El Colegio de la Frontera Sur
Transcription
El Colegio de la Frontera Sur
El Colegio de la Frontera Sur Hormigas en cafetales: Estudio sobre la calidad de la matriz en fincas cafetaleras en el Soconusco, Chiapas. TESIS presentada como requisito parcial para optar al grado de Doctorado en Ciencias en Ecología y Desarrollo Sustentable por Aldo Alejandro de la Mora Rodríguez 2014 1 DEDICATORIA A un ser superior. A mis genios preferidos: Orlando López Báez Álvaro García Ballinas Gabriela Pérez-Lachaud Jean Paul Lachaud Stacy Philpott A mi pequeña familia. En especial, mi madre, mis hermanos, abuelos, papás, mamás. A los primos y sobrinos. ¡Gracias a la vida ¡ A los compañeros poetas. A lo que se llama soledad. Por lo que nunca fue, ni será. Por las tazas de café sin terminar, los abrazos y cervezas prometidas, por las hormigas sacrificadas durante este trabajo… 2 RECONOCIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por la beca de manutención del programa de posgrado (Becario 168970); así como, la beca mixta otorgada para la estancia académica en la Universidad de Toledo, en Estados Unidos. A Conservation International-Rapid Assessment Program, por el valiosos apoyo económico otorgado para la realización de este proyecto de vida. De manera especial a Leeanne Alonso por creer en mí. A los dueños de las fincas Irlanda, Hamburgo, San Francisco, Génova, Rancho Alegre, Chiripa, Maravillas, Santa Anita, San Enrique y Rancho Cuilco (Rogers S.A. de C.V. y la empresa Rogers Family Company), por permitirnos realizar esta investigación en cada una de ellas. Especialmente mi reconocimiento y eterno agradecimiento, al Sr. Walter Peters por compartir una vida entera entre sorbos de café. Al apoyado parcial económico de la National Science Foundation (número DEB-1262086) otorgado a S.M. Philpott. Finalmente, y no menos importante, a ECOSUR, por el apoyo brindado y la oportunidad de seguir aprendiendo y desarrollarme académicamente durante mi estancia en el posgrado. 3 AGRADECIMIENTOS A Stacy Philpott por compartir sus conocimientos, por la paciencia a mis errores y por ser una amiga en todo momento. A los miembros de mi comité tutelar: Al Dr. Guillermo Ibarra Núñez, Dr. Jean Paul Lachaud, Dra. Gabriela Pérez, Dra. Lorena Soto, por su contribución al desarrollo de esta tesis, muchas gracias por los comentarios y enseñanzas. También, agradezco al Dr. Jaime Gómez, Dr. Pablo Liedo Fernández y al Dr. Alfredo Castillo Vera, por tomarse el tiempo para leer este trabajo y aceptar ser revisores externos. Al M.C. Javier Valle Mora, por su apoyo estadístico, pero sobre todo, por compartir los conocimientos dentro y fuera de las aulas. A L.I. Higinio López por el aporte a esta tesis, así como la amistad que se genero durante este tiempo fuera y dentro de aulas. No olvidar, en estos agradecimientos a la M.C. Guadalupe Nieto, por su apoyo y amistad incondicional durante este tiempo. A las L.I. Beatriz Romero y Paulina González por el apoyo logístico y eficiente para la culminación de esta tesis. A Ana María Galindo y Margarita Hernández por el apoyo en todo momento en la adquision de libros en la bilbioteca. Así también, a Eduardo Chamé por el apoyo brindado en la colección biológica y M.C. Enoc Cabrera por el apoyo logístico. A mis madrinas: Sra. Rosalba Morales y Doña Lucy, por el apoyo moral y humano en todo momento durante mi estancia en Ecosur. Así tambien, a Doña Rosi Morales por apoyarme administrativa y logistivamente durante la realización de esta tesis. Al personal administrativo de Ecosur –Tapachula: Carmina, Rosario, Mónica, Magda, Ada, Adriana, Lilia, Elizabeth y Jesús Éboli. A Ivette Perfecto y Jhon Vandermeer. Así también a Francisco Infante, Julio Rojas, Benigno Gómez, Jorge Toledo, Anne Damon y Cristian Tovilla. 4 A los incansables y extrañables: G. Domínguez, G. López Bautista, B. Chilel, P. Bichier, G. Livingston, C. Repetto, K. Mathis, C. Murnen, E. Sintes, E. Sintes-Garcia, R. Becker, J. Heraty, E.A. Murray, F. Jiménez, G. Pardee, J. Santis, U. Pérez Vásquez, S. Poncio, I. Santos, R. Pérez, K. Williams-Guillen, K. Zemenick, E. Schüller, S. Arming, C. Hochreiter, G. Mejía, F. Rocha, D. Gonthier, K. Ennis, D. Allen, K. Fisher, D. Jackson, J. Remfert, Estelí Jiménez, H. Hsieh, Amanda Ayala, R. Cuevas, J. Burdine, A. Rodríguez, C. Guadarrama, I. Armbrecht, A. Niño, P. Gillette, M. Pintin, F. Chaufon, J. de Queiroz, G. Pascasio, A. Roblero, J.L. Enríquez, Rocío Gómez y Sara Mendoza. ! Muchas gracias! 5 6 ÍNDICE DE CONTENIDO 9 RESUMEN CAPÍTULO I. 11 1.1. Introducción General 10 1.1.1. Contexto global de la biodiversidad 11 1.1.2. Agroecosistemas de café: Factores de intensificación y de paisaje que inciden en la funcionalidad del agroecosistema 12 1.1.3. Hormigas como indicadoras de diversidad y su importancia ecológica 14 1.2 Hipótesis y Objetivos 1.2.1. Hipótesis general e hipótesis particulares 17 1.2.2 Objetivo general y objetivos particulares 18 19 1.3. Metodología General 1.3.1. Caracterización del área de estudio y técnicas de muestreo utilizadas 19 1.3.2. Análisis estadísticos 24 CAPÍTULO II. Factores locales y de paisaje promueven la biodiversidad de cuatro grupos de hormigas en paisajes cafetaleros (Local and landscape drivers of biodiversity of four guilds of ants in coffee landscapes. Biodiversity Conservation, 22:871-888). 25 CAPÍTULO III. Factores locales, del paisaje y de diversidad promueven los servicios ecosistemicos de depredación por hormigas en cafetales (Local, landscape, and diversity drivers of predation services provided by ants in coffee landscapes. Agriculture, Ecosystems and Environment, Manuscript re-submitted. Number : AGEE10440). 42 CAPÍTULO IV. Factores locales y de paisaje promueven el parasitismo en un paisaje de 7 café (Local and landscape drivers of ant parasitism in a coffee landscape. Environmental Entomology, Manuscrito sometido). 84 CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES 126 CAPÍTULO VI.- LITERATURA CITADA 135 ANEXO 1. Acuse de artículo aceptado: Local and landscape drivers of biodiversity of four guilds of ants in coffee landscapes. Biodiversity Conservation, 22:871-888. 144 ANEXO 2. Normas editoriales de Agriculture, Ecosystems, and Environment 8 145 RESUMEN La intensificación de agroecosistemas afecta la diversidad de la flora y fauna. Los objetivos fueron: conocer los efectos de la intensificación agronómica de cafetales y de los remanentes de bosque sobre la diversidad de hormigas, la relación entre la diversidad de hormigas y la remoción de insectos presa por parte de éstas y finalmente, analizar cómo afectan las variables locales y de paisaje a la tasa de parasitismo en las diferentes especies de hormigas en un agroecosistema de café. Se establecieron 40 sitios experimentales (400 m² cada uno) en siete fincas de café y en fragmentos de bosque en el Soconusco, Chiapas. Se calculó un índice de complejidad de vegetación (IVC), y mediante encuestas al personal de las fincas sobre el uso y frecuencia de aplicación de agroquímicos se elaboró un índice de agroquímicos (IA). Con los datos de la vegetación se clasificaron los 40 sitios experimentales en diferentes manejos del área de estudio en: monocultivos (17 sitios), policultivos (13 sitios) y bosques (10 sitios). Con los programas ArcView, y ArcMap se calcularon las siguientes variables de paisaje: distancia de cada sitio al borde del bosque, áreas con radios de 50, 200 y 500 m para sitios de bosques y de café de tipo rústico. En cada sitio, en las temporadas de secas y lluvias, se colectaron las hormigas del suelo, cafetos y arboles con diversos métodos de muestreo. Los resultados de esta investigación sugieren que los factores de manejo agronómico y la influencia de fragmentos de bosque afectan la diversidad y abundancia de hormigas e indirectamente influyen positivamente en los servicios ecosistémicos que las hormigas ofrecen. Sin embargo, la intensidad de parasitismo sufrido por las hormigas es afectada principalmente 9 por factores del paisaje, la cantidad de humus y numero de pupas para ciertos grupos de hormigas. Se propone realizar acciones de diversificación de las zonas de café empleando diferentes especies de árboles para sombra (preferentemente nativos) o plantar diversas especies de Inga, con el fin de proveer refugio y alimentación para los diferentes organismos que existen y así favorecer las interacciones ecológicas entre ellos, favoreciendo una mejor calidad de la matriz agrícola que promovería sustentabilidad, economía y salud de los productores en la región. Palabras clave: diversidad, servicios ecosistémicos, parasitoides, paisaje, hormigas. 10 CAPÍTULO I. Introducción general 1.1.1. – Contexto global de la biodiversidad Globalmente, dos tercios de los bosques originales se han dteriorado por diversas acciones humanas como la agricultura (Richards y Tucker 1988). La pérdida de la diversidad local y las extinciones a nivel global son consecuencias de la disminución y/o deterioro del hábitat original (Jenkins, 2003; Baillie et al., 2004). A partir de estudios recientes, se ha demostrado que la biodiversidad global está en declive desde hace alrededor de 40 años; y si el ser humano no cambia o modifica las acciones en el uso de los recursos naturales, el mismo panorama negativo para la biodiversidad continuará en las siguientes décadas (Butchart et al., 2010). Existen diversos estudios que modelan las consecuencias de la pérdida de diversidad y su repercusión en la funcionalidad de los agroecosistemas (Tscharntke et al., 2002; van Nouhuys, 2005; Vandermeer y Perfecto, 2007). Entre los estudios realizados para conocer las consecuencias de la pérdida de los componentes de la biodiversidad (ver Altieri, 1999) y su relación con diversas funciones ecológicas en paisajes fragmentados, se encuentran aquellos que han estudiado la polinización, la depredación, y el parasitismo (Landis et al., 2000; Wilby y Thomas, 2002; Mayfield et al., 2006; Tscharntke y Lewis, 2007). Otros estudios relacionaron el impacto de la simplificación de paisajes agrícolas con procesos ecológicos y ambientales que intervienen en la funcionalidad de algunos agroecosistemas (Wilby y Thomas, 2002; Tscharntke et al., 2008) como los de café y de cacao, los cuales poseen alta riqueza biológica y son refugio de gran cantidad de organismos (Moguel y Toledo 1999). 11 1.1.2. Agroecosistemas de café: Factores de intensificación y de paisaje que inciden en la funcionalidad del agroecosistema. En los últimos años, la tendencia global a la intensificación o tecnificación del café, con el fin de aumentar los rendimientos, han transformado algunos cafetales en monocultivos de sombra (Perfecto y Snelling 1995). La problemática ocasionada por estas acciones locales (podas, uso de agroquímicos, etc.), es que se genera una matriz agrícola de baja calidad y/o la fragmentación del paisaje, afectando diversos procesos ecológicos y funcionales a nivel del paisaje, al disminuir la conectividad entre bosques (Vandermeer y Perfecto, 2007). En México, los cultivos de café están altamente correlacionados con regiones de alta diversidad biológica (Moguel y Toledo, 1999). Particularmente en Chiapas, tercer estado productor de café a nivel nacional, se ha documentado que algunas fincas en la región del Soconusco, que poseían gran riqueza y abundancia de insectos (Ibarra-Núñez; 1990, Perfecto y Vandermeer, 2002) están sufriendo cambios en su manejo agronómico, lo cual puede afectar la riqueza de especies que albergan estos sitios que están dentro de las áreas denominadas “hotspots” (puntos calientes) de diversidad (Moguel y Toledo 1999; De la Mora et al. 2013a). El paisaje de café en el Soconusco se caracteriza por un gradiente de intensificación de este cultivo, delimitado por fragmentos de bosque con la flora original de la región. La matriz, considerada como un hábitat uniformemente hostil que no ofrece ningún recurso a las especies aisladas en los fragmentos agrícolas en esta zona está representada por fincas de café rústico (alta diversidad), policultivo tradicional, policultivo comercial, monocultivo de sombra, y cafetales sin sombra (cultivo intensivo), delimitadas con parches de bosques con poca conectividad entre ellos (De la Mora et al. 2013a). Las prácticas agronómicas locales en algunas fincas, como la reducción de sombra, recepas en plantas de café, siembra de variedades de alto rendimiento y aplicación de 12 agroquímicos, provocan cambios drásticos en la matriz, afectando en menor o mayor grado a diversos taxa (Perfecto et al., 2003; Philpott, 2005; García Estrada et al., 2006; Williams-Guillén et al., 2008); por ejemplo, a mayor intensificación se observan efectos negativos en la diversidad de mariposas, aves, murciélagos y hormigas (Perfecto et al., 2003; García Estrada et al., 2006; Perfecto et al., 2007). En teoría, la pérdida de diversidad biológica por la intensificación del cultivo provoca una simplificación en las relaciones ecológicas y funcionales del agroecosistema (Vandermeer y Perfecto, 2007, Philpott et al., 2008c). Así también, en los últimos años se encuentran fincas que han sembrado árboles de sombra alta y/o han dejado áreas para la conservación de flora y fauna de la zona, lo que podría aumentar la conectividad entre fragmentos de bosques, mejoraría la calidad de matriz y por lo tanto, mejoraría la funcionalidad del agroecosistema (ver Vandermeer y Perfecto, 2007). Por lo anterior, el paisaje de café en el Soconusco, Chiapas es un escenario ideal para estudiar la diversidad, los servicios ecosistemicos, las relaciones ecológicas y el efecto de cambios en la intensificación a nivel local y de paisaje, propósitos de este estudio. En esta región cafetalera del Soconusco se han realizado investigaciones sobre la calidad de la matriz y su efecto en la diversidad, funcionalidad y relaciones ecológicas. Por ejemplo, se ha comparando la biodiversidad de aves y los servicios ecosistémicos brindados por este grupo (Perfecto et al., 2004); el efecto de la intensificación del cultivo de café en la diversidad de mariposas (Perfecto et al., 2003); y la diversidad de hormigas y su efecto por depredación sobre otros insectos en fincas con diferentes condiciones de manejo agronómico (Perfecto et al., 2003; Armbrecht y Perfecto, 2003; Philpott y Armbrecht, 2006; Philpott et al., 2008a). Como resultado, se ha determinado que algunos organismos responden en diferente forma a los cambios de la calidad de la matriz; por ejemplo, cambios en la composición y diversidad de especies (Perfecto 13 et al., 2003; García Estrada et al., 2006; Philpott et al., 2008b; Jha, 2009). Sin embargo, casi no se ha estudiado el efecto sobre la diversidad y abundancia a gran escala (al nivel de paisaje), o los efectos del manejo agronómico y de cambios en el paisaje y las relaciones ecológicas con otros organismos (polinización, depredación, parasitismo). De igual manera, poco se ha estudiado el efecto de cambios a nivel de paisaje en la funcionalidad de un agroecosistema en México. 1.1.3. Hormigas como indicadoras de diversidad y su importancia ecológica No obstante que las hormigas ocupan un amplio rango de nichos ecológicos y son importantes para el funcionamiento de los ecosistemas (Hölldobler y Wilson, 1990; Folgarait, 1998; Agosti y Alonso, 2000) son escasos los estudios que han abordado a nivel del paisaje, a este grupo taxonómico en agroecosistemas de regiones tropicales (Longino y Colwell, 1997; Lachaud y García-Ballinas, 2001; Ribas et al., 2005; Jiménez et al., 2008). Existen estudios sobre la diversidad y la abundancia de gremios de hormigas con fines taxonómicos y comportamentales, desde hormigas que recolectan una gran diversidad de alimentos, hasta especialistas que hacen uso de un solo recurso (Rojas-Fernández, 2001; Jiménez et al., 2008). Sin embargo, debido a que existen diferentes especies de hormigas, con diferentes estrategias de forrajeo, de depredación y diferentes niveles de especialización en presas (Yanoviak y Kaspari, 2000; De la Mora et al., 2008b), es interesante conocer si los cambios en la diversidad y abundancia de las hormigas (con sus diferentes estrategias o adaptaciones morfológicas, químicas, comportamentales y su complementariedad con otros taxa) por efecto de la intensificación agrícola, pueden impactar en los servicios ecosistémicos que éstas ofrecen; como por ejemplo, la remoción de insectos-plaga en los diferentes estratos de agroecosistemas como los cafetales. 