews,UK Amy Beeston (Panelist) DepartmentofComputerScience,UniversityofSheffield,UK WorkshopW17·140thAudioEngineeringSocietyConvenHon·Paris,France·7June2016 Researchbackground CleoPike Academyof Contemporary MusicProducHon UniversityofSurrey MScPsychology UniversityofSurrey UniversityofStAndrews PhDPsychoacousHcs Research:MulH-Sensory PercepHon CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Researchbackground AmyBeeston UniversityofOxford UniversityofEdinburgh Koncon,TheHague UniversityofSheffield Physics BMusMusicTechnology MMusSonology PhDComputerScience CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Thissession Plan SecHon1:Whatismachinelistening? SecHon2:Whataretheprocessesinvolvedinmachinelistening andtheproblemsencountered? SecHon3:HowdohumansdoitbeYer? CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 IntroducHon usesofinputaudio Whatisamachinelistener? Whatisamachine? Amachinereceivesinputcommandsandfollowsrulesinso-waretoperformanac0on Whatislistening? Registeringaudioinput(Hearing)+anefforttointerpret(recognize/a7endto)input Machinelisteners: Hear MechanicaltransducHon Divisionbyfrequency TransducHontoneuralfiring FeatureselecHon Listen CategorisaHon RecogniHon Streaming Act Followrules/norms foracHng CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Learn ? ApplicaHonsofMachinelistening usesofinputaudio ASR AutomaHcSpeechRecogniHon: Siri(Apple) Cortana(Windows) CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ApplicaHonsofMachinelistening usesofinputaudio ASR Siri Siri Siri Cortana hYps://www.theguardian.com/technology/2015/aug/12/siri-real-voices-apple-ios-assistant-jon-briggs-susan-benneY-karen-jacobsen KarenJacobson(Aus) JonBriggs(UK) KarenJacobson(USA) JenTaylor(USA) CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ApplicaHonsofMachinelistening usesofinputaudio ASR Speechrecogni0on: DictaHonsystems TranslaHonsystems EnglishspeechàEnglishword?---Frenchword?àFrenchspeech Speakerrecogni0on: VerificaHon(checkit’syou) idenHficaHon(workoutwhoyouarecomparedtoNotherpeople) hYp://peterthink.blogs.com/thinking/webtech/ hYp://www.amiproject.org/ami-scienHfic-portal/idiap-research-themes CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ApplicaHonsofmachinelistening BeyondASR para-linguisHcs emoHonrecogniHon, conversaHonanalysis eventdetecHon sonicinteracHon, alarmnoHficaHon engagement sortandsearch, informaHonretrieval www.thatwhitepaperguy.com/images/using-voicerecogniHon.png www.maximumpc.com/files/u96627/shout.jpg www.kallbinauralaudio.com/wp-content/uploads/2012/02/ fingersnap.jpg www-labs.iro.umontreal.ca/~pii3205/H09/graphics/spikes.png hYp://www.slate.com/blogs/atlas_obscura/2013/10/11/ britain_s_giant_concrete_ears_built_to_warn_of_an_enemy_aircrai _aYack.html hYp://www.bbc.co.uk/staHcarchive/ 94cc9170872b366182a452f7b9ba78e4d6b83342.jpg hYp://nordicapis.com/20-emoHon-recogniHon-apis-that-will-leaveyou-impressed-and-concerned/ CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ApplicaHonsofmachinelistening usesofinputaudio Example1.para-linguisHcs hYps://www.newscienHst.com/arHcle/mg22229683-800-speech-analyser-monitors-emoHon-for-call-centres/ hYp://news.mit.edu/2016/startup-cogito-voice-analyHcs-call-centers-ptsd-0120 –helpscustomer-servicerepsbuildbeYerrapportwithcustomers hYp://vms.mit.edu/cogito CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ApplicaHonsofmachinelistening usesofinputaudio Example2.eventdetecHon hYp://www.audioanalyHc.com/uses/ “13,090,191,849secondsofaudioprocessed” quotedfromhYp://www.audioanalyHc.com/accessed5June2016 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ApplicaHonsofmachinelistening Example3.engagementusesofinputaudio Shazam –digitalfingerprint