REKONSTRUKSI CITRA-WARNA DARI PENGINDERAAN
Transcription
REKONSTRUKSI CITRA-WARNA DARI PENGINDERAAN
REKONSTRUKSI CITRA-WARNA DARI PENGINDERAAN KOMPRESIF DENGAN MATRIKS PENGUKURAN TEROPTIMASI Endra Department of Computer Engineering Bina Nusantara University 15 – 16 Agustus 2011 WHAT IS COMPRESSIVE SENSING ? A Contemporary Paradox WHAT IS COMPRESSIVE SENSING ? WHAT IS COMPRESSIVE SENSING ? Candes, E.J., and Wakin, M.B., March. 2008, An Introduction to Compressive Sampling, IEEE Signal Processing Magazine., pp. 21-30. WHAT IS COMPRESSIVE SENSING ? When Sensing Meet Compression Automatically translates analog data into already compressed digital form. Applications and Opportunities Of Compressive Sensing New Analog-to-Digital Converters (Analog to Information) COMPRESSIVE SENSING CS Theory Requires Three Aspects : 1. The desired signals/images are sparse/compressible. 2. CS matrices satisfies RIP (Restricted IsometryProperty). 3. Reconstruction algorithms. COMPRESSIVE SENSING FRAMEWORK M 1 M N NK K 1 θ K 1 θ M K D M 1 S Sparse Measurement Matrix Sparse Coefficent Basis/Dictionary y x x y D Equivalent Dictionary M N If KN Complete (Basis) If KN Over-Complete (Dictionary) PENELITIAN SEBELUMNYA 1. Emmanuel J. Candès and Terence Tao, 2006 pengukuran/proyeksi kompresif dan 1 Menggunakan random matriks untuk - minimization untuk rekonstruksi. Menggunakan random matriks untuk pengukuran kompresif dan Orthogonal Matching Pursuit (OMP) untuk rekonstruksi. 2. J. A. Tropp and A. C. Gilbert, 2007 Optimasi matriks pengukuran, OMP dan 1 - minimization untuk rekonstruksi sinyal 1 dimensi dan memiliki eksak sparsity. 3. M. Elad, 2007 IRLS- p - minimization untuk rekonstruksi sinyal 1 dimensi dan eksak sparsity, random matriks untuk pengukuran. 4. Rick Chartrand and Wotao Yin, 2008 IRLS - p - minimization untuk rekonstruksi citra warna dari penginderaan kompresif, menggunakan random matriks untuk pengukuran. 5. Endra, 2010 Pada tulisan ini optimasi matriks pengukuran didasarkan pada metode Elad untuk pengukuran kompresif citra warna dan rekonstruksi menggunakan IRLS- p - Minimization dan OMP sebagai perbandingan. OPTIMIZED MEASUREMENT MATRIX Random Gaussian Matrix that fulfill the required property of CS measurement (Incoherency & RIP) usually to be used to encode the signal. can be optimized by reducing the mutual coherence : D : max i j ,1 i , j K d d T i Equivalent Dictionary, D, close to orthonormal Gram-Matrix of Equivalent Dictionary : G I min D G I 2 F min D t 2 D D I F NUMERICAL EXPERIMENTS RESULTS Citra Uji Lena Untuk algoritma Iteratively IRLS – ell-pminimization peningkatkan PSNR mencapai 88 % Untuk algoritma OMP peningkatan PSNR mencapai 175 % RESULTS Citra Uji Lena Random Matriks M = 19 % Optimasi Matriks Pengukuran IRLS-ell-p minimization OMP RESULTS Citra Uji Baboon Untuk algoritma Iteratively IRLS – ell-pminimization peningkatkan PSNR mencapai 68 % Untuk algoritma OMP peningkatan PSNR mencapai 108 % RESULTS Citra Uji Baboon Random Matriks M = 16 % Optimasi Matriks Pengukuran IRLS-ell-p minimization OMP Kesimpulan Optimasi matriks pengukuran pada penginderaan kompresif citra-warna dapat meningkatkan kualitas rekonstruksi citra untuk kedua metode rekonstruksi yang digunakan yakni Iteratively IRLS – ell-p - minimization dan OMP. Untuk penelitian selanjutnya, peningkatan kinerja dari penginderaan kompresif dapat dilakukan dengan menggunakan kamus-basis lewat lengkap yang dipelajari dari sekumpulan besar citra dan optimasi matriks pengukuran dilakukan bersamaan dalam proses pembelajaran tersebut. Peningkatan lebih jauh lagi dilakukan dengan memanfaatkan representasi block-sparse yang dipelajari dari sekumpulan besar citra untuk mengoptimasi matriks pengukuran. REFERENCES [1] Michael Unser, Apr. 2000, Sampling—50 Years After Shannon, Proceedings of the IEEE., vol. 88, no. 4, pp. 569-587. [2] David L. Donoho, Apr. 2006, Compressed Sensing, IEEE Transactions on Information Theory., vol. 52, no. 4, pp. 1289-1306. [3] Emmanuel J. Candès, Justin Romberg, and Terence Tao, Feb. 2006, Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information, IEEE Transactions on Information Theory., vol. 52, no. 2, pp. 489-509. [4] E. Candès, J. Romberg, and T. Tao, Aug. 2006 , Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223. [5] Emmanuel J. Candès and Terence Tao, Dec. 2006, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory., vol. 52, no. 12, pp. 5406-5425. [6] Candes, E.J., and Wakin, M.B., March. 