14 Por otro lado, las hormigas son parasitadas por numerosos organismos (ver Lachaud y Pérez-Lachaud, 2012), en particular por himenópteros de la familia Eucharitidae (Heraty, 1997; Lachaud y Pérez-Lachaud 2012). Algunas especies de esta familia de avispas son consideradas agentes potenciales para el control biológico de hormigas que son consideradas plagas (Lachaud y Pérez-Lachaud 2012); sin embargo, otras especies parasitan hormigas que son consideradas benéficas en ciertos agroecosistemas (Lachaud et al., 1998; Pérez-Lachaud et al., 2006a; Lachaud y Pérez-Lachaud, 2009; Pérez-Lachaud et al., 2010) como algunas hormigas de las subfamilias Ponerinae y Ectatomminae conocidas como hormigas depredadoras generalistas en agroecosistemas tropicales. Paralelamente, el parasitismo que sufren las hormigas puede estar influenciado por el tipo de hábitat donde se encuentran (Vásquez-Ordoñez et al., 2012), la época del año (Pérez-Lachaud et al., 2006b; Lachaud y Pérez-Lachaud, 2009; De la Mora y Philpott 2010; Pérez-Lachaud et al., 2010) y la disponibilidad de pupas (Lachaud y Pérez-Lachaud, 2009). Sin embargo, poco se ha estudiado el efecto de características del paisaje sobre el parasitismo en hormigas; únicamente se conoce que el tipo de hábitat puede influir en la tasa de parasitismo (De la Mora y Philpott 2010; Vázquez-Ordóñez et al., 2012), y que la abundancia relativa de diferentes especies de parasitoides puede responder a cambios estacionales (Reese y Philpott, 2012). Se sabe que la diversidad y abundancia de comunidades de hormigas es afectada por la intensificación en sistemas de café (Perfecto y Snelling, 1995; Perfecto et al., 2003), pero se requiere información sobre las consecuencias en los servicios que brindan las hormigas y en sus interacciones con otros organismos. Por ejemplo, sobre la depredación de otros insectos por las hormigas en estos agroecosistemas, y/o sobre el parasitismo que las hormigas sufren por sus enemigos naturales a nivel de paisaje. En el caso de los servicios ecológicos, tanto la diversidad 15 como la abundancia de hormigas son importantes en la regulación de insectos-plaga para algunos agroecosistemas (Jiménez et al., 2008; De la Mora et al., 2008a). En estudios a nivel de paisaje, se conoce que en sitios con matrices de calidad alta (cafetales de sombra), algunas especies de hormigas pueden presentar un efecto regulador sobre la plaga principal de granos de café Hypothenemus hampei (Coleoptera: Curculionidae) (Armbrecht y Gallego, 2007), y que la distancia a los bosques afecta la remoción de estos coleópteros (Armbrecht y Perfecto, 2003). Por ejemplo, Azteca sericeasur Longino (Formicidae: Dolichoderinae), una hormiga arbórea dominante, es un insecto con potencial en la regulación de herbívoros en cafetales con abundante sombra (Vandermeer et al., 2002). En sistemas de café y cacao en el Soconusco se ha reportado la existencia de diversas especies de avispas de la familia Eucharitidae que parasitan a varios géneros de hormigas (Lachaud et al., 1998; Lachaud y Pérez-Lachaud, 2001; Pérez-Lachaud et al., 2006a,b), pero existe poca información sobre la tasa de parasitismo por eucarítidos en hormigas y su posible variación por efecto del manejo agronómico local en cafetales (De la Mora y Philpott, 2010). Además, se desconoce la influencia de los remanentes de bosque en los paisajes cafetaleros como posibles fuentes de biodiversidad de himenópteros, reportado en otros sistemas (Thies et al., 2003; Sperber et al., 2004). Por lo anterior, este trabajo trata contestar las siguientes preguntas: 1) ¿Está la diversidad de hormigas en agroecosistemas cafetaleros influenciada por factores de manejo agronómico locales y por factores de paisaje? 2) ¿Los servicios ecológicos, como la depredación, están influenciados por factores locales y de paisaje? 3) ¿El parasitismo de hormigas es afectado por factores locales o de paisaje? 16 1.2- Hipótesis y Objetivos 1.2.1.- Hipótesis general e hipótesis particulares Hipótesis General Los factores de manejo agronómico y la influencia de cambios en el paisaje afectan la diversidad y abundancia de hormigas, influyen en los servicios ecosistémicos de remoción de presas que este grupo ofrece y afectan la relación de parasitismo que sufren por parasitoides. Hipótesis particulares La diversidad y abundancia de hormigas en fincas cafetaleras es afectada por la intensificación del manejo agronómico y/o por la influencia de cambios en el paisaje. La remoción de insectos por hormigas en fincas cafetaleras es influenciada por la intensificación del manejo agronómico y/o por la influencia de cambios en el paisaje. El parasitismo sufrido por hormigas es afectado por la intensificación del manejo agronómico y/o por la influencia de cambios en el paisaje. 17 1.2.2. Objetivo general y objetivos particulares Objetivo General Determinar si la intensificación del manejo agronómico y los cambios en el paisaje afectan la diversidad y abundancia de hormigas, influyen en los servicios ecosistémicos de remoción de presas que este grupo ofrece, y modifican la relación de parasitismo que sufren por parasitoides. Objetivos Particulares Determinar si la diversidad y abundancia de hormigas en fincas cafetaleras son afectadas por la intensificación del manejo agronómico y/o por los cambios en el paisje. Identificar los factores locales o cambios en el paisaje que influyen en la remoción de insectos por hormigas en fincas cafetaleras. Determinar si el parasitismo sufrido por hormigas está relacionado con factores locales de del manejo agronómico y/o con cambios en el paisaje. 18 1.3. Metodología General 1.3.1. Caracterización del área de estudio y técnicas de muestreo utilizadas El estudio de campo se llevó a cabo en siete fincas de café y sus fragmentos de bosque en el Soconusco, Chiapas, México (ver Capítulo II, Fig. 1). La sombra en estos cafetales es proporcionada predominantemente por diferentes especies del género Inga, mientras que en los fragmentos de bosque existen aún árboles que se consideran como representativos de la vegetación original como son: Virola guatemalensis (Myristicaceae), Terminalia amazonia (Combretaceae) y Quercus spp. (Fagaceae). Se seleccionaron y se caracterizaron 40 sitios en 52 km2 aproximadamente (30 en cafetales y 10 en bosque) con las siguientes condiciones: 1) estar entre 850 a 1450 msnm, 2) no tener presencia de Azteca sericeasur, por ser una hormiga arborícola dominante, 3) estar en presencia de café Coffea arabica (para sitios en cafetales) y 4) distancia entre sitios mayor de 200 m. Posteriormente se realizaron al menos 26 mediciones in situ de las características físicas y de vegetación en cada sitio experimental (por ejemplo: altura de árboles, sombra, grosor de la copa y peso de humus, densidad de cafetos, altitud). Así también, mediante encuestas al personal de las fincas se obtuvo información sobre las actividades agronómicas que se realizan durante el año para la regulación de plagas, hongos y el control de malezas, entre otros aspectos de manejo. Para las variables de paisaje en los sitios experimentales de muestreo, se cuantificó el área de remanentes de bosque y cafetales de tipo rústico en cada sitio (creación de áreas con radios de 50, 200, y 500m); es decir, cuanta área de bosque y café de tipo rústico había en los diferentes puntos de muestreo en las áreas creadas. Finalmente se cuantifico la distancia de cada sitio experimental al boorde del bosque más cercano. Las mediciones de paisaje se realizó mediante el programa ArcGIS (ver Capítulo II; De la Mora et al., 2013b). 19 Para conocer la riqueza y la abundancia de las hormigas, la intensidad relativa de remoción de insectos por hormigas, y el parasitismo que sufre este grupo, se utilizaron diferentes métodos de muestreo. Se muestrearon cuatro grupos de hormigas de acuerdo con su hábitat, su sitio de anidación y su estrato de forrajeo durante la época seca (febrero-abril 2010 y febrero 2011) y temporada lluviosa (junio-julio 2010). Para las hormigas de la hojarasca, se colectaron muestras de hojarasca y se depositaron en sacos tipo Mini-Winkler por 72 horas. Para las hormigas que forrajean en el suelo, se colectaron adultos mediante la técnica destructiva en troncos podridos (donde se colectaron también pupas) y se colocaron como cebo 20 moscas muertas de Anastrepha obliqua Macquart (Diptera: Tephritidae) sobre el suelo. Para colectar hormigas que nidifican en ramas de café, se realizó la apertura de ramas huecas de café y se utilizó como cebo 20 brocas de café Hypothenemus hampei Ferrari (Coleoptera: Curculionidae) muertas colocadas sobre ramas de cafetos. Por último, para hormigas arbóreas se colocaron 20 moscas muertas de la fruta sobre la corteza de árboles de sombra del género Inga, a una altura de 1.30 m aproximadamente. La determinación de las hormigas se realizó mediante las claves de Bolton (1994), Longino (2009) y páginas especializadas (Longino, 2011). Para relacionar la diversidad y abundancia de hormigas con factores locales y de paisaje, se utilizaron datos obtenidos de las trampas Mini-Winkler, del método destructivo en troncos podridos, del método destructivo de ramas de café y de los cebos en árboles (ver Capítulo II). Para conocer los servicios ecosistémicos en relación con la remoción de presas por hormigas, se utilizaron los datos de los cebos constituidos de moscas muertas de la fruta en suelo y en arboles de sombra y de brocas del café muertas para ramas de café (Capítulo III). Por último, el parasitismo que sufren las hormigas en sistemas agroforestales fue examinado mediante la colecta de pupas de hormigas en troncos podridos (Capítulo IV). 20 1.3.2. Análisis estadísticos Inicialmente se analizaron y se crearon índices de complejidad de vegetación (IVC) de acuerdo a las características físicas de sombra principalmente (porcentaje de sombra, riqueza de especies, densidad de cafetos, entre otros) y un índice de agroquímicos (IA) de acuerdo a las entrevistas realizadas sobre el uso de agroquímicos. Utilizando el IVC y el IA, se agruparon y clasificaron los 40 sitios experimentales en: café de baja sombra (17 sitios), café de alta sombra (13 sitios) y bosque (10 sitios). Con el análisis multivariado de la varianza (MANOVA), y utilizando 19 factores locales y siete factores del paisaje como variables independientes se encontraron diferencias significativas entre hábitats (ver Capítulo II, Tabla 1). Con el fin de conocer las diferencias de factores físicos entre los hábitats, se realizó un análisis de varianza (ANOVA univariada), seguido de la prueba de Tukey cuando las comparaciones fueron estadísticamente significativas entre hábitats. Como segundo análisis, para conocer el efecto del manejo local en cada una de nuestras variables dependientes, se utilizaron análisis de regresión, así como análisis de modelos lineales generalizados mixtos (GLMM) y modelos lineales generalizados (GLM). Particularmente, en el Capítulo II, los análisis de diversidad y abundancia de hormigas y la relación entre los valores del índice de complejidad de vegetación (IVC) y el índice de agroquímicos se realizó mediante análisis de regresión. Para elegir la línea de tendencia que mejor se ajustó a cada modelo de regresión, se utilizó el criterio de información de Akaike (AIC). Por último, debido al gran número de regresiones para cada análisis en este capítulo, se utilizó el criterio de tasa de falso descubrimiento (FDR), análisis basado en ajustar la significancia de cada regresión y evitar el error de tipo 1 (Benjamini y Hochberg, 1995). Los análisis del capítulo II se realizaron con el paquete estadístico SPSS V.18. Para conocer el efecto de la proporción de presas removidas 21 (Capítulo III) y la proporción en parasitismo sufrido por este grupo (Capítulo IV), se realizaron análisis con el programa R (The R Development Core Team 2011) mediante modelos lineales generalizados (GLM) y modelos lineales generalizados mixtos (GLMM). De igual forma que en el Capítulo II, para elegir la mejor combinación que se ajustó a cada modelo se utilizó el criterio de información de Akaike (AIC), análisis calculado con el paquete de "MASS" en el programa R (The R Development Core Team, 2011; Venables y Ripley, 2002). Por último, para evitar el error de tipo 1 (Benjamini y Hochberg, 1995) en estos dos capítulos, se utilizó la función “CBIND” para cada análisis en los modelos generalizados (en el programa R). Para examinar qué factores locales y de paisaje influyeron sobre las diferentes variables dependientes se crearon, para cada capítulo, modelos de árboles de inferencia con el paquete "PARTY" en el programa R (Hothorn et al., 2006; The R Development Core Team, 2011). De acuerdo a Olden y colaboradores (2008) los árboles de inferencia examinan el grado en que las variables independientes predicen una variable dependiente (Strobl et al., 2009), así también estiman y clasifican las relaciones entre variables mediante la utilización de un algoritmo recursivo de datos binarios de partición (Hothorn et al., 2006) el cual examina todas las variables y busca el mejor predictor de la variable dependiente, divide los datos en grupos y posteriormente repite la variable de selección hasta encontrar predictores que caractericen el fenómeno presentado (Hothorn et al., 2006; Jha, 2009). Debido a que muchas características locales pueden estar correlacionadas, se intentó reducir el número de variables con un análisis de componentes principales y correlaciones mediante el criterio de Pearson (Uno et al., 2010). Sin embargo, la mayoría de los factores no se correlacionaron con los componentes principales PC1 o PC2 (P=0.05), por lo que se utilizaron las 26 variables descriptivas previamente mencionadas en árboles de inferencia para cada capítulo. El análisis de componentes principales se realizó con 22 el programa “R” utilizando la librería “VEGAN”. Con el fin de examinar un efecto de autocorrelación, es decir, si la proximidad de las parcelas de muestreo o grado de solapamiento entre zonas de café rustico y bosque de 50, 200, 500 m influía significativamente en los diferentes experimentos (datos generados), se realizó la prueba de autocorrelación espacial de las variables dependientes (ver Dormann et al., 2007). Específicamente, se realizaron análisis de autocorrelación espacial con los residuales de todas las regresiones y árboles de inferencia condicional con correlogramas espaciales (con el paquete “NCF” y “SPDEP”en R) (Bivand et al., 2012; Bjornstad 2009; The R Development Core Team 2011). Para el cálculo de los predictores de Moran, utilizamos las distancias entre parcelas experimentales más cercanos y la opción de prueba de permutación. De las variables examinadas, particularmente en las regresiones y los árboles de inferencia condicional, ninguna mostró autocorrelación espacial, solo se presentó significancia de autocorrelacion en dos variables para el capítulo de parasitismo (ver Capítulo IV). 23 Capítulo II Factores locales y de paisaje promueven la biodiversidad de cuatro grupos de hormigas en paisajes cafetaleros De la Mora A, Murnen CJ, Philpott SM (2013). Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodiversity and Conservation 22:871-888 Articulo publicado en febrero de 2013 en: Biodiversity Conservation Factor de impacto: 2.065 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Capítulo III. Factores locales, del paisaje y de diversidad promueven los servicios ecosistemicos de depredación por hormigas en cafetales. De la Mora A, García-Ballinas A, Philpott SM. Local, landscape, and diversity drivers of predation services provided by ants in coffee landscapes. Agriculture, Ecosystems and Environment, Manuscript re-submitted after completing revisions. (Number: AGEE10440). Articulo en revision en Agriculture Ecosystem and Environment Running Head: Prey removal by ants in coffee landscapes Factor de impacto: 3.24 43 Local, landscape, and diversity drivers of predation services provided by ants in coffee landscapes De la Mora, A.1 García-Ballinas J.A.¹ Philpott, S. M.2,3 ¹ECOSUR, Ecología de Artrópodos y Manejo de Plagas, Carretera Antiguo Aeropuerto Km 2.5 Tapachula, Chiapas, México 2 Environmental Studies Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, U.S.A. 3 Corresponding author, e-mail: [email protected] 44 Abstract Agricultural management and the landscape surrounding farms impact biological diversity and ecosystem services, such as predation in agroecosystems. Diversified coffee agroecosystems harbor biodiversity, and maintain ecosystem services, especially when in complex landscapes, and when diversity of organisms providing services is maintained. But few have examined whether biological diversity, per se, or the local and landscape habitat features are stronger drivers of the services provided. We studied the relationships between local characteristics associated with agricultural management (vegetation complexity and agrochemical use), landscape surroundings of farms, abundance and richness of ants, and predation services provided by ants in a tropical coffee landscape. Specifically, we examined: 1) Do ants remove introduced prey items, and does prey removal differ in the wet and dry seasons? 2) Do vegetation complexity and agrochemical use on farms affect prey removal rates by ants? 3) Do richness or abundance of ants correlate with prey removal rates? and 4) Which local and landscape factors correlate with prey removal rates by ants, and do local, landscape, or ant community characteristics more strongly influence predation? We established sites across a range of coffee management systems, at varying distances to forest fragments, and in forest fragments and examined prey removal by ants on the ground, coffee branches, and shade tree trunks in the wet and dry season. Prey removal did not differ with season. Prey removal on the ground increased within increases in ant abundance and richness, and number of hollow coffee twigs. Prey removal on coffee plants decreased with vegetation complexity, but increased with ant abundance and richness, coffee density (a local factor), and rustic coffee area in the landscape (a landscape factor). Prey removal on trees was higher in the two coffee management systems than in forests, declined with vegetation complexity, but increased with abundance and 45 richness of ants. Characteristics of the ant community were consistent predictors of prey removal, whereas local and landscape habitat features were less important, and only three of the wide array of habitat features correlated with prey removal. Thus, promoting pest control services within coffee agroecosystems might be best accomplished by manipulating ant abundance and richness, or specific vegetation factors that correlate with ants. Keywords: Biodiversity and ecosystem function, biological control, conservation, ecosystem services, habitat complexity 1. Introduction 1.1. Biodiversity, agricultural intensification and landscape change Ecosystem services in complex, biodiverse ecosystems, such as forests, may be more robust to disturbance in comparison to simplified landscapes such as those under agricultural production. However, the drivers of the maintenance of ecosystem services remain unclear. Few studies have examined whether biodiversity per se or local or landscape complexity are the drivers of ecosystem service maintenance (Klein et al. 2002, Matson et al. 1997, Perfecto et al. 1997). Additionally, not all species within ecosystems harbor characteristics that make them resilient to disturbance and thus may be more susceptible to local extinctions if disturbances are severe or frequent (Stork et al. 2009). An ideal setting to study the effect of intensification on ecosystem services is in agroecosystems ranging in management from diverse, complex systems to monocultures. Agricultural intensification and industrialization result in extensive, input dependent monocultures that simplify the agricultural environment, while aiming to increase agricultural 46 profits (Bisseleua et al., 2009; Matson et al., 1997; Swift et al., 1996). This agricultural intensification process creates expansive landscapes consisting of a matrix of homogeneous monocultures with interspersed fragments of natural vegetation (Fahrig, 2003; Vandermeer and Carvajal, 2001; Vandermeer and Perfecto, 2007). Agricultural intensification results in habitat loss, alteration of ecological communities, and changes in species interactions (Fischer et al., 2006; Vandermeer et al., 2010) and transforms landscapes by affecting physical characteristics such as microclimate, structure and diversity of native vegetation, size of forest patches, matrix quality, the distribution of habitat patches, and the ecological relationships in the new landscape (Dauber et al., 2003; Fahrig, 2003; Tscharntke et al., 2002). Changes in habitats, as well as landscape changes may significantly impact trophic interactions (Vandermeer and Carvajal, 2001). Our work aims to study the relationship between habitat and landscape modification, predator abundance and richness, and predation services in a coffee landscape. 