hYp://www.shazam.com/assets/images/website/apps/mobile_ios_and_android-72a04dcf.png Helpspeoplerecognizeandengagewiththeworldaroundthem hYp://www.shazam.com/company CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ConceptualexplanaHonofML usesofinputaudio Processesbehindmachinelistening ForanyMLweneed: Hardwareandsoiware Machines: Engineeredperipherals(microphones) Engineeredsoiware-algorithms Engineeredperipherals(loudspeakers) Humans: Evolvedperipherals(ears,nerves) Evolvedsoiware-algorithms Evolvedperipherals(nerves,mouth) MaterialistvsDualistPhilosophy Descartes:mind/bodydualism.hYps://en.wikipedia.org/wiki/Mind CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ConceptualexplanaHonofML usesofinputaudio StaHsHcalASR Decoding Preprocessing Feature extraction Pronunciation model Acoustic model Back end Front end P(Q|W) k P(X|Q) hYp://slideplayer.com/slide/6218710/ Language model P(W) @ “thecatchasedthemail” Yoshiokaetal(2012).IEEESignalProcessMag,29(6):114–126 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ConceptualexplanaHonofML usesofinputaudio Ingeneral:taskandcontextdependencies 1-DHme-domain audiblesignal classificaHon (supervised) hYp://dsii.dsi.unifi.it/~moods/moods/images/note.gif n-Dfeaturevectors controlparameters combiningfeatures (mulHmodal) CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 clustering (unsupervised) Temporalfeature(1D) Intensitytracking(Praat)usesofinputaudio Praat 1.Tracktheintensityenvelope - doingphoneHcsbycomputer –Openfile,showintensity - www.praat.org/ –ExtractvisibleintensityContour 2.Segmentsignal(voiceacHvitydetecHon) –PraatObjectswindow,Intensity>ToTextGrid(silences) 3.SoundandTextGrid>View&Edit CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Temporalfeature(1D) Intensitytrackingfail usesofinputaudio aircraft upload.wikimedia.org/wikipedia/commons/3/3c/ Qantas_b747_over_houses_arp.jpg Amplitude +ve snore sound * * * ... 0 00:00 00:30 * * * 01:00 01:30 02:00 01:30 02:00 Time (mm:ss) ... hYp://www.snoringmouthpieceguide.com/wp-content/uploads/ 2013/07/me-snoring.jpg schema-driven(top-down) • priorknowledge, semanHcs,pragmaHcs mid low 00:00 aircraft Frequency high 00:30 01:00 Time (mm:ss) primiHve(boYom-up)grouping • simultaneous(verHcal)–commonon/offset,harmonicity • sequenHal(horizontal)–conHnuity,proximity BeestonandBrown(2015).NewcastleSleep2015,UK. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Spectralfeatures(2D) usesofinputaudio PitchesHmaHon(Sonicvisualiser) 1.Revealtheharmonicstructure –Openfile –Pane>Addspectrogram 2.EsHmatefundamentalfrequencyinharmonicregions –Transform>AubioPitchDetector SonicVisualiser - forviewingandanalysingthe contentsofmusicaudiofiles - hYp://www.sonicvisualiser.org AubioPitchDetector - hYp://www.vamp-plugins.org/ CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Spectralfeatures(2D) PitchesHmaHon‘fail’ usesofinputaudio • OwenGreen’sNowforsomemusic(2007) – ListenathYps://soundcloud.com/gungwho/and-now-for-some-music-2007 • ImplementaHon – FirstpitchtrackeradapHvelydividesinputsoundintotwoclasses(pitchornoise) – Amountofdisagreementbetweenfirstandsecondpitchtrackercontrolssignalprocessing resulHnginmore/lessperceivedroughness/disrupHonofinput Green(2014).ProcNIME,1–6. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 MulH-dimensionalfeatures(nD) usesofinputaudio TimbraldescripHon(Max) Max sound,graphics,music,interacHvity hYps://cycling74.com/ [analyzer~]objectbyTristanJehan hYp://web.media.mit.edu/~tristan/ Matlabalt. TimbreToolbox(McGill,Canada) hYp://www.cirmmt.org/research/tools MIRToolbox(Jyväskylä,Finland) hYps://twiYer.com/mirtoolbox Pythonalt. EssenHa(Barcelona,Spain) hYp://essenHa.upf.edu/ • …perceiveddissimilaritydespitesameloudness,pitchandduraHon • Brightness=>spectralcentroid • Noisiness=>spectralflatness CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 DiScipio(2003).OrganisedSound,80(3),269-277. Beeston(2015).2ndRoyalMusicalAssociaHonMPSGworkshop. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 zumrotenigel.files.wordpress.com/2013/02/ symphony-hall.jpg www.flickr.com/photos/ 130738664@N02/16122099133 • humansadapttotheroom(andfast!) • ourmachinelistenerstypicallydon’t abstractcriHcal.com/wp-content/uploads/ 2014/01/PUMHint1_1.jpg Spectro-temporalfeatures(nD) TimbraldescripHon‘fail’usesofinputaudio ProblemswithMLapplicaHons usesofinputaudio Machinelisteningisflawed • MLbreakswithcommonenvironmentalproblems(noise,channel coloraHon,reverb) • WeareonlyusingonesourceofinformaHontoclassifysounds.Real systemscanusemulHplesources • MostcueshaveproblemswithreverberaHon/backgroundnoiseand coloraHon • Humanlistenershaveameansofovercomingtheseproblemsand machinelisteningcanincorporatethis • Humanstakethecontextintoaccount CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforreverberaHon usesofinputaudio Overview • ReverberaHondegradesspeechintelligibility –acousHccontentdifferswithdistance –butphoneHccontentpersists • WecompensateforreverberaHon –monaural/binaural • CompensaHonisreliantoncontextualsound –whatfactorspromote/inhibitcompensaHon? • Canmachinelistenersuseequivalentcues? –samemistakesashumans? Beeston(2015).PhDThesis,UniversityofSheffield,UK. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforreverberaHon usesofinputaudio LatereverberaHon far 0.2 0.2 0.2 0.1 0.1 0.1 Amplitude Amplitude near Time 0.5 Time (s) 1 0.5 0.5 Time (s) Time (s) 1 • Latereverb=>noise-likeeffects –Increasesnoisefloor –Reducesdynamicrangeoftemporalenvelope • Stopconsonants=>verysensiHvetoreverb –idenHficaHondependsonrapidamplitudemodulaHon,e.g.[t]dip Náběleketal.(1989).JAcoustSocAm,86(4),1259-1265. –peaksprolonged,dipsfilled Drullmanetal.(1994).JAcoustSocAm,95(2),1053-1064. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 1 categoryboundary CompensaHonforreverberaHon usesofinputaudio Watkins–Nextyou’llget{sir,sHr}toclickon sHr compensa1on near far context context fartest-word neartest-word sir sHr sHr sir sir incr.reverb ontest-word incr.reverb oncontext Watkins(2005).JASA,118(1),249-262. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 HumanaudiHon Peripheralandcentralprocessing • ConHnualrecalibraHon:feedback(centrallyandtotheperiphery) –low-level/sHmulusdrivenandhigh-level/aYenHonaleffects hYps://www.gallaudet.edu/images/clerc/ear1.GIF Guinan(2011).Auditoryandves1bularefferents CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 ComputaHonalmodel Efferent-inspiredauditorymodel • Efferentprocessing=>reduceresponsetoenergyinreverberanttail Amp. Input efferent ATT metric window DRNL hair cell STEP afferent Amp. OME yin(t) yom(t) OME ybm(t,c) signal Freq. (Hz) DNRL 8000 sir/stir Freq. (Hz) Hair cell 100 8000 100 yhc(t,c) STEP Freq. (Hz) 8000 yan(n,c) 100 0 50 100 150 Time (ms) 200 250 FerryandMeddis(2007).JAcoustSocAm,122(6),3519-3526. BeestonandBrown(2010).Interspeech,pp2462-2465. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforreverberaHon usesofinputaudio Findings • MonauralreplicaHonandextensionofWatkins’work –realspeech,mulHpletalkers,incl.s+{t,k,p}+vowel • HumancompensaHon –isapparentfor{p,t,k}whenhighfreqsarepresent –isabolishedwithHme-reversereverberaHon –usesintrinsicinfowhenextrinsiccontextisambiguous –israpid(c.500ms) • CompensaHonmodel –doesnotrequirephoneHcprocessing –usesefferentprocessingtohelprecover[t]dip –bestversionderivesinfofromreverberanttails Beeston,BrownandWatkins(2014).JAcoustSocAm,136(6),3072-3084. BeestonandBrown(2014).7thForumAcusHcum,Krakow,Poland. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio Aim DohumanscompensateforspectraldistorHon(colouraHon) causedbyenvironment? Whataretheperceptualmechanisminvolved? CanweapplyanytobenefitML? CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio RaHonale Spectrum-keytorecogniHon e.g./e/or/a/ Environment-rooms, loudspeakers,microphone SpectraldistorHon/colouraHon- /e/physicallybecomes/a/ CompensaHon-wesHllhear theintended/e/vowel CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio Experiment1 CleoPike hYp://www.esm.rochester.edu/concerts/halls/hatch/ hYp://www.dogoilpress.com/FDS-375985.htmlimage:3784X2592/OFFICE/#375985 _ : : ( _ : : _ : :D _ CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio Results CondiHon2 CondiHon1 1 2 3 2 3 1 1 2 3 1 TOBEUPDATED Pike,C.D.(2015)TimbralconstancyandcompensaHonforspectraldistorHoncausedbyloudspeakerandroomacousHcs CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon ExplanaHonofresults usesofinputaudio 1 Longer 🕗 2 Longer 🕗 3 Longer Amemoryeffect?(Oliveetal.1995) CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio Experiment2 Condition 3 Condition 1 1 2 3 2 3 1 Time 1 2 3 Time IsHmebetweenlisteningacauseofcompensaHon? CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 1 CompensaHonforspectraldistorHon usesofinputaudio Results Condition 3 Condition 1 1 2 3 2 3 1 1 2 3 1 TOBEUPDATED CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio ExplanaHon 1 🕗 2 🕗 3 Amemoryeffect?(Oliveetal1995) MemorylossshouldcausenoiseinraHngsnotcontracHon CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio ExplanaHon Aim: FindmechanismstoexplaincompensaHonduetoHmegap The‘auditoryenhancement’effect HighFreq LowFreq Spectrum 1 Time CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio ExplanaHon Aim: FindmechanismstoexplaincompensaHonduetoHmegap The‘auditoryenhancement’effect HighFreq LowFreq Spectrum 1 Spectrum2 Time CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio ExplanaHon Aim: FindmechanismstoexplaincompensaHonduetoHmegap The‘auditoryenhancement’effect HighFreq Spectrum2 Spectrum2 LowFreq Spectrum 1 Time CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio Overallfindings Enhancementenhancesspectralchangein runningspeechormusic Thisraisesspectralchangeinspeech/music abovea‘colouraHonfloor.’ AddiHonally,thecolouraHonfloorcanbe removedwithasimilarbutlongerHme courseprocess… Thespectralcompensa0oneffect CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 CompensaHonforspectraldistorHon usesofinputaudio ApplicaHontoML Isthisprocessimplementedinmachines? MachinelistenersdoremovecolouraHon: ‘SpeakervocaltractcompensaHon’ CanalsobeusedtoremovecolouraHon byanychannel VocalTractLengthNormalisaHon CepstralmeansubtracHon Aretheseevenneeded forcolouraHonby reverb? DereverberaHon processes shouldalsoremove colouraHon Co-arHculaHoneffects couldalsobe compensatedforwith an‘enhancement’ process CondiHon*RoomF=187.22p<.001 CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Otherwork usesofinputaudio ComputaHonalAuditorySceneAnalysis Cocktailpartyproblemwereceivemixofsound Howdowepickoutanyone? ASA–principlesinhumanlisteningtosegregateauditorystreams Knowledgebased(Schema)grouping–Priorexperience,topdown Primi0vegrouping-lowlevel,boYomup Examples: Commononset CommonAM,FM Harmonicity CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Otherwork CASA usesofinputaudio BlindsourceseparaHon,SpaHalfiltering,IndependentComponents Analysis-Variousdrawbacks CASAmimicstheauditorysystemfromthebeginning: Justtwomicrophonesà Gammatonefilterbankà Cochleogramà SegmentaHonintoTFunitsà SegregaHonverHcallyandhorizontally-basedonASAprinciplesà Binary/soimaskappliedtoisolatetargetfromnoise CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Otherwork CASA usesofinputaudio Theidealbinarymaskisa0or1separaHonofnoisefromthebackground Similartoocclusioninvision OcclusionParHalOcclusionFigure/GroundSeparaHon HoweveraYenHonisnotabsolutesofurtherpsychoacousHc principlescouldbeadded….. “Humanscanholdthenoisestreamsinmindbutthisisnotoienimplementedin Machines.”