2008, An Introduction to Compressive Sampling, IEEE Signal Processing Magazine., pp. 21-30. [7] Jing Wu and Ye Li, Nov. 2009, Low-complexity Video Compression for Capsule Endoscope Based on Compressed Sensing Theory, in Proc. International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009., pp. 3727-3730. [8] Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M., March. 2008, Compressed Sensing MRI, IEEE Signal Processing Magazine., pp. 72-82. [9] Haupt, J., Bajwa, W.U., Rabbat, M., and Nowak, R., March. 2008, Compressed Sensing for Networked Data, IEEE Signal Processing Magazine., pp. 92-101. [10] Peng Zhang, Chen Chen, and Minrun Liu, Nov. 2009, The Application of Compressed Sensing in Wireless Sensor Network, in Proc. International Conference on Wireless Communication & Signal Processing, WCSP 2009., pp. 1-5. REFERENCES [11] Lei Yu, Yi Yang, Hong Sun, and Chu He, Oct. 2009, Turbo-like Iterative Thresholding for SAR Image Recovery from Compressed Measurements, in Proc.2nd Asian Pacific Conference on Synthetic Aperture Radar, APSAR 2009., pp. 664-667. [16] Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Ting Sun, Kelly, K.F., and Baraniuk, R.G., March. 2008, Single-Pixel Imaging via Compressive Sampling, IEEE Signal Processing Magazine., pp. 83-91. [12] Matthew A. Herman and Thomas Strohmer, Jun. 2009, High-Resolution Radar via Compressed Sensing, IEEE Transactions on Signal Processing., pp. 2275-2284. [17] Jianwei Ma, Oct. 2009, A Single-Pixel Imaging System for Remote Sensing by Two-Step Iterative Curvelet Thresholding, IEEE Geoscience and Remote Sensing Letters., vol. 6, no. 4, pp. 676-680. [13] A Anil Kumar and Anamitra Makur, Jan. 2009, Lossy Compression of Encrypted Image by Compressive Sensing Technique, in Proc. IEEE Region 10 Conference TENCON 2009., pp. 1-5. [18] Jianwei Ma, Apr. 2009, Single-Pixel Remote Sensing, IEEE Geoscience and Remote Sensing Letters., vol. 6, no. 2, pp. 199-203. [14] Adem Orsdemir, H. Oktay Altun, Gaurav Sharma, and Mark F. Bocko, Nov. 2008, On The Security and Robustness of Encryption Via Compressed Sensing, in Proc. IEEE Military Communications Conference, MILCOM 2008., pp. 1-7. [15] Justin Romberg, March. 2008, Imaging via Compressive Sensing, IEEE Signal Processing Magazine., pp. 14-20. [19] Mark A. Davenport, Petros T. Boufounos, Michael B. Wakin, and Richard G. Baraniuk, Apr. 2010, Signal Processing With Compressive Measurements, IEEE Journal of Selected Topics in Signal Processing., vol. 4, no. 2, pp. 445-460. [20] D.S. Taubman and M.W. Marcellin, 2001, JPEG 2000: Image Compression Fundamentals, Standards and Practice, Norwell, MA: Kluwer. REFERENCES [21] E. Candès and J. Romberg, 2007, Sparsity and incoherence in compressive sampling, Inverse Prob., vol. 23, no. 3, pp. 969–985. [22] Endra, Oct. 2010, Color Image Reconstruction From Compressive Sensing Using Iteratively Reweighted Least Squares- p –Minimization, in Proc. Makassar International Conference on Electrical Engineering and Informatics, 2010. [23] M. Elad, Dec. 2007, Optimized projections for compressed sensing,” IEEE Transactions on Signal Processing, vol. 55, no. 12, pp. 5695– 5702. [24] Rick Chartrand and Wotao Yin, Apr. 2008, Iteratively Reweighted Algorithms for Compressive Sensing, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008., pp. 3869-3872. [25] J. A. Tropp and A. C. Gilbert, 2007, Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655–4666. [26] David L. Donoho and Xiaoming Huo, Nov. 2001, Uncertainty Principles and Ideal Atomic Decomposition, IEEE Transactions on Information Theory., vol. 47, no. 7, pp. 28452862. [27] K. Rosenblum, L. Zelnik-Manor, and Y. C. Eldar, “Dictionary optimization for block sparse representations,” arXiv.org 1005.0202. submitted to IEEE Trans. Signal Process., May 2010. [28] Kevin Rosenblum, Lihi Zelnik-Manor, Yonina C. Eldar, Sept. 2010, Sensing Matrix Optimization for Block-Sparse Decoding, preprint[ Online]. Available: http://arxiv.org/PS_cache/arxiv/pdf/1009/1009.1 533v1.pdf REFERENCES [29] Petros Boufounos, Justin Romberg and Richard Baraniuk, “Compressive Sensing : Theory and Applications,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, Nevada, Apr. 2008 [Online]. Available: http://www.ece.rice.edu/~richb/talks/cs-tutorialICASSP-mar08.pdf. [30] Jianwei Ma., “Data Recovery from Compressed Measurement”, School of Aerospace, Tsinghua University, Beijing. [31] E. Candès, Electrical Engineering Colloquium, University of Washington, December 2010. [32] Michael Elad, Optimized Projection Directions for Compressed Sensing, The IV Workshop on SIP & IT Holon Institute of Technology June 20th, 2007. [33] Michael Elad, Sparse & Redundant Representation Modeling of Images, Summer School on Sparsity in Image and Signal Analysis, Holar, Iceland, August 15 – 20 , 2010.