1.2. Agricultural landscape change, biodiversity, and ecosystem services Changes in agricultural landscapes result in rapid biodiversity loss with implications for ecosystem services. Some agroecosystems are important reservoirs native flora and fauna, but management intensification, including reducing the shade tree structure and complexity from coffee and cacao agroecosystems, can affect the potential for these systems to harbor biodiversity (Bisseleua et al., 2009; Klein et al., 2003; Moguel and Toledo, 1999). Further, intensification includes increased use of agrochemicals that impact biodiversity (De la Mora et al., 2013; García Estrada et al., 2006). Transformation of complex agricultural systems to intensive monocultures results in losses of bird, ant, bee, and bat diversity (García-Estrada et al., 2006; Klein et al., 2002; Perfecto et al., 1997; Perfecto and Vandermeer, 2002; Philpott et al., 2008a). Such species losses 47 can affect trophic interactions and food webs (Dauber et al., 2005; Klein et al., 2002; Perfecto and Vandermeer, 2006), and have further consequences for ecosystem function. Specifically, losses of pollinator, seed disperser, and predator abundance and richness may decline, affecting agroecosystem function (Klein et al., 2003; Wilby and Thomas, 2002; Zhang et al., 2007). With agricultural intensification, a loss of taxonomic or functional diversity, or shifts in complementarity of organisms within ecological networks can alter provisioning of basic ecosystem services such as pollination, predation, and parasitism needed in agroecosystems (Klein et al., 2002; Philpott et al., 2008c; Wilby and Thomas, 2002). Yet, conserving biodiversity in agricultural habitats may promote biological control (Fischer et al., 2006; Vandermeer et al., 2010). Habitat and landscape complexity and increases in species richness promote complex ecological networks (Dauber et al., 2003, 2005; IbarraNúñez, 1990; Moguel and Toledo, 1999), and ecosystem services (Dauber et al., 2005; Jha and Vandermeer, 2010; Klein et al., 2003; Loreau et al., 2001; Vandermeer et al., 2010; Zhang et al., 2007). A conservation approach may enhance agricultural matrix quality by providing additional food resources or nesting sites, or by providing protection from predators, thereby favoring the survival of natural enemies (Gallego-Ropero et al., 2009; Landis et al., 2000; Vandermeer et al., 2010). Practices like providing artificial nesting sites, a diverse plant species selection, or alternative food resources positively impact ecosystem services by increasing abundance of predators that regulate different potential pest insect populations (Folgarait, 1998; Landis et al., 2000; Philpott and Foster, 2005; Teodoro et al., 2008). Thus, we must understand which local and landscape factors drive ecosystem services in order to best promote specific pest control practices (Avelino et al., 2012; Tscharntke et al., 2005). 48 1.3. Ants as potential predators in coffee farms Ants are predators in natural ecosystems and agroecosystems (De la Mora et al. 2008; Folgarait, 1998; Larsen and Philpott, 2010; Vandermeer et al., 2010; Way and Khoo, 1992) and there is a negative impact of agricultural intensification on ant diversity and on pest control services provided by ants (Philpott and Armbrecht, 2006). In agroecosystems, such as coffee, diversity and abundance of ants positively correlate with habitat complexity, and pest removal tends to be higher in complex coffee habitats (Armbrecht and Perfecto, 2003). However, local agricultural practices in coffee farms, like shade tree pruning, will change structural characteristics of agroecosystems that may affect the efficiency of ants as predators (De la Mora et al., 2008; Philpott and Armbrecht, 2006). In addition, removal of coffee twigs when coffee plants are pruned may reduce abundance and richness of twig-nesting ants, important predators of coffee pests (Larsen and Philpott, 2010; Philpott and Foster, 2005). Some studies comparing local and landscape influences on ants find that habitat characteristics, such as insolation and soil conditions, more strongly affect ant communities than landscape factors (Dauber et al., 2005). Yet, little is known about whether landscape variables influence predation services provided by ants. Predatory ants, including those that nest and forage on the ground, coffee branches, or on trees, may positively affect coffee as biological control agents (Folgarait, 1998; Jiménez et al., 2008). In coffee agroecosystems, specifically, ants control coffee pests (Ibarra-Núñez et al., 2001; Philpott and Armbrecht, 2006). Ground- and coffee-foraging ants prey on the coffee berry borer (Armbrecht and Perfecto, 2003; Larsen and Philpott, 2010) and limit attacks by the coffee leaf miner (De la Mora et al., 2008). Some of the effects of ants on coffee pests depend on both taxonomic diversity and functional richness of ants in the community, and may also depend on 49 the presence of specialized parasites of aggressively dominant ants in highly complex ecological networks (Philpott and Armbrecht, 2006). Further, coffee intensification negatively impacts control of coffee pests by ants (Armbrecht and Gallego, 2007; Philpott and Armbrecht, 2006) and predatory impacts of ants are higher closer to forest fragments (Armbrecht and Perfecto, 2003). Less is known, for coffee or for any other agroecosystem, about the relative influences of local agricultural management, components of the surrounding landscape, and the ant community, on predatory impacts of ants on pests. 1.4. Hypothesis and goals The goal of this study is to examine the relative impacts of local, landscape, and ant community effects on predation services provided by ants in coffee landscapes. We also aimed to examine the effects of seasonality on predation effects because the population sizes and locations (e.g., on coffee plants or on the ground) of pests in the system can shift seasonally (Barrera 2002). For example, the coffee berry borer (Hypothenemus hampei Ferrari), the most damaging insect pest of coffee, is more abundant on coffee plants during the rainy season, and more common on the ground during the dry season (Barrera 2002). We examined how changes in agricultural management at the local level (e.g. vegetation characteristics, agrochemical use) and at the landscape level (e.g. distance from forest fragments, area of forest cover surrounding study sites) affect predatory activities of ants in coffee agroecosystems. We also examined whether changes in ant abundance or richness correlate with changes in predation services provided by ants. Specifically, we asked: 1) Do ants remove introduced prey items, and does prey removal differ in the wet and dry seasons? 2) Do vegetation complexity and agrochemical use on farms affect prey removal rates by ants? 3) Do richness or abundance of ants correlate with prey 50 removal? and 4) Which local and landscape factors correlate with prey removal by ants, and do local, landscape, or ant community characteristics more strongly influence predation? 2. Methodology 2.1. Study Site We conducted research in the Soconusco region of Chiapas, Mexico in an area dominated by coffee (~ 94% of the landscape) and forest fragments (~ 6% of the landscape) (Philpott et al., 2008b). Study sites were located 30 – 40 km NE of Tapachula between 800 – 1450 m above sea level. Rainfall averages 4500 mm per year with a dry season between December and April. We established forty 20 x 20 m sites; 10 in forest fragments and 30 in coffee sites. According to the coffee management classification described in Philpott et al. (2008a), our 30 study sites corresponded to 3 rustic coffee sites, 4 traditional polyculture sites, 7 commercial polyculture sites, 15 shade monoculture sites, and 1 sun coffee site. 2.2. Local and Landscape factors The local and landscape characteristics of each study site are developed in detail in De la Mora et al. (2013), but we summarize those findings here and in the supplemental information (S1). At the local scale, we measured 19 variables related to site location, vegetation, and agrochemical use. For site location, we measured altitude and slope of the terrain. We measured 13 vegetation factors: percent canopy cover, tree height, tree circumference, tree density, tree richness, number of coffee plants, number of hollow coffee twigs, number of rotten logs on the ground, length of rotten logs, circumference of rotten logs, degree of decay of rotten logs, leaf litter mass, and humus mass. With the vegetation data, we created a vegetation complexity index 51 (VCI) that summarized vegetation changes across sites and also allowed us to separate coffee farm sites into 13 high- and 17 low-shade coffee habitats (Mas and Dietsch, 2005; De la Mora et al., 2013). We measured 4 agrochemical factors: frequency of use of fertilizers, pesticides, fungicides, and herbicides. We likewise used agrochemical data to create an agrochemical index (AI). With a Geographic Information System of the study region and data analysis in ArcGIS, we calculated 7 landscape-level factors: distance to the nearest forest patch and the percent of rustic coffee and forest within 50 m, 200 m, and 500 m buffer zones (see Philpott et al 2008b). Habitat types differed for both local and landscape characteristics (De la Mora et al., 2013) (S1). 2.3. Predation trials We examined ant predatory impacts during both the wet (June - August 2010) and dry seasons (February - April 2011). We assessed ant predatory impact by examining removal rates of two sentinel prey items, West Indian fruit flies (Anastrepha obliqua Macquart) and coffee berry borers that were added to forest and coffee sites. We quantified prey removal in three different strata – on the ground, on coffee plants (or on shrubs in forest sites), and on tree trunks within farms and forests. For ground trials we placed 20 dead fly adults on an index card (10 x 7 cm) and then placed cards directly on the ground. For coffee (or shrub) trials, we placed 20 dead coffee berry borer adults (CBB) on an index card, and balanced cards between two coffee branches 1-1.50 m above ground. For tree trunk trials, we put 20 dead fly adults on an index card and balanced cards 1.3 m above the ground on low branches of Inga spp. shade trees. For both coffee shrub and shade tree trials, we took great care placing the cards to ensure that any missing prey were due to predation and not falling off. In addition, we bent index cards slightly to lower the risk that prey would fall off. We conducted two trials (between 8 AM and 2 PM) in each 52 study site during both the dry and wet seasons. Each trial was conducted in a different haphazardly selected location within the 20 x 20 m site. Thus for each site we observed two cards during each season (40 prey total per site per season), and recorded the number of prey items removed after 30 min. There were two observers for each trial, thus one person watched each card continuously for 30 min. In addition, we recorded the number of ant individuals on the cards, and the species (or morphospecies of ants) on the cards. We tallied the total species richness of ants visiting the two cards in each site during each season, and the mean number of individual ants per minute across the 30 min. observations. At the end of the trial (after 30 min) we collected all ant individuals seen on cards, or that had recently left cards, for identification. Ants were stored in 70% ethanol and identified to species (or morphospecies) following Bolton (1994) and Longino (2009, 2011). 2.4. Data Analyses We compared prey removal rates in the three habitat types and during the two study seasons. We summed the number of prey items removed across the two trials in each site during each season and then compared the number of prey items removed on the ground, on coffee plants (or forest shrubs), and on tree trunks for the three habitat types during the two seasons with generalized linear mixed models (GLMM) with ‘glmer’ in the ‘lme4’ package in R (R Development Core Team, 2012). We used number of prey items (out of 40) as the dependent variable, and used the ‘cbind’ function, a binomial error distribution and logit link. We included habitat type and season, and the interaction between them as fixed factors and included the number of ant species, individuals, or both counted on cards as random factors. We compared the three models with AIC, and selected the one with the lowest value (in all cases the model that 53 included the number of ant individuals on cards as a random factor). We next examined relationships between prey removal on the ground, coffee or shrubs, and shade trees and vegetation complexity (VCI), agrochemical use (AI), ant richness, and ant abundance. We taking the mean number of prey items removed across the two seasons and used site as a replicate. We examined ant abundance and richness in two ways. First, we examined richness and abundance observed on index cards. For abundance, we calculated the mean number of individuals recorded during each minute over the 30 min observation. For richness, we counted the number of different ant morphospecies visiting cards in 30 min. Second, we examined total ant richness and abundance at each study site as determined with extensive ant surveys (De la Mora et al., 2013). We used data from mini-Winkler traps and rotten log samples for ground ant abundance and richness, data from coffee twig surveys for coffee/shrub ant abundance and richness, and data from baits placed on tree trunks for tree ant abundance and richness (De la Mora et al., 2013). We then examined relationships between prey removal and explanatory variables with generalized linear models (GLMs) in R with the ‘cbind’ function, a binomial error distribution and logit link. Based on the GLM results, we used ANOVA with chisquare statistics to estimate the P-values, and used a Bonferonni correction to account for multiple tests (6) per dependent variable (adjusted α = 0.008). To examine which factors most highly influenced prey removal rates we created conditional inference trees with the ‘party’ package in R (Hothorn et al., 2006; R Development Core Team, 2012). We ran three sets of conditional inference trees, one set for each prey removal strata (ground, coffee or shrubs, and tree trunks). For each stratum, we used three separate models. In the first model, we included the 19 local- and the 7 landscape-scale habitat variables as predictors of prey removal. In the second model, we included the 19 local- and 7 54 landscape-scale variables and abundance and richness of ants observed on cards as predictors of prey removal. In the third model, we included the 19 local- and 7 landscape-scale variables and total abundance and richness (measured in extensive ant surveys) as predictors of prey removal. For all tests, we used the minimum criterion of 0.95 (P = 0.05), and used the site as a replicate. We examined for spatial autocorrelation (Dorman et al., 2007) in the residuals of the conditional inference trees and GLMs with (1) spatial correlograms (with the ‘ncf’ package in R) and (2) the Moran's test for spatial autocorrelation using a spatial weights matrix (with the ‘spdep’ package in R) (Bivand et al., 2012; Bjornstad, 2009; R Development Core Team, 2012). For the correlograms, we computed 100 permutations using the resamp argument in the correlog function to examine the distance, if any, at which variables were spatially autocorrelated. For the calculation of Moran’s I, we used nearest neighbor distances as the metric, and used the permutation test option. One of 27 of the statistical tests examined displayed significant spatial autocorrelation at any distance (Table S1), this spatial autocorrelation is likely not pervasive. 3. Results 3.1. Prey removal rates in different habitats and during different seasons Prey removal on the ground and coffee or shrubs did not differ with habitat type (forest, high-shade coffee, low-shade coffee), but there were differences in prey removal for tree predation (Table 1). On average, there were 3.15 ± 1.20 (SE) prey items removed by ants in forests, 5.0 ± 1.14 removed in high-shade coffee, and 3.62 ± 0.88 removed in low-shade coffee. Ants removed 4.0 ± 0.71 prey in the dry season and 3.9 ± 0.99 prey items in the wet season. Neither habitat type nor season influenced prey removal on the ground. On coffee and forest shrubs, ants removed on average 0.20 ± 0.12 prey items in forests, 2.35 ± 0.74 in high-shade 55 coffee, and 2.62 ± 1.08 in low-shade coffee. Ants on coffee and shrubs removed 2.10 ± 0.79 prey items in the dry season and 1.75 ± 0.71 prey items in the wet season. Again, neither habitat type nor season influenced prey removal on the coffee or shrubs. On shade tree trunks, ants removed 1.45 ± 0.99 prey in forests, 2.88 ± 1.12 in high-shade coffee, and 3.38 ± 0.81 prey in low-shade coffee. Ants removed on average 3.73 ± 0.89 prey items in the dry season and 1.75 ± 0.64 prey in the wet season. Prey removal was higher in the high-shade coffee than in forest (P=0.001) and was also higher in low-shade coffee than in forest (P=0.035). There were no differences in prey removal from the trees in different seasons. 