(Wang2005) hYp://vanseodesign.com/web-design/pictorial-depth-cues/ hYp://faculty.gvsu.edu/KEISTERD/design_principles_art/figure_ground.html CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Otherwork CategoricalpercepHon usesofinputaudio Otherimportanthumanperceptualmechanismsthathavebeenimplemented inmachinelistening: Categoricalpercep0on ThelistenerhearsdisHnctcategoriesofmusicalorspeechsounds ratherthanaconHnuum CPcanremovevariaHoncausedbydistorHon Clusteringalgorithmsmimicthis Neuralnetworks-inspiredbyhumanpercepHon CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 Theend Thankyou PleaseaskusquesHons: Amy a.beeston@sheffield.ac.uk Cleo [email protected] CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016 references Beeston,A.V.(2015).PerceptualcompensaHonforreverberaHoninhumanlisteners Green,O.(2014).MusicalityandpracHce-ledmethods.ProcNIME,1–6. andmachines.PhDthesis,UniversityofSheffield. J.J.Guinan,Jr.(2011).Physiologyofthemedialandlateralolivocochlearsystems.In Beeston,A.V.(2015).DoweneedrobustaudiointerfacingbasedonpsychoacousHc D.K.Ryugo,R.R.Fay,andA.Popper,editors,Auditoryandves1bularefferents,39– principlesofhearing?RoyalMusicalAssocia1onMusicPhilosophyStudyGroup 81.Springer,NewYork. Workshop,Sheffield,UK,27May. Nábělek,A.K.,Letowski,T.R.,&Tucker,F.M.(1989).Reverberantoverlap-andselfBeeston,A.V.andBrown,G.J.(2015).Auditorymodelsforrobustanalysisofsnoring maskinginconsonantidenHficaHon,JAcoustSocAm,86(4),1259–1265. indomesHcrecordings.ProcNewcastleSleep2015-Bri1shSleepSocietyScien1fic Olive,S.E.,Schuck,P.L.,Sally,S.,Bonneville,M.(1995).Thevariabilityof conference,Newcastle,UK,22-24October. loudspeakersoundqualityamongfourdomesHc-sizedrooms.ProcAES99,NewYork, Beeston,A.V.andBrown,G.J.(2014).Consonantconfusionsprovidefurther USA,preprint4092K-1. evidencethatHme-reversedroomsdisturbcompensaHonforreverberaHon.Proc7th Pike,C.D.(2016).TimbralconstancyandcompensaHonforspectraldistorHoncaused ForumAcus1cum,Krakow,Poland. byloudspeakerandroomacousHcs.PhDthesis,UniversityofSurrey. Beeston,A.V.andBrown,G.J.(2010).PerceptualcompensaHonforeffectsof Pike,C.,Mason,R.,&Brookes,T.(2014).AuditoryCompensaHonforSpectral reverberaHoninspeechidenHficaHon:acomputermodelbasedonauditoryefferent ColoraHon.AudioEngineeringSocietyConven1on137. processing.ProcINTERSPEECH,2462–2465,Makuhari,Chiba,Japan. Watkins,A.J.(2005).PerceptualcompensaHonforeffectsofreverberaHoninspeech Beeston,A.V.,Brown,G.J.,andWatkins,A.J.(2014).PerceptualcompensaHonfor idenHficaHon.JAcoustSocAm,118(1):249–262. theeffectsofreverberaHononconsonantidenHficaHon:Evidencefromstudieswith Wang,D.(2005)OnIdealBinaryMaskasthecomputaHonalgoalofauditoryscene monauralsHmuli.JAcoustSocAm,136(6),3072–3084. analysis,inSpeechSeparaHonbyHumansandMachines.Springer,NewYork.pp. DiScipio,A.(2003).Soundistheinterface:frominteracHvetoecosystemicsignal 181-197 processing.OrganisedSound,8(03),269–277. Yoshioka,T.,Sehr,A.,Delcroix,M.,Kinoshita,K.,Maas,R.,Nakatani,T.,& Drullman,R.,Festen,J.M.,&Plomp,R.(1994).Effectoftemporalenvelope Kellermann,W.(2012).MakingMachinesUnderstandUsinReverberantRooms: smearingonspeechrecepHon.JAcoustSocAm,95(2),1053–1064. RobustnessAgainstReverberaHonforAutomaHcSpeechRecogniHon.IEEESignal Ferry,R.,&Meddis,R.(2007).Acomputermodelofmedialefferentsuppressionin ProcessingMagazine,29(6),114–126. themammalianauditorysystem.JAcoustSocAm,122(6),3519–3526. CleoPikeandAmyBeeston·AES140·W17·HumanpercepHonandlisteningbymachines·Paris·7June2016