3.2. Vegetation complexity, agrochemical use and prey removal Vegetation complexity, but not agrochemical use correlated with prey removal on coffee/shrubs and on shade trees (Fig. 1). According to the GLM, prey removal on the ground was not significantly correlated with VCI (z = -1328, Χ2 = 1.785, df = 1, 38, P = 0.1815), but was negatively correlated with prey removal on coffee (z = - 3.899, Χ2 = 16.683, df = 1, 38, P <0.001), and trees (z = -2.812, Χ2 = 8.273, df = 1, 38, P = 0.004). There was no influence of AI on prey removal on the ground (z = -0.395, Χ2 = 0.157, df = 1, 38, P = 0.692), on coffee (z = 0.134, Χ2 = 0.018, df = 1, 38, P = 0.893), or on trees (z = 0.09, Χ2 = 0.008, df = 1, 38, P = 0.929). 3.3. Ant abundance and richness and prey removal Local abundance and richness of ants (observed on cards) and total abundance correlated significantly with prey removal for all removal strata (Fig. 1). In removal trials, we observed 50 different morphospecies of ants from 21 genera: Pheidole was the most species rich genus with 19 morphospecies observed. Overall, ants removed 239 prey items, and 11 morphospecies 56 removed 62% of prey items removed during trials (Table 2). Prey removal was positively correlated with the number of ant individuals on cards on the ground (z = 7.304, Χ2 = 52.361, df = 1, 38, P <0.001), on coffee (z = 9.892, Χ2 = 85.439, df = 1, 38, P <0.001), and on trees (z = 6.274, Χ2 = 34.598, df = 1, 38, P <0.001). In addition, prey removal was positively correlated with the number of ant species that visited cards on the ground (z = 6.946, Χ2 = 54.376, df = 1, 38, P <0.001), on coffee and shrubs (z = 5.335, Χ2 = 27.933, df = 1, 38, P < 0.001), and trees (z = 6.668, Χ2 = 43.279, df = 1, 38, P <0.001). Total ant richness and abundance also correlated with prey removal on trees, but not on the ground or on coffee or shrubs. Prey removal on trees was significantly correlated with total ant richness (z = 4.693, Χ2 = 20.705, df = 1, 38, P <0.001) and total ant abundance (z = 4.68, Χ2 = 20.429, df = 1, 38, P <0.001). Prey removal on the ground, however, did not correlate with total richness (z = -0.753, Χ2 = 0.566, df = 1, 38, P = 0.452) or abundance (z = 0.810, Χ2 = 0.660, df = 1, 38, P = 0.417). Likewise, prey removal from coffee plants and shrubs did not vary with total richness (z = 1.79, Χ2 = 3.21, df = 1, 38, P = 0.07) or abundance (z = 0.896, Χ2 = 0.782, df = 1, 38, P = 0.376). 3.4. Local and landscape factors and prey removal rates The results from the conditional inference trees revealed that abundance and richness of ants (on cards and total richness measured in more extensive surveys) were the most important factors driving predation rates when included in the regression tree model. But when these ant variables were excluded from the analysis, local vegetation factors were more important predictors of prey removal than landscape factors. For the regression tree script that only included local and landscape level variables as predictors, ground prey removal positively 57 correlated with number of hollow coffee twigs (Fig. 2a), coffee/shrub prey removal was influenced by one local factor (coffee plant density) and one regional factor (rustic coffee area within 200 m) (Fig. 2b), and tree prey removal was not influenced by any local or regional factor. For the regression tree model that included local and landscape habitat factors, plus local ant richness and abundance (observed on cards) as predictors, ground prey removal positively correlated with ant abundance (Fig. 2c), and both coffee/shrub prey removal (Fig. 2d) and tree prey removal (Fig. 2e) was positively correlated with ant abundance and ant richness. For the regression model that included local and landscape predictors and total ant richness and abundance, prey removal on the ground and in coffee/shrubs did not differ from the first model; however, tree prey removal was positively associated with increases in ant richness (Fig. 2f). 4. Discussion 4.1. Season, habitat, and vegetation and agrochemical indices We found that prey removal on trees was higher in the coffee farms than in forests, and that prey removal on both coffee plants and shade trees declined with increases in vegetation complexity. However, there were no differences in habitat type or with vegetation complexity for prey removal on the ground. These results were not expected, as other studies have found differences in ant predation activities in different coffee farm habitats that differ with vegetation complexity. For example, in Colombia, simplification of coffee systems (e.g. reductions in the amount of shade canopy or shade tree diversity) may result in lower prey removal rates by ants (e.g., Armbrecht and Perfecto, 2003; Armbrecht and Gallego, 2007). In other studies in Mexico, CBB removal rates from traditional polyculture coffee farms, with a high shade tree diversity and density, are higher than in other management systems with fewer shade trees (Larsen and 58 Philpott, 2010). Yet others have found, at least in some environments, that habitat complexity at the ground level such as that provided by moss, rocks, and leaf litter can slow ant foraging (Gibb and Parr, 2010), and thus might lower prey removal rates. In the case of arboreal ants foraging on the coffee plants or shade trees, where we observed lower removal rates, added complexity in the canopy may provide more constant or abundant resources that reduces the likelihood that ants will drop down to coffee plants or shade tree trunks to forage for baits, thus reducing overall removal rates. Interestingly, most previous studies have not isolated whether differences in removal rates in different coffee habitats are due to structural changes in habitat complexity or due to differences in the predatory ant community. Surprisingly, we did not find a relationship between prey removal and agrochemical use. Agrochemical applications negatively affect ant richness and abundance (Andersen et al., 2002; McCoy et al., 2001) and have non-target impacts on other arthropods, including natural enemies that thereby reduces predation rates (Leslie, 1977; McCoy et al., 2001). In our study area, agrochemicals including endosulfan, chlorpyrifos, and copper sulfate are sprayed to control insect pests (e.g. CBB) and fungal diseases (García-Estrada et al., 2006; Jaramillo et al., 2006). All of these chemicals can affect predatory ants (Andersen et al., 2002; McCoy et al., 2001). In our study, Pheidole spp. removed a high (60%) fraction of prey, yet chemicals sprayed (e.g. glyphosate) can negatively impact Pheidole abundance (Leslie, 1977). In fact, in our study, the number of Pheidole colonies in study sites was negatively correlated with increases in agrochemical use (R2 = 0.12, F1, 38 = 4.925, P = 0.033). In stark contrast, other agrochemicals, such as fertilizer, may indirectly increase ant predatory activities. For example, with synthetic fertilizers, populations of hemipteran pests like aphids and scale insects may increase, resulting in increased activity of hemipteran-tending ants, many of which are also predatory (Strauss, 59 1987). In addition, certain agrochemicals may have slightly larger or weaker effects on ants and predatory activity (Andersen et al., 2002). Because we combined the effects of all agrochemicals on into one index, the individual, slightly nuanced effects of the different chemicals may have been thus masked. Ant predatory activities often differ in the tropical wet and dry seasons, but we did not observe any seasonal changes in prey removal. In tropical rainforests, removal rates of protein baits by arboreal and ground-foraging ants differ with season because protein requirements may also differ with season (Davidson et al., 2003; Hahn and Wheeler, 2002). In forest habitats, identities of ant species attracted to baits vary considerably in different seasons with terrestrial ants moving onto arboreal baits slightly more often in the wet season (Hahn and Wheeler, 2002). In addition, arboreal ants more strongly prefer protein baits compared to their terrestrial counterparts (Yanoviak and Kaspari, 2000; Hahn and Wheeler, 2002). In agroecosystems, management can indirectly influence the life cycle or emergence times of pest species (Teodoro et al., 2009) and this variation can influence susceptibility of prey to predators (Armbrecht and Gallego, 2007). In studies in South America, CBB removal rate is higher in habitats with greater shade cover and in the rainy season (Armbrecht and Gallego, 2007), perhaps because CBB densities are higher in the rainy season (May-July) (Teodoro et al., 2009). Despite that ant foraging and predation may differ with season in other systems, we did not observe differences in removal rates between seasons. This may be due to a mix of factors influencing foraging and prey removal rates during both the wet and dry seasons. First, environmental factors, such as soil temperature and moisture can influence ant foraging rates (Baccaro et al., 2010; Porter and Tschinkel, 1987; Teodoro et al., 2010; Ruano et al., 2000), and desiccation risk for ants (Baccaro et al., 2010). Thus, during the dry season, foraging and predation activity may be lowered. 60 Likewise, foraging activity may decline drastically during heavy rains (Porter and Tschinkel, 1987), so both rainy and dry conditions may negatively affect prey removal. There may have been differences in the composition of ants on baits during the wet and dry season, as well as different nutritional requirements of ants during times of high colony growth that make interpreting a lack of differences more difficult. 4.2. Local and landscape factors and prey removal rates When ant variables were not included in regression tree models, two local vegetation factors, and one landscape factor were positively associated with prey removal rates. Changes in structural characteristics of agroecosystems, including reductions in habitat or landscape complexity, may result in decreased in ecological services like predation, parasitism, and pollination (Chaplin-Kramer et al., 2011; Fahrig, 2003; Tscharntke et al., 2005). Generally, changes to the physical structure and vegetation complexity of farms may impact richness and abundance of ants because this alters microclimatic conditions, food availability, and availability of nesting sites (Moguel and Toledo, 1999; Andersen and Majer, 2004; Perfecto and Vandermeer, 1996; Philpott and Armbrecht, 2006; Teodoro et al., 2010). We demonstrated that very specific vegetation characteristics of coffee habitats (numbers of hollow coffee twigs and number of coffee plants in a site) positively correlate with prey removal from the ground and from coffee plants; no local habitat factors influenced prey removal on trees. Increased numbers of hollow coffee twigs leads to increases in abundance of arboreal twig-nesting ants (Philpott and Foster, 2005), and perhaps where coffee twigs are abundant, there is a high density of hollow twigs on the ground. In other coffee systems, increases in the density and diversity of hollow twigs on the ground increase the abundance and richness of ground-foraging predatory ants 61 (Armbrecht et al., 2004), and thus may increase predation rates. It is possible that the number of tree species and coffee plants in our habitats may influence the solar radiation or the soil temperatures (Lin, 2007), and both of those factors may influence ant activity and prey removal rates (Kaspari and Weiser, 2000). At the landscape scale, rustic coffee within 200 m was negatively correlated with prey removal on coffee and shrubs. In our sites, rustic coffee sites were closer to forest fragments, and in addition may have higher abundance of prey and other resources for ants (e.g. nectar, canopy hemipterans) that may pull arboreal-foraging ants away from the introduced prey resources. In other studies, however, proximity to more vegetatively complex areas enhances predation (Armbrecht and Perfecto, 2003; Dauber et al., 2003). 4.3. Ant abundance, richness and prey removal Our data support the hypothesis that richness and abundance of ants observed in predation trials correlated with prey removal rates in a coffee agroecosystem, but total richness and abundance of ants had a more limited influence on prey removal. We found that local abundance and richness of ants was positively and strongly correlated with proportion of prey removed from the ground, coffee, and trees, and trumped the effects of local and landscape factors when included in the same predictive models. Total ant richness in a site was correlated with prey removal on trees, but not on the ground or coffee plants and total colony abundance did not influence prey removal in any strata. Our experiments focused on observing prey removal, and thus the group of ants that we observed on cards act as predators of the specific prey items that we studied. Within the overall community in a site, many species may not be predatory, may forage in different strata, may forage at other times of day or year that we did not test, and still others may specialize on other prey items. Thus in effect, we have isolated that 62 fraction of the ant community preying on fly and CBB prey items in coffee habitats. This distinction between actually observing predators, and attempting to correlate overall arthropod populations on plants with or without ants may be one reason why some other studies did not observe strong correlations between ant richness and arthropod reduction (e.g. Larsen and Philpott, 2010). Of course, it is logical that increased removal of prey by ants due to increases in abundance or richness could actually by mediated by other changes, such as differences in vegetation, temperature, or humidity. The fact that ant community variables top vegetation and landscape variables in the inference trees is a strong indication that these variables play an important role in determining the degree to which prey are removed. There are several mechanisms that may link increased ant richness to increased prey removal. First, increased richness may result in increased chance of presence by a single important predator or the sampling effect (Huston, 1997). We cannot rule out that explanation, but because we observed several genera of ants preying on pests in each strata (e.g. Pseudomyrmex, Camponotus, Gnamptogenys, Pheidole). This points to the fact that the assemblage, rather than a single important species, is suppressing potential pests in our coffee and forest sites. Second, the complementarity among species may lead to increased predation (Ibarra-Núñez et al., 2001; Loreau and Hector, 2001; Loreau et al., 2001). Complementarity is based on the idea that different species differ in their resource requirements, foraging behavior, or morphological features which results in greater overall use of available resources (see Loreau and Hector, 2001; Philpott et al., 2009). It is likely that the different ant species and genera that we observed preying on flies and the CBB vastly differ in terms of eye and mandible morphology (Jiménez et al., 2008), as well as their specific foraging behaviors (Traniello, 1989) both of which could influence predation (Armbrecht and Perfecto, 2003; Philpott and Armbrecht, 63 2006). These differences may lead to complementarity among the different ant species observed. Certainly in coffee agroecosystems, other predators are complementary both in time at which predation occurs (e.g. birds and bats, ants and spiders) (Williams-Guillén and Perfecto, 2010; Ibarra-Núñez et al., 2001) and in terms of foraging strategy, strata, and morphology (e.g. birds, Philpott et al., 2009) leading to increases in removal of arthropods from coffee plants (Van Bael et al., 2008). In general, agroecosystem intensification can lead to decreases in functional diversity organisms responsible for provisioning of ecosystem services such as predation, pollination, and seed dispersal (Tscharntke et al., 2005). For predation services in particular, we have been able to identify that the richness and abundance of ants, more so than differences in habitat type, vegetation complexity, or landscape characteristics play an extremely important role in determining overall predation rates. Because it is likely difficult to manipulate ant richness directly, steps could be taken to examine which vegetation factors relate to increases in richness and abundance of predatory ants, and then to change management to increase predation services. Other studies have documented specific factors that correlate with increases in abundance and species richness of ants in coffee agroecosystems (e.g. Philpott et al. 2008a, De la Mora et al. 2013), but have not explicitly focused on ants involved in predatory functions. 5. Conclusions In sum, we documented that species richness and abundance of ants participating in pest removal services was highly positively correlated with prey removal rates. Thus, biological diversity of predators in coffee farms is related to increases in the level of pest control services provided in this economically-important agroforest crop. A few management factors (number of 64 hollow coffee twigs, coffee density) and only one landscape factor (rustic coffee within 500 m) correlated with increased prey removal. Interestingly, at least increasing coffee density might also increase yields for farmers. But when ant richness and abundance were included in models, they were overwhelmingly the most important factors. We did find direct negative correlations between vegetation complexity and prey removal, but no relationships with agrochemical use. Thus, it appears that changes in the vegetation or habitat type predominantly affect prey removal rates via indirect effects on the ant community, effects that have not been closely documented in other studies. Thus, we recommend taking management actions to alter coffee farms in a way that increases ant richness and abundance in order to promote predation services. 6. Acknowledgements J. Santis, G. Dominguez, U. Pérez Vásquez, G. López Bautista, B. Chilel, E. Schüller, S. Arming, and E. Sintes assisted with fieldwork. R. Becker, R. John, and J.H. López Urbina assisted with GIS. G. Ibarra Núñez, J. Rojas, J. Valle-Mora, G. Rodas and E. Chamé Vásquez of El Colegio de la Frontera Sur (ECOSUR) provided logistical support. C. Hochreiter, D. Gonthier, K. Ennis, G. Ibarra Núñez, J.-P. Lachaud, G. Pérez-Lachaud, L. Soto-Pinto, D. Allen, D. Jackson, J. Remfert, and H. Hsieh provided comments on the manuscript. We thank Fincas Irlanda, Argovia, Hamburgo, San Francisco, Genova, Rancho Alegre, Cuilco, Chiripa, Maravillas, Santa Anita, and San Enrique for allowing us to conduct research on their farms. Special thanks are due to Don Walter Peters and Finca Irlanda for providing housing. A.D.M was funded by scholarship number 168970 granted by the National Council of Science and Technology (CONACYT) in Mexico and a Conservation International Rapid Assessment Program award. Additional funding was provided by NSF DEB-1020096 to S.M.P. 65 Table S1. Results from Moran's test for spatial autocorrelation using a spatial weights matrix. 7. References Andersen, A.N., Hoffmann, B.D., Múller, W.J. Griffiths, A.D., 2002. Using ants as bioindicators in land management: simplifying assessment of ant community responses. J. Appl. Ecol. 39, 8-17. Andersen, A.N., Majer, J.D., 2004. Ants show the way down under: Invertebrates as bioindicators in land management. Front. Ecol. Environ. 2, 291-298. Armbrecht, I., Perfecto I., 2003. Litter-dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agr. Ecosyst. Environ. 97, 107-115. Armbrecht, I., Perfecto, I., Vandermeer, J., 2004. Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science 304, 284-286. Armbrecht, I., Gallego, M.C., 2007. Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomol. Exp. Appl. 124, 261-267. Avelino, J., Romero-Gurdián, A., Cruz-Cuellar, H., Declerck, F.A.J., 2012. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol. Appl. 22, 584-596. Baccaro, F.B., Ketelhut, S.M., de Morais, J.W., 2010. Resource distribution and soil moisture content can regulate bait control in an ant assemblage in Central Amazonian forest. Austral Ecol. 35, 274-281. Barrera, J.F., 2002. La Broca del café: Una plaga que llegó para quedarse. In Barrera, J.F. (Ed.), 66 Tres plagas del café en Chiapas, El Colegio de la Frontera Sur, Tapachula, Chiapas. México, pp. 17-20. Bisseleua, D.H.B., Missoup, A.D., Vidal, S., 2009. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv. Biol. 23, 1176-1184. Bivand, R., Altman, M., Anselin, L., Assuncão, R., Berke, O., Bernat, A., Blanchet, G., Blankmeyer, E., Carvalho, M., Christensen, B., Chun, Y., Dormann, C., Dray, S., Halbersma, R., Krainski, E., Legendre, P., Lewin-Koh, N., Li, H., Ma, J., Millo, G., Mueller, W., Ono, H., Peres-Neto, P., Piras, G., Reder, M., Tiefelsdorf, M., Yu, D., 2012. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-46. http://CRAN.R-project.org/package=spdep. Accessed Dec 2012. Bjornstad, O., 2009. ncf: spatial nonparametric covariance functions. R package version 1.1-3. http://CRAN.R-project.org/package=ncf. Accessed Dec 2012. Bolton, B., 1994. Identification guide to the ant genera of the world. Harvard University Press, Cambridge. Chaplin-Kramer, R., O’Rourke, M.E., Blitzer, E.J., Kremen, C., 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922-932. Dauber, J., Hirsch, M., Simmering, D., Waldhardt, R., Otte, A., Wolters, V., 2003. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agric. Ecosyst. Environ. 98, 321-329. Dauber, J., Purtauf, T., Allspach, A., Frisch, J., Voigtländer, K., Wolters, V., 2005. Local vs. landscape controls on diversity: A test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecol. Biogeogr. 14, 213–221. 67 Davidson, D.W., Cook, S.C., Snelling, R.R., Chua, T.H., 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300, 969-972. De la Mora, A., Livingston, G., Philpott, S.M., 2008. Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica 40, 742-746. De la Mora, A., Murnen, C.J., Philpott, S.M., 2013. Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers. Conserv. 22, 871–888. Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, B., Schröder, B., Schurr, F.M., Wilson, R., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609628. Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487-515. Fischer, J., Lindenmayer, D.B., Manning A.D., 2006. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front. Ecol. Environ. 4, 80-86. Folgarait, P.J., 1998. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7, 1221-1244. Gallego-Ropero, M. C., Montoya-Lerma, J., Armbrecht I., 2009. ¿Es la sombra benéfica para la diversidad de hormigas y peso del café? Una experiencia en Pescador, Cauca, Colombia. Boletín Científico Centro de Museos. Museo de Historia Natural 13, 106-116. García Estrada, C., Damon, A., Sánchez-Hernández, C., Soto-Pinto, L., Ibarra-Núñez, G., 2006. Bat diversity in montane rainforest and shaded coffee under different management regimes 68 in southeastern Chiapas, Mexico. Biol. Conserv. 132, 351–361. Gibb, H., & Parr, C.L. (2010). How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164, 1061-1073. Hahn, D.A., Wheeler, D.E., 2002. Seasonal foraging activity and bait preferences of ants on Barro Colorado Island, Panama. Biotropica 34, 348-356. Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674. Huston, M.A., 1997. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449-460. Ibarra-Núñez, G., 1990. Los artrópodos asociados a cafetos en un cafetal mixto del Soconusco, Chiapas, México. I. Variedad y abundancia. Fol. Entomol. Mex. 79, 207-231. Ibarra-Núñez, G., García, J.A., López, J.A., Lachaud, J.-P., 2001. Prey analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology 37, 723-755. Jha, S., Vandermeer, J.H., 2010. Impacts of coffee agroforestry management on tropical bee communities. Biol. Conserv. 143, 1423-1431. Jaramillo, J., Borgemeister, C., Baker, P., 2006. Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): searching for sustainable control strategies. B. Entomol. Res. 96, 223-233. Jiménez, E., Fernández, F., Arias, T.M., Lozano-Zambrano, F.H., 2008. Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D. C., Colombia. Kaspari, M., Weiser, M.D., 2000. Ant activity along moisture gradients in a neotropical forest. 69 Biotropica 32, 703-711. Klein, A.-M., Steffan-Dewenter, I., Tscharntke, T., 2002. Predator-prey ratios on cocoa along a land-use gradient in Indonesia. Biodivers. Conserv. 11, 683-693. Klein, A.-M., Steffan-Dewenter, I., Tscharntke, T., 2003. Pollination of Coffea canephora in relation to local and regional agroforestry management. J. Appl. Ecol. 40, 837-845. Landis, D.A., Wratten, S.D., Gurr, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175-201. Larsen, A., Philpott, S.M., 2010. Twig-nesting ants: the hidden predators of the coffee berry borer in Chiapas, Mexico. Biotropica 42, 342-347. Leslie, G.W., 1977. The toxicity of some agrochemicals to Pheidole sp. (Hymenoptera: Formicidae) a common ant in natal cane fields. Proc. S. Afr. Sugar Technol. Assoc. 51, 2123. Lin, B.B., 2007. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 144, 85-94. Longino, J.T., 2009. Additions to the taxonomy of New World Pheidole (Hymenoptera: Formicidae). Zootaxa 2181, 1-90. Longino, J.T., 2011 Ants of Costa Rica. http://academic/evergreen.edu/projects/ants/AntsofCostaRica.html. Accessed October, 2012. Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72-76. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A., 2001. Biodiversity and 70 ecosystem functioning: current knowledge and future challenges. Science 294, 804-808. Mas, A.H., Dietsch, T.V., 2005. An index of management intensity for coffee agroecosystems to evaluate butterfly species richness. Ecol. Appl. 13, 1491-1501. Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J., 1997. Agricultural intensification and ecosystem properties. Science 277, 504-509. McCoy, C.W., Stuart, R.J., Jackson, I., Fojtik, J., Hoyte, A., 2001. Soil surface applications of chemicals for the control of neonate Diaprepes abbreviatus (Coleoptera: Curculionidae) and their effect on ant predators. Fla. Entomol. 84, 327-335. Moguel, P., Toledo, V.M., 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13, 11-21. Perfecto, I., Vandermeer, J. 1996. Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia. 108, 577-582. Perfecto, I. Vandermeer, J., Hanson, P., Cartín, V., 1997. Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodivers. Conserv. 6, 935-945. Perfecto I., Vandermeer, J., 2002. Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conserv. Biol. 16, 174-182. Perfecto I., Vandermeer, J., 2006. The effect of an ant-hemipteran mutualism on the coffee berry borer (Hypothenemus hampei) in southern Mexico. Agric. Ecosyst. Environ. 117, 218-221. Philpott, S.M., Foster, P.F., 2005. Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecol. Appl. 5, 1478-1485 Philpott, S.M., Armbrecht, I., 2006. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31, 369-377. Philpott, S.M., Arendt, W., Armbrecht, I., Bichier, P., Dietsch, T., Gordon, C., Greenberg, R., 71 Perfecto, I., Soto-Pinto, L., Tejeda-Cruz, C., Williams, G., Valenzuela, J., 2008a. Biodiversity loss in Latin American coffee landscapes: Reviewing evidence on ants, birds, and trees. Conserv. Biol. 22, 1093-1105. Philpott, S.M., Lin, B.B., Jha, S., Brines, S.J., 2008b. A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agric. Ecosyst. Environ. 128, 12-20. Philpott, S.M., Perfecto, I., Vandermeer, J., 2008c. Behavioral diversity of predatory arboreal ants in coffee agroecosystems. Environ. Entomol., 37, 181-191. Philpott, S.M., Soong, O, Lowenstein, J.H., Pulido, A.L., Tobar Lopez, D., Flynn, D.F.B., DeClerck, F., 2009. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol. Appl. 19, 1858-1867. Porter, D.S., Tschinkel, W.R. 1987. Foraging in Solenopsis invicta (Hymenoptera: Formicidae): Effects of weather and season. Environ. Entomol. 16, 802-808. R Development Core Team, 2012. An introduction to R. Version 2.2.0 R-Project, 2005. URL: http://CRAN.R-project.org. Accessed July, 2012. Ruano, F., Tinaut, A., Soler, J.J., 2000. High surface temperatures select for individual foraging in ants. Behav. Ecol. 11, 396-404. Strauss, S.Y., 1987. Direct and indirect effects of host-plant fertilization on an insect community. Ecology 68, 1670-1678. Stork, N. E., Coddington, J. A., Colwell, R. K., Chazdon, R. L., Dick, C. W., Peres, C. A., ... & Willis, K. (2009). Vulnerability and Resilience of Tropical Forest Species to LandǦ Use Change. Conserv. Biol. 23, 1438-1447. Swift, M.J., Vandermeer, J., Ramakrishnan, P.S., Anderson, J.M., Ong, C.K., Hawkins, B.A., 1996. Biodiversity and agroecosystem function. in: Mooney, H.A., Cushman, J.H., Medina, 72 E., Sale, O.E. Schulze, E.D. (Eds.), Functional Roles of Biodiversity: A Global Perspective. Wiley, New York, pp. 261-298. Teodoro, A., Klein, A.-M., Tscharntke, T., 2008. Environmentally mediated coffee pest densities in relation to agroforestry management, using hierarchical partitioning analyses. Agric. Ecosyst. Environ. 125, 120-126. Teodoro, A.V., Klein, A.-M., Reis, P,R., Tscharntke, T., 2009. Agroforestry management affects coffee pests contingent on season and developmental stage. Agric. For. Entomol. 11, 295300. Teodoro, A.V., Sousa-Souto, L., Klein, A.-M., Tscharntke, T., 2010. Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management. Environ. Entomol. 39, 1744-1750. Tscharntke, T., Steffan-Dewenter, I., Kruess, A., Thies, C., 2002. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol. Appl. 12, 354-363. Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C., 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857-874. Traniello, J.FA., 1989. Foraging Strategies of Ants. Annu. Rev. Entomol. 34, 191-210. Van Bael, S.A., Philpott, S.M., Greenberg, R., Bichier, P., Barber, N.A., Mooney, K.A., Gruner, D.S., 2008. Birds as predators in tropical agroforestry systems. Ecology 89, 928-934. Vandermeer, J., Carvajal, R., 2001. Metapopulation dynamics and the quality of the matrix. Am. Nat. 158, 211–220. Vandermeer, J., Perfecto, I., 2007. The agricultural matrix and the future paradigm for 73 conservation. Conserv. Biol, 21, 274-277. Vandermeer, J., Perfecto, I., Philpott, S., 2010. Ecological complexity and pest control in organic coffee production: Uncovering an autonomous ecosystem service. BioScience 60, 527-537. Way, M.J., Khoo, K.C., 1992. Role of ants in pest management. Annu. Rev. Entomol. 37, 479503. Wilby, A., Thomas, M.B., 2002. Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. Ecol. Lett. 5, 353-360. Williams-Guillén, K., Perfecto, I., Vandermeer, J., 2008. Bats limit insects in a tropical agroforestry system. Science 320, 70. Yanoviak, S.P., Kaspari, M., 2000. Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos. 89, 259-266. Zhang, W., Ricketts, T.H., Kremen, C., Carney, K., Swinton, S.M., 2007. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253-260. 74 Tree prey removal Coffee prey removal Dependent Variable Ground prey removal Habitat High-shade Habitat Low-shade Season Wet Habitat High-shade: Season Wet Habitat Low-shade: Season Wet Intercept -1.4343 75 0.5552 4297.1588 15.9993 -1.8265 1.1057 1.0816 4297.1586 4297.1587 0.7675 0.5036 -15.3851 15.8198 1.0047 1.0535 0.5073 0.6806 0.4159 0.2821 Habitat High-shade Habitat Low-shade Season Wet Habitat High-shade: Season Wet Habitat Low-shade: Season Wet Intercept -3.7312 0.6613 0.6108 0.8714 0.9631 -3.1798 Intercept Standard Error 0.5589 Estimate Fixed Effects agroecosystems. -3.29 0.004 0.694 0.466 -0.004 0.004 -3.714 -1.361 0.767 1.14 0.477 0.293 -5.689 Z 0.001 0.997 0.488 0.641 0.997 0.997 <0.001 0.173 0.443 0.265 0.633 0.77 <0.001 P(z) No. of individuals on cards No. of individuals on cards Random effects No. of individuals on cards 3.2478 4.2129 2.5022 Variance 1.8022 2.0525 Standard error 1.5818 shrubs and on shade trees in different habitat types (forest, high-shade coffee, low-shade coffee) and seasons (wet, dry) in coffee Table 1. Results of a generalized linear mixed model testing for differences in prey removal by ants on the ground, on coffee plants/ Habitat High-shade Habitat Low-shade Season Wet Habitat High-shade: Season Wet Habitat Low-shade: Season Wet 1.3366 1.9675 76 0.4748 0.5977 1.1704 1.2551 -1.5169 -1.2624 -1.9449 0.923 1.472 -3.195 -2.112 -1.662 0.735 0.141 0.001 0.035 0.097 0.462 Table 2. Top eleven ant morphospecies that removed sentinel prey from index cards in three habitats (forest, high-shade coffee, low-shade coffee) in Soconusco, Chiapas. Ant species§ Removal from Removal from Removal from tree trunks¶ the ground coffee or shrubs Pheidole protensa 1 0 34 Pheidole synanthropica 7 2 17 Pheidole sp. 16 0 5 11 Pheidole sp. 11 4 4 6 Pheidole cf. pubiventris 6 2 3 Gnamptogenys striatula 1 1 7 Pheidole sp. 10 0 0 9 Nylanderia sp. 1 2 3 2 Pheidole sp. 1 0 0 7 Solenopsis globularia 0 0 6 Wasmannia auropunctata 1 1 4 § Ant species are organized from the morphospecies that removed the most prey items across all sites to those that removed fewer prey items. Numbers show the total numbers of prey items removed by that ant species in that stratum across all plots and all habitat types. 77 Figure Legends Fig. 1. Relationships between ant abundance and ant richness on observation cards and prey removal on (a, d) the ground, (b, e) coffee plants and shrubs, and (c, f) tree trunks in forests and coffee agroecosystems in Chiapas, Mexico. Panels show results for 40 sites including low-high shade and forest. Trend lines and regressions are shown for significant relationships as determined by GLM: * where P < 0.01, and ** where P < 0.001. Fig. 2. Conditional inference trees examining relationships between 19 local and 7 regional factors and ant richness and abundance and prey removal. Graphs show the influences of local and landscape predictors only on prey removal from (a) ground and (b) coffee plants, the influences of local and landscape predictors, plus local ant richness and abundance on prey removal on the (c) ground, (d) coffee plants, and (e) shade trees, and influences of local and landscape predictors, plus total ant richness and abundance on prey removal on the (a) ground, (b) coffee plants, and (f) shade trees. Predictor variables in boxes are ranked (top, highest correlation with dependent variable). P-values indicate the significance at 95% of confidence in the relationship tested. Box plots include the inner quartiles (grey box), the median values (solid black line), and 1.5 x the inner quartiles (error bars) of ant abundance associated with each string of predictor variables. Sample sizes at each terminal node show the number of sites in that box plot. 78 Figure 1. 79 Figure 2. 80 Supplemental information. S1. Habitat types differed for both local and landscape characteristics (De la Mora et al., 2013). Forest sites were more vegetatively complex than both high- and low-shade coffee sites, and high-shade coffee was more vegetatively complex than low-shade coffee. Tree richness and abundance was greater in forests than in coffee sites. Tree height was greater in forest and highshade than in low-shade coffee. Tree circumference was greater in high-shade coffee than in forest or in low-shade coffee. Canopy cover was highest in forest, followed by high-shade and then low-shade coffee. Coffee plant density was greater in low- than in high-shade coffee. The number and circumference of rotten logs on the ground did not differ between sites, but logs tended to be longer in forest and high-shade coffee compared with low-shade coffee. The number of hollow twigs on coffee plants did not differ between sites. Leaf litter mass was higher in low- than in high-shade coffee or forest. Agrochemicals were not applied in the forest sites, but agrochemical use, overall, and for each type of agrochemical, was significantly more frequent in low- than in high-shade coffee sites. Forest sites were surrounded by more forest than coffee sites, however, the distance from forest, and percent of forest at 50 m, 200 m, or 500 m did not differ between the two coffee habitats. 81 Table S1. Results from Moran's test for spatial autocorrelation using a spatial weights matrix. Dependent variable (test)§ Coffee/Shrub (GLM - AI) Coffee/Shrub (GLM - VCI) Coffee/Shrub (GLM - no. individuals on cards) Coffee/Shrub (GLM - species on cards) Coffee/Shrub (GLM - total ant abundance) Coffee/Shrub (GLM - total species richness) Coffee/Shrub (Tree - local ants model) Coffee/Shrub (Tree - total ants model) Coffee/Shrub (Tree - vegetation model) Ground (GLM - AI) Ground (GLM - VCI) Ground (GLM - no. individuals on cards) Ground (GLM - species on cards) Ground (GLM - total ant abundance) Ground (GLM - total species richness) Ground (Tree - local ants model) Ground (Tree - total ants model) Ground (Tree - vegetation model) Tree trunk (GLM - AI) Tree trunk (GLM - VCI) Tree trunk (GLM - no. individuals on cards) Tree trunk (GLM - species on cards) Tree trunk (GLM - total ant abundance) Tree trunk (GLM - total species Moran ’s statisti c standa rd deviate -1.3120 -1.7761 -1.7753 Moran I statistic Expectatio n Variance P -0.185499 -0.254814 -0.260610 -0.025641 -0.025641 -0.025641 0.014846 0.016649 0.017519 0.905 0.962 0.962 -1.5322 -0.226483 -0.025641 0.017183 0.937 -1.3244 -0.182212 -0.025641 0.013976 0.907 -1.1378 -0.156522 -0.025641 0.013231 0.872 -0.5126 -0.082907 -0.025641 0.012481 0.696 -1.6015 -0.225928 -0.025641 0.015641 0.945 -1.6015 -0.225928 -0.025641 0.015641 0.945 0.6082 0.5533 1.9830 0.058930 0.052058 0.237268 -0.025641 -0.025641 -0.025641 0.019336 0.019720 0.017577 0.272 0.290 0.024 -0.0500 0.5743 -0.032505 0.053520 -0.025641 -0.025641 0.018734 0.018998 0.520 0.283 0.5903 0.056976 -0.025641 0.019587 0.278 -0.1964 0.4076 0.4076 -0.4036 -0.5943 -0.4552 -0.052692 0.030464 0.030464 -0.080535 -0.106070 -0.086966 -0.025641 -0.025641 -0.025641 -0.025641 -0.025641 -0.025641 0.018974 0.018949 0.018949 0.018499 0.018313 0.018138 0.578 0.342 0.342 0.657 0.724 0.676 -0.5496 -0.097852 -0.025641 0.017262 0.709 -0.4917 -0.092268 -0.025641 0.018361 0.689 -0.5249 -0.097065 -0.025641 0.018519 0.700 82 richness) Tree trunk (Tree - local ants 0.5247 0.045456 -0.025641 0.018361 0.300 model) Tree trunk (Tree - total ants 0.3429 0.020998 -0.025641 0.018501 0.366 model) Tree trunk (Tree - vegetation -0.4127 -0.081794 -0.025641 0.018509 0.660 model) § All variables show the strata from which prey items were removed. AI = Agrochemical Index, VCI = Vegetation Complexity Index, Tree = conditional inference trees. 83 Capítulo IV. Factores locales y de paisaje promueven el parasitismo en un paisaje de café. De la Mora A, Pérez-Lachaud G, Lachaud J-P, Philpott SM. Local and landscape drivers of ant parasitism in a coffee landscape. Manuscript in preparation for Environmental Entomology. Sometido a Environmental Entomology Factor de imparcto: 1.24 84 RRH: Ant parasitism in a coffee landscape Local and landscape drivers of ant parasitism in a coffee landscape Aldo De la Moraª1 Gabriela Pérez-Lachaud* Jean-Paul Lachaud*b Stacy M. Philpott † ªEl Colegio de la Frontera Sur, Ecología de Artrópodos y Manejo de Plagas, Carretera Antiguo Aeropuerto Km 2.5 Tapachula 30700, Chiapas, México. * El Colegio de la Frontera Sur, Conservación de la Biodiversidad, Avenida Centenario km 5.5, Chetumal 77014, Quintana Roo, México. b Centre de Recherches sur la Cognition Animale, CNRS-UMR 5169, Université de Toulouse UPS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France. † Environmental Studies Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, U.S.A. 1 Corresponding author, E-mail: [email protected], Tel: 831-459-1549 85 Abstract Diversity loss due to agroecosystem simplification can influence ecological relationships. We studied effects of local and landscape factors on one ecological interaction, parasitism of ants that nest in rotting wood by eucharitid wasps. Our objectives were to examine whether a) habitat and season influence ant parasitism, b) vegetation complexity and agrochemical use correlate with ant parasitism, and c) specific local and landscape factors correlate with changes in ant parasitism. We worked in a landscape dominated by coffee farms with scattered forest fragments. In that landscape, we selected 30 coffee and 10 forest sites in which we characterized local management (e.g. vegetation, agrochemical use) and landscape features (e.g. distance to forest, percent of rustic coffee nearby). We opened rotten logs to locate ant cocoons, collected and monitored cocoons for emergence of adult parasitoids, then dissected cocoons to search for developing parasitoids. Across all sites sampled, we found 16 ant morphospecies in three ant subfamilies (Ectatomminae, Ponerinae and Formicinae). Seven ant species were parasitized by two genera of Eucharitidae parasitoids (Kapala and Obeza), some of them by different eucharitid species, and at least seven new eucharitid-ant associations were reported. We examined for differences in presence of parasitism, proportion of parasitized species, and proportion of parasitized cocoons of common species and genera with season, habitat, vegetation complexity, agrochemical use, and with changes in local and landscape factors. Parasitism did not differ with habitat (forest, high-shade coffee, low-shade coffee), but parasitism increased in the dry season for Gnamptogenys ants. Parasitism increased with vegetation complexity for two genera and one common species (Pachycondyla, Gnamptogenys and G. sulcata), and was high in sites with both high and low agrochemical use for most parasitism metrics examined. Two landscape variables (rustic coffee and forest area within 200 m) and two local factors (humus mass and number of 86 ant cocoons) positively correlated with parasitism for some ant genera and species. Landscape factors ranked as more important predictors of parasitism than local factors. Thus differences in vegetation complexity at the local and landscape scale and agrochemical use in coffee landscapes alter ecological interactions between parasitoids and their ant hosts. Key words Coffee, Ectatomminae, Formicinae, Ponerinae, Eucharitidae, vegetation complexity. Deforestation and intensification of agroecosystems contribute to global loss of diversity and to alterations in species interactions and ecosystem services provided. In agroecosystems, richness and abundance of some organisms decrease due to habitat simplification and landscape modification (e.g. Dauber et al. 2005, García Estrada et al. 2006). Some implications of biodiversity loss are the disruption of ecological processes and alteration of interaction networks that support mutualisms and ecosystem services (Naeem 2002, Fischer et al. 2006). Species interactions are modified by landscape changes including fragmentation (Tscharntke et al. 2002), changes to matrix quality (Vandermeer and Carvajal 2001, Steffan-Dewenter et al. 2002), modifications to forest shape, edge or area (Tscharntke et al. 2002) and habitat loss or degradation (Fischer and Lindenmayer 2007). In any habitat where interaction networks are simplified, there may be reductions in ecosystem functioning (Dobson et al. 2006, Jonsson et al. 2012) and hence in the provisioning of services. Thus, habitat loss and landscape simplification drive biodiversity loss that in turn drives declines in ecosystem processes and functionality (Clergue et al. 2005, Tscharntke et al. 2005, Fischer and Lindenmayer 2007, Philpott et al. 2009). 87 In contrast, some agroecosystems harbor high levels of biodiversity and may act as refuges for biological diversity that can provide ecosystem services such as biological pest control and pollination (Perfecto et al. 1996, Moguel and Toledo 1999, Tscharntke et al. 2005, Jose 2009, Power 2010, Vandermeer et al. 2010). Different taxa vary in response to increases in tree diversity, canopy shade and decreased agrochemical use (Moguel and Toledo 1999, Mas and Dietsch 2003, García Estrada et al. 2006, Gagic et al. 2012), thus some taxa may be more sensitive to agricultural landscape changes and act as indicators of habitat simplification (e.g. Pocock and Jennings 2008, De la Mora and Philpott 2010). There are now numerous examples of increases in ecosystem services provided in less intensive agricultural systems, such as shaded coffee, compared with more intensive farms (e.g. Jha et al. 2014). Thus, we must focus on understanding how to promote less intensive agricultural production in order to prevent the increase of insect pests, reduced pollination, and loss of other ecological services (Kruess and Tscharntke 1994, Steffan-Dewenter 2002, Jha and Vandermeer 2010). Agricultural intensification and habitat complexity may strongly affect host-parasitoid interactions (Wilkinson and Feener 2007; 2012, Visser et al. 2009, Jonsson et al. 2012). Natural enemies, especially the parasitic Hymenoptera, play an important role in pest regulation (Rodríguez and Hawkins 2000, Varone and Briano 2009) and parasitoids and parasitism are affected by local habitat changes and changes at the landscape level (Klein et al. 2002, Fischer and Lindenmayer 2007). In addition, hymenopteran parasitoids are sensitive to agrochemical use and thus examining different host-parasitoid interactions where agrochemical use varies is necessary. At the habitat level, two factors are important when parasites search for potential hosts: habitat preference (Townes 1960, Quilici and Rousse 2012, Mathis and Philpott 2012) and habitat complexity (Tylianakis et al. 2005; 2007, Wilkinson and Feener 2007; 2012, Vásquez- 88 Ordóñez et al. 2012). Different habitat types vary spatially and temporally in terms of microclimate (Hsieh and Perfecto 2012), abundance and density of host colonies (Henne et al. 2008), and habitat complexity, each of which may promote greater diversity of parasitoids (Steffan-Dewenter 2002, Sperber et al. 2004, Hsieh and Perfecto 2012). For example, parasitism rate on immature stages of the Ectatomminae ant Ectatomma ruidum by eucharitid wasps is higher in more complex habitats (woodlands) than in simple habitat (grasslands) that differ in vegetation composition and structure (Vásquez-Ordóñez et al. 2012). Moreover, agricultural intensification simplifies food web complexity and may affect host-parasitoid relationships (Jonsson et al. 2012). At the landscape level, other factors such as distance from forest habitat, hedgerows, or wooded fields may influence parasitism rate (Marino and Landis 1996, Klein et al. 2006), but landscape features are not always important for parasitism (e.g. Coudrain et al. 2013). In addition, agricultural matrix composition may alter host-parasitoid dynamics (Cronin 2007, Monmany and Aide 2009, Macfadyen and Muller 2013). In particular, landscapes with low habitat complexity may have lower diversity of natural enemies and therefore lower complementarity between natural enemies, which thereby alters ecological processes, and interactions (Menalled et al. 1999, Steffan-Dewenter 2002, Wilby and Thomas 2002, Jonsson et al. 2012). In coffee and cacao agroecosystems, parasitism of ants may differ with agricultural management type (De la Mora and Philpott 2010) and with vegetation complexity (VásquezOrdóñez et al. 2012) but little attention has been given to differences in agroecosystems depending on landscape context. A study in Chiapas, Mexico showed that the percentage of parasitism in ants is higher in primary forest than in different coffee management systems (De la Mora and Philpott 2010). Yet no studies have examined the relative importance of local and 89 landscape drivers of ant parasitism in coffee agroecosystems. This interaction is important to investigate given the role of ants as biological control agents and predators in coffee agroecosystems (Ibarra-Núñez et al. 2001, Philpott and Armbrecht 2006, Lachaud and PérezLachaud 2009). Ants are also indicators of habitat quality (Andersen et al. 2002, Bution et al. 2010), and are sensitive to landscape fragmentation (Perfecto and Vandermeer 2002, Armbrecht and Perfecto 2003, Paolucci et al. 2012, De la Mora et al. 2013). Therefore, tropical agroforestry systems are an ideal system to study how both local and landscape changes influence ant parasitism with potential impacts for natural crop pest control. Ants are parasitized by several organisms including eucharitid wasps (Hymenoptera: Chalcidoidea) (Johnson 1988, Heraty 1994, Lachaud and Pérez-Lachaud 2012) and some species of Eucharitidae have been considered for biological control of pest-ant species (Johnson 1988, Heraty 1994, Varone and Briano 2009, Lachaud and Pérez-Lachaud 2012). However for predatory ants, such as genera of the subfamilies Ectatomminae and Ponerinae that sometimes prey on pest species in tropical agroecosystems, parasitism by eucharitids may interfere with biological control provided by ants (Pérez-Lachaud et al. 2006b, 2010, Lachaud and PérezLachaud 2009). Parasitism of ants by eucharitids may be influenced by habitat type (VásquezOrdóñez et al. 2012), season (Pérez-Lachaud et al. 2006a) and host cocoon availability (Lachaud and Pérez-Lachaud 2009, Pérez-Lachaud et al. 2010). All of these factors may vary with changes in coffee management and in coffee landscapes. Here, we studied ant-parasitoid relationships in a coffee landscape to examine whether a) habitat and season influence ant parasitism, b) vegetation complexity and agrochemical use correlate with ant parasitism, and c) specific local and landscape factors correlate with changes in ant parasitism. Methods 90 Study site, local and landscape characteristics. We performed our study in 40 sites (30 coffee sites and 10 forest sites) within a coffee landscape in the Soconusco region of Chiapas, Mexico. The landscape is predominantly comprised of coffee farms (93.7% of land cover) with scattered small forest fragments (6.3% of land area) (Philpott et al. 2008b). In the specific zone where research was conducted, coffee area can be further classified into management types categorized by Moguel and Toledo (1999): rustic/traditional polyculture (0.22% of the study area), traditional/commercial polyculture (36.91%), commercial polyculture (36.84%), commercial polyculture / shade monoculture (5.58%), shade monoculture (17.5%), and sun coffee (1.11%) (Philpott et al. 2008b). Each site consisted of a 20 x 20 m plot. We conducted observations during the dry (February - March) and wet seasons (June - July) of 2010. All sites were located between 900-1400 masl and averaged 4000 mm rain per year. Coffee sites were organically- or conventionally-managed and also varied both in tree diversity and density and in canopy cover (De la Mora et al. 2013). The most common coffee shade trees in the study region include Inga micheliana Harms (Fabaceae), Inga sapindoides Willd (Fabaceae), Trema micrantha (L.) Blume (Ulmaceae) and Alchornea latifolia Swartz (Euphorbiaceae). We characterized the local and landscape factors of each site. At the local scale, we examined site characteristics and vegetation and interviewed farmers regarding agrochemical use. The 13 specific local factors included were: elevation, humus mass, tree circumference, tree height, percent canopy cover, richness of shade trees, density of shade trees, number of rotten logs, coffee plant density, and use of pesticides, herbicides, fertilizers, and fungicides (see De la Mora et al. 2013 for a complete description of how each variable was measured). We included seven landscape variables including distance to the nearest forest edge, the area of forest within 50 m, 200 m, and 500 m of study sites, and the area of rustic coffee within 50 m, 200 m, and 500 91 m of study sites as determined with ArcGIS (Philpott et al. 2008b, De la Mora et al. 2013). To summarize vegetation data and agrochemical use we created two indices: a) a vegetation complexity index (VCI) and b) an agrochemical index (AI) (Philpott et al. 2008a, De la Mora et al. 2013). Both indices range from 0 (low vegetation complexity or agrochemical use) to 1 (high vegetation complexity or agrochemical use). Further, we used VCI values to classify coffee sites into high-shade coffee (13 sites with VCI between 0.37-0.609) and low-shade coffee (17 sites with VCI between 0.029-0.35). Ant and parasitoid sampling. Within each site, we sampled rotten logs to find ants and their parasitoids. In this study, we chose to study the subfamilies Formicinae (but only the genus Camponotus), Ponerinae, and Ectatomminae. We chose these subfamilies and genus because these ants have pupae protected by a cocoon that is spun by the larvae prior to pupation (Wheeler 1915). Additionally, many species with cocoons are predators in coffee agroecosystems, and understanding the relationships between these ants and their parasitoids may shed light on biological control processes in farms. We opened rotten log pieces with an ax and knives, specifically focusing on collection of cocoons. We collected all cocoons encountered for all species of Ponerinae, Ectatomminae, and the Formicinae genus Camponotus, counted cocoons, and then placed cocoons into plastic cups covered with mesh. A representative sample of workers (10-15 individuals per colony) was collected and stored in vials with alcohol and later identified according to Bolton (1994) and Longino (2011). We examined for parasitism in two ways. First, we waited for parasitoid emergence, and second, we dissected ant cocoons to search for parasitoids. We checked cocoons daily for 10 days for emergence of parasitoids. After 10 days, remaining cocoons were dissected to determine the total parasitism rate in each colony. Voucher specimens of ants were deposited in the Entomology Collection at El Colegio de la 92 Frontera Sur in Tapachula, Chiapas, Mexico, and parasitoids were deposited in the Department of Entomology at University of California, Riverside. Data Analysis. We examined ant parasitism with several metrics. First, we used the presence or absence of parasitism. Second, we used the proportion of species parasitized. Third, we examined the proportion of cocoons parasitized for common genera and species. Common genera and species were defined as those that were found from at least two colonies in each of the three habitat types sampled (forest, high-shade coffee, low-shade coffee) and from at least two colonies in each season sampled (wet, dry). To examine whether habitat and season influence ant parasitism, we used generalized linear mixed models (GLMM) with ‘glmer’ in the ‘lme4’ package in R (R Development Core Team 2012). GLMMs allow analysis with count or proportional responses (Bolker et al. 2008) and our dependent variables included were presence of parasitism, proportion of species parasitized, proportion of cocoons of common genera (Gnamptogenys, Odontomachus, Pachycondyla) that were parasitized, and proportion of cocoons of common species (Gnamptogenys sulcata (F. Smith), Odontomachus chelifer (Latreille)) that were parasitized in each site during each season. All of these common genera and species are known hosts of eucharitids. We included habitat type (forest, high-shade coffee, low-shade coffee), season (wet, dry), and the interaction between habitat and season as fixed effects, the number of cocoons (total, or for each genus or species) as a random effect, and used the binomial error distribution with the logit link. For all dependent variables that were proportions, we used the ‘cbind’ function with proportion parasitized and proportion not parasitized as input variables. To examine whether vegetation complexity and agrochemical use correlate with parasitism, we used general linear models (GLM) in R (R Development Core Team 2012). The 93 dependent variables included were presence of parasitism, proportion of species parasitized, proportion of cocoons of Gnamptogenys, Odontomachus, Pachycondyla, G. sulcata, and O. chelifer that were parasitized in each site. For each dependent variable we tested 8 different predictive models including: 1) VCI as a linear predictor, 2) VCI as a quadratic predictor 3) AI as a linear predictor, 4) AI as a quadratic predictor, 5) both VCI and AI as linear predictors, 6) VCI as a linear predictor and AI as a quadratic predictor, 7) VCI as a quadratic predictor and AI as a linear predictor, and 8) both VCI and AI as quadratic predictors. All models were tested with and without the number of cocoons (overall, or for each genus or species tested) as an additional explanatory variable for a total of 16 total models tested for each dependent variable. To select the best model among the 16 possible models, we used the Akaike's Information Criterion (AIC) computed with the ‘mass’ package (Venables and Ripley 2002). For each GLM we used a binomial error distribution and logit link and for all dependent variables that were proportions, we used the ‘cbind’ function with proportion parasitized and proportion not parasitized as input. To examine whether specific local and landscape factors correlate with changes in ant parasitism we created conditional inference trees with the ‘party’ package in R (Hothorn et al. 2006, Strobl et al. 2009). The dependent variables included were presence of parasitism, proportion of species parasitized, proportion of cocoons of Gnamptogenys, Odontomachus, Pachycondyla, G. sulcata, and O. chelifer that were parasitized in each site. The predictor variables included the 13 local and 7 regional factors measured for each site, plus the number of cocoons and number of ant colonies (overall or for individual genera or species examined). Because some study plots were located within 250 m of one another, we also examined the degree of spatial autocorrelation in the residuals of the best-fit GLM models and conditional inference trees with: (1) spatial correlograms (with the ‘ncf’ package in R) and (2) the Moran's 94 test for spatial autocorrelation using a spatial weights matrix with the ‘spdep’ package in R (Bivand et al. 2012, R Development Core Team 2012). For the correlograms, we computed 100 permutations using the resamp argument in the correlog function to examine the distance, if any, at which variables were spatially autocorrelated. For the calculation of Moran’s I, we used nearest neighbor distances as the metric, and used the permutation test option. In those analysis that revealed significant spatial autocorrelation, we included longitude and latitude as additional predictor variables, but they did not improve the fit of any of the tested models, and were thus removed from the models presented in the results (Table S1). Results Across all sites sampled, we collected a total of 4006 cocoons from 16 ant species belonging to the subfamilies Ponerinae (9 species), Ectatomminae (5 species) and Formicinae (2 species) (Table 1). Only seven of the 16 species that we encountered (or 43.8% of species) were parasitized. Gnamptogenys sulcata, the only species parasitized in high-shade and low-shade coffee and forest habitats, was attacked by at least three different parasitoid species but its overall parasitism rate was the lowest (1.05% of encountered cocoons) of all the parasitized species (Table 1). All parasitoids we found were Eucharitidae (E.A. Murray and J.M. Heraty, pers. comm.). Of these, adults and pharate adults encountered belonged to at least three species in the genus Kapala Cameron and to one new, undescribed species in the genus Obeza Heraty (Table S2). Camponotus atriceps (F. Smith) was parasitized by Obeza n. sp., Gnamptogenys sp. 1 was parasitized by K. izapa (Carmichael) and Kapala sp., G. sulcata was parasitized by Kapala nr. sulcifacies, K. izapa and Kapala sp., and Odontomachus chelifer, Pachycondyla harpax (Fabricius) and P. impressa (Roger) were parasitized by Kapala nr. sulcifacies (Table S2). 95 Odontomachus meinerti Forel was parasitized by an eucharitid species that could not be determined to species because only juvenile stages were found. According to the GLMM, ant parasitism by eucharitid wasps did not differ with habitat type, and there was no interaction between habitat and season for any dependent variable, but parasitism of ants in one genus (Gnamptogenys) and one species within that genus (G. sulcata) varied with season (Table 2). Presence of parasitism, the proportion of parasitized species, and proportion of parasitized cocoons of Gnamptogenys, Odontomachus, Pachycondyla, G. sulcata, and O. chelifer did not differ in forest, high-shade, or low-shade coffee, and for none of those variables was there a significant habitat by season interaction (Table 2). The proportion of parasitized Gnamptogenys cocoons was 1.5 times higher in the dry season than in the wet season and the proportion of parasitized G. sulcata cocoons was more than ten times higher in the dry season than in the wet season (Table 2). Parasitism, as defined by the other metrics (presence of parasitism, proportion of parasitized species, and proportion of parasitized cocoons of Odontomachus, Pachycondyla, and O. chelifer) did not differ with season. According to the GLMs, the agrochemical index (AI) was frequently included in the bestfit model predicting parasitism, and vegetation complexity (VCI) and number of cocoons were also sometimes included (Table 3). The model that best predicted presence of parasitism included AI and number of cocoons, and parasitism was highest at low and high AI values (Table 3, Fig. 1). Presence of parasitism increased as the number of cocoons increased (Table 3). The best model for the proportion of parasitized species and for the proportion of parasitized cocoons of Odontomachus, G. sulcata, and O. chelifer included only the AI, and for all variables, parasitism was highest at low and high AI values (Table 3, Fig. 1, 2). The model that best predicted proportion of parasitized Gnamptogenys cocoons included VCI, AI, and the number of 96 Gnamptogenys cocoons. Gnamptogenys parasitism increased with VCI, decreased with number of cocoons, and was high with low and high AI values (Table 3, Fig. 2). Finally, parasitism of Pachycondyla cocoons increased with VCI (Table 3, Fig. 2). The conditional inference tree analyses revealed one local, two landscape, and one ant density predictor of parasitism. The presence of parasitism increased in sites with more rustic coffee area within 200 m and with more cocoons (Fig. 3a). The proportion of parasitized species increased in sites with more forest area within 200 m and with more cocoons (Fig. 3b). The proportion of parasitized Gnamptogenys cocoons increased in sites with higher humus mass (Fig. 3c). The proportion of parasitized Odontomachus, Pachycondyla, G. sulcata, and O. chelifer cocoons did not correlate with any local, landscape, or ant density variable. Discussion We found seven ant species that were parasitized by parasitoids in the family Eucharitidae, and encountered at least seven previously unknown host-parasitoid relationships: C. atriceps – Obeza n. sp., Gnamptogenys sp. 1 – K. izapa, Gnamptogenys sp. 1 – Kapala sp., G. sulcata – Kapala nr. sulcifacies, O. chelifer – Kapala nr. sulcifacies, P. harpax – Kapala nr. sulcifacies, and P. impressa – Kapala nr. sulcifacies. One other association, G. sulcata – K. izapa has already been reported in a previous study (Pérez-Lachaud et al. 2006b) and the associations G. sulcata – Kapala sp. and O. meinerti – undetermined eucharitid species, probably correspond to previous reports involving K. iridicolor and Kapala sp., respectively (Pérez-Lachaud et al. 2006b, De la Mora and Philpott 2010). Most of the parasitized ant species that we collected were in the Ponerinae and Ectatomminae subfamilies, but we also report the first case of parasitism of C. atriceps (Formicinae subfamily) by a parasitoid in the genus Obeza Heraty. This is the second 97 report of the genus Obeza attacking a Camponotus species for the state of Chiapas (see PérezLachaud and Lachaud 2014). We documented that Kapala izapa parasitized two species of Gnamptogenys raising to at least three the number of its potential hosts within this genus (see Pérez-Lachaud et al. 2006b), and that Kapala nr. sulcifacies parasitized four species of ants from three different genera (Table S2). There was one ant species (G. sulcata) parasitized by more than one species of parasitoid from the genus Kapala (Table S2). Most of the ant species encountered were not parasitized in our study sites, although some of them (Gnamptogenys striatula Mayr, Pachycondyla apicalis (Latreille), and Typhlomyrmex rogenhoferi Mayr) are parasitized by eucharitid parasitoids in other habitats (Pérez-Lachaud et al. 2006b, De la Mora and Philpott 2010). Unfortunately, many of the specific ant-parasitoid relationships could not be determined at the species level as many parasitoids were only collected as larvae or pre-pupae that could not be identified to the genus or species level. Other recent studies, however, documented that ant species can be parasitized by multiple species of parasitoids (Pérez-Lachaud et al. 2006b, Torréns 2013), sometimes as multiparasitism where the same individual host is parasitized by multiple species of parasitoids (Pérez-Lachaud et al. 2006a). In addition, several parasitoid species can parasitize multiple species of host ants (Pérez-Lachaud et al. 2006b, Lachaud and Pérez-Lachaud 2012) as we found for K. izapa and Kapala nr. sulcifacies. Parasitism and local habitat and vegetation features. We aimed to study whether ant parasitism by Eucharitidae wasps varied in different coffee management systems and forests, and whether parasitism varied with vegetation features and agrochemical use in coffee farms and forests. We did not find any differences in the presence of parasitism, the proportion of species parasitized, or the proportion of parasitized cocoons of any genus or species parasitized in different habitat types. One reason that we may not have encountered differences in habitat type 98 is because there was very high within-habitat variability in vegetation characteristics measured in high-shade and low-shade coffee sites. Thus the VCI may be a better measure of the specific vegetation changes in the plots sampled. In fact, we did find that parasitism of Gnamptogenys and Pachycondyla cocoons increased as vegetation complexity increased, and these were the two genera with the highest numbers of cocoons collected and colonies encountered. For the other genus (Odontomachus) and species tested, the low numbers of cocoons collected may have limited our ability to detect significant differences between habitat types or correlations with vegetation complexity. Other studies have documented that changes in habitat type may affect parasitism of ants (De la Mora and Philpott 2010, Vásquez-Ordoñez et al. 2012). Because adult parasitoids often seek non-host food sources in agroecosystems (e.g. honeydew, nectar or pollen), adding vegetation complexity may increase resource availability within agricultural habitats and therefore may increase the presence of certain species or groups of parasitoids (Landis et al. 2000, Sperber et al. 2004). However, we did not find differences with habitat or VCI and presence or absence of parasitism or the proportion of ant species that were parasitized. This may be because different ant species or genera (or their parasitoids) respond to changes in habitat or vegetation in different ways, and examining species together may not have represented taxonomic variability in response to habitat or vegetation changes. We found high presence of parasitism, high proportion of parasitized species, and high proportions of parasitized Gnamptogenys, Odontomachus, G. sulcata, and O. chelifer cocoons in sites with low and high agrochemical use. Agrochemical use can be a more important predictor of decreases in parasitism rate than change in floral resources or alternative hosts (Jonsson et al. 2012). We may expect in sites with low agrochemical use, that parasitoid abundance and diversity would be highest, resulting in higher parasitism rates. Abundance and richness of 99 parasitoids is negatively affected by application of nematocides and insecticides (Matlock and de la Cruz 2002). Use of the insecticide endosulfan (e.g. brand name Thiodan) is common in the study region and may have negatively affected hymenopteran parasitoids (Damon 2000). Given that almost all of the sites with zero agrochemical use were forest sites, increases in resources for parasitoids in those habitats may be correlated with lower agrochemical use, contributing to the observed pattern. Explaining increases in parasitism in sites with high agrochemical use is less intuitive, but may relate to one or more factors including changes in understory vegetation or weed cover with herbicide application, impacts of fertilizers on ant species richness, influences of pesticides on insect behavior, and increases in presence of trees with extrafloral nectaries in sites with high agrochemical use. First, parasitoid-ant interactions are strongly impacted by herbaceous vegetation (Clausen 1940) and regular use of herbicides in some of the study sites may have resulted in changes in parasitism. Composition of herbaceous plants (e.g. weeds) may differ in sites with high and low herbicide use (A. De la Mora, Pers. obsv.). Although we did not quantify weed cover, qualitative differences observed indicate that in sites with high agrochemical use, weed cover tends to be dominated by Impatiens spp., whereas in other sites with less agrochemical use, common herbaceous plants include Lantana spp., Ipomea spp., and Vernonia spp., as well as other plants in the family Asteraceae and Gramineae. Such changes in herbaceous plant composition and other ground cover may influence ant foraging patterns (Lachaud and Pérez-Lachaud 2009, Gibb and Parr 2010) and eucharitid oviposition (Johnson 1988, Pérez-Lachaud et al. 2006b). All eucharitid species oviposit away from the host in or on plant tissues (Clausen 1940). For example, some Kapala species oviposit on leaves, flower buds, or on seed receptacles (Clausen 1940, 1941; Wojcik 1989, Pérez-Lachaud et al. 2006b, Lachaud 100 and Pérez-Lachaud 2009), and herbicide use may alter oviposition site availability for Kapala thereby negatively influencing parasitism rates. We did not measure weed cover, or the abundance or richness of weed species within our study sites, but this should be explicitly considered in future studies to detail relationships between parasitism and herbaceous vegetation. Second, changes in parasitism related to agrochemical use might relate to changes in ant species richness due to fertilizer use. De la Mora et al. (2013) found that increased fertilizer use correlates with decreased species richness of ants that nest in rotting logs (e.g. including Pachycondyla, Gnamptogenys, and Odontomachus species). Changes in species richness and abundance of certain ant species in different sites may have influenced parasitism. For example, in agricultural landscapes in Ecuador, increases in agricultural intensification increased hymenopteran parasitoid diversity, reduced hymenopteran host diversity, increased host specificity for some parasitoids, and reduced attacks on alternative hosts (Tylianakis et al. 2007). Translated for this system, increases in agrochemical use may have reduced ant diversity, while at the same time increasing the host specificity of parasitoids for remaining ant species, thus leading to higher parasitism. Third, pesticide spraying could potentially affect oviposition behavior of Eucharitidae females decreasing the likelihood of host encounter (Wojcik 1989). Fourth, some parasitoids respond positively to presence of extrafloral nectaries on shade trees within coffee agroecosystems (Rezende et al. 2014). The study sites that used high levels of agrochemicals and also experienced high parasitism levels also had very high percentages (e.g. ~70.0 %) of Inga spp. individuals that contain extrafloral nectaries. Other sites with lower use of agrochemcials had fewer trees in the genus Inga (e.g. 56.8 %), and vegetation in those sites may provide fewer resources for adult parasitoids. In the study sites, Kapala spp. parasitoids have been observed visiting extrafloral nectaries on Inga vera Wild (M. E. Jiménez-Soto, pers. 101 comm.). Increases in nectar resources may have counteracted negative impacts of agrochemicals in those sites. Finally, all of the sites with high agrochemical use and high parasitism rates were found in a single, large farm (Finca Hamburgo). Thus, there remains the possibility that some property of management, history of chemical use at that site may have influenced the observed results. Parasitism and season. We aimed to examine if parasitism changes with season, and found that for most metrics of parasitism there were no differences in parasitism in the wet and dry season. However, parasitism of Gnamptogenys, the most frequently encountered genus, and G. sulcata, the most frequently encountered species, was higher in the dry season than in the wet season. Seasonal changes in parasitism may relate to changes in ant reproductive cycles, or changes in brood production (see Lachaud and Pérez-Lachaud 2009, Pérez-Lachaud et al. 2010). For example, some ant species susceptible to eucharitid parasitism, such as Ectatomma ruidum, produce fewer cocoons in the dry season, and in that season have lower rates of parasitism by Kapala izapa and K. iridicolor -- thus some eucharitid parasitoids demonstrate positive densitydependence with increases in number of available cocoons (Lachaud and Pérez-Lachaud 2009). Yet, we did not find positive density dependence in parasitism for Gnamptogenys, as the number of Gnamptogenys spp. cocoons was negatively related to Gnamptogenys parasitism and the number of G. sulcata cocoons did not correlate with G. sulcata parasitism. Seasonal changes in food and nesting resources for ants and parasitoids in different seasons may alter ant-parasitoid interactions (Clausen 1940; 1941). Shifts in parasitism rate with season are often due to changes in physical characteristics of sampled habitats (Tylianakis et al. 2005). Additionally, flowering of certain common herbaceous weeds, such as Melampodium divaricatum (Asteraceae), a known oviposition site for Kapala iridicolor (Pérez-Lachaud et al. 2006b), occurs in the dry season (A. 102 De la Mora, pers. obsv.) which may explain increased parasitism rates for Gnamptogenys spp. and G. sulcata during the dry season. For example, Pérez-Lachaud et al. (2006a), suggest that the presence or absence of certain herbaceous plants throughout the year may affect the spatial distribution of eucharitid wasps that parasitize Ectatomma tuberculatum. Oviposition sites are an important factor determining parasitism of ants by eucharitids. Adult wasps are not highly mobile and rely on foraging ants to pick up a planidium and transport it to the nest. At the same time, increases in ant foraging activity in patches of vegetation with high resources may facilitate parasitism success (Clausen 1940; 1941, Johnson 1988, Wojcik 1989). One further possibility is that the abundance of eucharitid predators may shift in the wet and dry season, thereby influencing the abundance of the eucharitids. For example, eucharitids may be trapped in spider webs, and changes in abundance of web-building spiders in the wet and dry season may increase predation risk for the parasitoids during one season or the other. However, available data from the study sites indicates that web-building spider abundance is higher in the dry season (Pinkus et al. 2006), which would presumably lower eucharitid abundance and result in lower ant parasitism. Finding differences in season for other ant species and genera, and for the proportion of ant species parasitized may have been hindered by low numbers of colonies and specifically parasitized colonies (as low as 0.6% and only as high as 2.5% of cocoons parasitized on average for some species in some sites). Parasitism and local and landscape factors. A final study objective was to determine relationships between parasitism of ants by eucharitids and local and landscape features of coffee landscapes. We found that presence of parasitism and the proportion of species parasitized was most strongly correlated with two landscape factors and with the number of ant cocoons found in those study sites. The presence of parasitized cocoons increased with rustic coffee (e.g. complex 103 coffee habitat) area within 200 m and the proportion of parasitized ant species increased with increases in forest (e.g. non-crop or natural habitat) area within 200 m. Several studies have investigated the importance of landscape composition and complexity for hymenopteran parasitoid abundance and parasitism, documenting that both factors can strongly influence parasitism rates (e.g. Marino and Landis 1996, Thies et al. 2003, Tylianakis et al. 2005, 2007, but see Menalled et al. 1999). For instance, greater vegetation complexity in a landscape, such as that found in forest and rustic coffee sites, can promote mobility of Hymenoptera across habitats (Tylianakis et al. 2005) and non-crop and diverse habitats can thus act as sources to other nearby areas. In addition, increases in habitat complexity at the landscape scale can translate into increased parasitoid diversity (Sperber et al. 2004, Menalled et al. 1999), and the presence of a diverse group of complementary parasitoids may relate to higher parasitism for other host taxa (Wilby and Thomas 2002). Increases in the amount of non-crop (e.g. forest) habitat and of complex habitats (e.g. rustic coffee) in the landscape may provide alternative hosts and resources for parasitoids leading to higher parasitoid abundance and parasitism rates (Thies et al. 2003). One open question is exactly why landscape changes at the 200 m scale (as opposed to other scales examined) emerged as significant predictors of parasitism. Different studies have documented differences in parasitoids and in parasitoid-host interactions, but no consensus yet exists on which spatial scale results in maximum change in which system. Thies et al. (2003) examined the influence of non-crop habitat within 0.5 - 6 km on parasitism for different hymenopteran parasitoid species. They found that non-crop habitat influenced parasitism rate most highly at spatial scales of between 1-2 km (Thies et al. 2003). An additional study found that parasitoid diversity responded to changes in habitat composition at the 300 m scale, but did not address parasitism rates specifically (Bennett and Gratton 2012). 104 We also found that the parasitism of Gnamptogenys spp. in particular was positively associated with increases in one local habitat factor -- humus mass. Certain disturbances in agricultural systems that lower humus mass and therefore diminish nesting resources for grounddwelling ant species will decrease the abundance or richness of certain species (Mertl et al. 2009). But supplementing litter and humus biomass will increase insect prey resources and thereby increase brood production for ground-dwelling ants (McGlynn et al. 2009, Shik and Kaspari 2010), which may in turn lead to increases in parasitism rate by these density-dependent parasitoids. In contrast to previous studies with eucharitid parasitoids, we did not document positive relationships between Gnamptogenys parasitism and number of cocoons. Another explanation for this pattern is that increased humus mass might prevent parasitoid desiccation or might provide other necessary, but unknown, resources for parasitoids. Conclusions. In summary, the local habitat and landscape predictors of ant parasitism by eucharitid parasitoids is not well studied and we found evidence that changes in local and landscape complexity can influence parasitism for certain groups of ants. Overall, presence of parasitism in the landscape was influenced by the amount of rustic coffee and forest habitat nearby and parasitism of two abundant genera increased with local vegetation complexity. We found that presence of parasitism increased with increases in the number of cocoons, but did not find positive density-dependence in parasitism of any ant species or genus examined. Parasitism for Gnamptogenys and G. sulcata was higher in the dry season.. We did find influences of both low and high agrochemical use on parasitism of nearly all ant groups studied, but the reasons for these patterns remain somewhat elusive. We suggest that future studies on ant-parasitoid relationships should examine changes in availability of eucharitid oviposition sites and herbaceous vegetation in study sites, as well as changes in ant-parasitoid specificity, as these 105 differences may explain the results observed in this study. Differences between ant parasitism in different locations within the landscape may have implications for other trophic interactions and ecological services in agricultural landscapes. Acknowledgements A. García Ballinas, J. Santis, G. Dominguez, U. Pérez Vásquez, G. López Bautista, B.E. Chilel, E. Sintes assisted with field work. R. Becker, R. John, and J.H. López Urbina assisted with the GIS analysis. G. Ibarra Núñez, J. Rojas, and E. Chamé Vásquez of El Colegio de la Frontera Sur (ECOSUR) provided logistic support. E.A. Murray and J.H. Heraty from the Dept. of Entomology at the University of California, Riverside identified the parasitoids. We thank the owners of Fincas Irlanda, Argovia, Hamburgo, San Francisco, Genova, Rancho Alegre, Chiripa, Maravillas, Santa Anita, San Enrique and Rancho Cuilco for allowing us to conduct research on their farms. ADM was funded by scholarship number 168970 granted by the National Council of Science and Technology (CONACYT) in Mexico and a Conservation International Rapid Assessment Program award. Additional funding was provided by NSF DEB-1020096 to SMP. References Andersen, A.N., B.D. Hoffmann, W.J. Müller, and A.D. Griffiths. 2002. Using ants as bioindicators in land management: simplifying assessment of the ant community responses. J. Appl. Ecol. 39: 8–17. Armbrecht, I., and I. Perfecto. 2003. Litter-twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agric. Ecosyst. Environ. 97: 107–115. 106 Bennett, A.B, and C. Gratton. 2012. Local and landscape scale variables impact parasitoid assemblages across an urbanization gradient. Landscape Urban Plan. 104: 26–33. Bivand, R., M. Altman, L. Anselin, R. Assunção, O. Berke, A. Bernat, G. Blanchet, E. Blankmeyer, M. Carvalho, B. Christensen, Y. Chun, C. Dormann, S. Dray, R. Halbersma, E. Krainski, P. Legendre, N. Lewin-Koh, H. Li, J. Ma, G. Millo, W. Mueller, H. Ono, P. Peres-Neto, G. Piras, M. Reder, M. Tiefelsdorf, and D. Yu. 2012. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-46. http://CRAN.R-project.org/package=spdep. Accessed Dec. 2012. Bolker, B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen, M.H.H. Stevens, and J.S.S. White. 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends. Ecol. Evol. 24: 127–135. Bolton, B. 1994. Identification guide to the ant genera of the world. Harvard University Press, Cambridge, Massachusetts. Bution, M.L., M.F. de A. Tango, and F.H. Caetano. 2010. Intrinsic and extrinsic factors in the conservation of ants and their use as bioindicators. Arq. Inst. Biol., São Paulo 77: 181–188. Clausen, C.P. 1940. The oviposition habits of the Eucharidae (Hymenoptera). J. Wash. Acad. Sci. 30: 504–516. Clausen, C.P. 1941. The habits of the Eucharidae. Psyche 48: 57–69. Clergue, B., B. Amiaud, F. Pervanchon, F. Lasserre-Joulin, and S. Plantureux. 2005. Biodiversity: function and assessment in agricultural areas. A review. Agron. Sustain. Dev. 25: 1–15. Coudrain, V., F. Herzog, and M.H. Entling. 2013. Effects of habitat fragmentation on abundance, larval food and parasitism of a spider-hunting wasp. PLoS ONE 8: e59286. 107 Cronin, J.T. 2007. From population sources to sieves: the matrix alters host-parasitoid sourcesink structure. Ecology 88: 2966–2976. Damon, A. 2000. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). B. Entomol. Res. 90: 453–465. Dauber, J., T. Purtauf, A. Allspach, J. Frisch, K. Voigtländer, and V. Wolters. 2005. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecol. Biogeogr. 14: 213–221. De la Mora, A., and S.M. Philpott. 2010. Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environ. Entomol. 39: 1473–1481. De la Mora, A., C.J. Murnen, and S.M. Philpott. 2013. Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers. Conserv. 22: 871–888. Dobson, A., D. Lodge, J. Alder, G.S. Cumming, J. Keymer, J. McGlade, H. Mooney, J.A. Rusak, O. Sala, V. Wolters, D. Wall, R. Winfree, and M.A. Xenopoulos. 2006. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87: 1915–1924. Fischer, J., and D.B. Lindenmayer. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogeogr. 16: 265–280. Fischer, J., D.B. Lindenmayer, and A.D. Manning. 2006. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front. Ecol. Environ. 4: 80–86. Gagic, V., S. Hänke, C. Thies, C. Scherber, Ž. Tomanović, and T. Tscharntke. 2012. Agriculture intensification and cereal aphid-parasitoid-hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170: 1099–1109. García Estrada, C., A. Damon, C. Sánchez Hernández, L. Soto Pinto, and G. Ibarra Núñez. 108 2006. Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol. Conserv. 132: 351–361. Gibb, H. and C.L. Parr. 2010. How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164: 1061–1073. Henne, D.C., W.S. Hilbun, and S.J. Johnson. 2008. Spatio-temporal population sampling of a fire ant parasitoid. Entomol. Exp. Appl. 129: 132–141. Heraty, J.M. 1994. Biology and importance of two eucharitid parasites of Wasmannia and Solenopsis, pp. 104–120. In D.F. Williams (ed.), Exotic ants. Biology, impact, and control of introduced species. Westview Press, Boulder. Hothorn, T., K. Hornik, and A. Zeileis. 2006. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15: 651–674. Hsieh, H.-Y., and I. Perfecto. 2012. Trait-mediated indirect effects of phorid flies on ants. Psyche 2012: Article ID 380474, 11 pages. doi: 10.1155/2012/380474. Ibarra-Núñez, G., J.A. García, J.A. López, and J.-P. Lachaud. 2001. Prey analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology 37: 723–755. Jha, S., and J.H. Vandermeer. 2010. Impacts of coffee agroforestry management on tropical bee communities. Biol. Conserv. 143: 1423–1431. Jha, S., C.M. Bacon, S.M. Philpott, V.E. Méndez, P. Läderach, and R.A. Rice. 2014. Shade coffee: update on a disappearing refuge for biodiversity. BioScience 64:416-428. Johnson, D.W. 1988. Eucharitidae (Hymenoptera: Chalcidoidea): biology and potential for biological control. Fla. Entomol. 71: 528–537. 109 Jonsson, M., H.L. Buckley, B.S. Case, S.D. Wratten, R.J. Hale, and R.K. Didham. 2012. Agriculture intensification drives the landscape-context effects on host-parasitoid interactions in agroecosystems. J. Appl. Ecol. 49: 706–714. Jose, S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforest. Syst. 76: 1–10. Klein, A.-M., I. SteffanǦDewenter, D. Buchori, and T. Tscharntke. 2002. Effects of landǦuse intensity in tropical agroforestry systems on coffee flowerǦvisiting and trapǦnesting bees and wasps. Conserv. Biol. 16: 1003–1014. Klein, A-M., I. Steffan-Dewenter, and T. Tscharntke. 2006. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. J. Anim Ecol. 75: 315–323. Kruess, A. and T. Tscharntke. 1994. Habitat fragmentation, species loss, and biological control. Science 264: 1581–1584. Lachaud J.-P., and G. Pérez-Lachaud. 2009. Impact of natural parasitism by two eucharitid wasps on a potential biocontrol agent ant in southeastern Mexico. Biol. Control. 48: 92–99. Lachaud J.-P., and G. Pérez-Lachaud. 2012. Diversity of species and behavior of hymenopteran parasitoids of ants: a review. Psyche 2012: Article ID134746, 24 pages. doi: 10.1155/2012/134746. Landis, D.A., S.D. Wratten, and G.M. Gurr. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45: 175–201. Longino, J.T. 2011. Ants of Costa Rica. http://academic/evergreen.edu/projects/ants/AntsofCostaRica.html. Accessed January 2011. Macfadyen, S., and W. Muller. 2013. Edges in agricultural landscapes: species interactions and 110 movement of natural enemies. PloS ONE 8: e59659. Marino, P.C., and D.A. Landis. 1996. Effects of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol. Appl. 6: 276–284. Mas, A.H., and T.V. Dietsch. 2003. An index of management intensity for coffee agroecosystems to evaluate butterfly species richness. Ecol. Appl. 13: 1491–1501. Mathis, K.A., and S.M. Philpott. 2012. Current understanding and future prospects of host selection, acceptance, discrimination, and regulation of phorid fly parasitoids that attack ants. Psyche 2012: Article ID 895424, 9 pages. doi: 10.1155/2012/895424. Matlock, R.B., Jr., and R. de la Cruz. 2002. An inventory of parasitic Hymenoptera in banana plantations under two pesticide regimes. Agric. Ecosyst. Environ. 93: 147–164. McGlynn, T.P., R.M. Fawcett, and D.A. Clark. 2009. Litter biomass and nutrient determinants of ant density, nest size, and growth in a Costa Rican tropical wet forest. Biotropica 41: 234–240. Menalled, F.D., P.C. Marino, S.H. Gage, and D.A. Landis. 1999. Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol. Appl. 9: 634–641. Mertl, A.L., K.T. Ryder Wilkie, and J.F.A. Traniello. 2009. Impact of flooding on the species richness, density and composition of Amazonian litterǦnesting ants. Biotropica 41: 633– 641. Moguel P., and V. Toledo. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13: 11–21. Monmany, A.C., and T.M. Aide. 2009. Landscape and community drivers of herbivore parasitism in northwest Argentina. Agric. Ecosyst. Environ. 134: 148–152. Naeem, S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. 111 Ecology 83: 1537–1552. Paolucci, L.N., R.R.C. Solar, T.G. Sobrinho, C.F. Sperber, and J.H. Schoereder. 2012. How does small-scale fragmentation affect litter-dwelling ants? The role of isolation. Biodivers. Conserv. 21: 3095–3105. Pérez-Lachaud, G. and J.-P. Lachaud. 2014. Arboreal ant colonies as ‘hot-points’ of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates. PloS ONE 9: e100155. Pérez-Lachaud, G., J.A. López-Méndez, and J.-P. Lachaud. 2006a. Eucharitid parasitism of the Neotropical ant Ectatomma tuberculatum: parasitoid co-occurrence, seasonal variation, and multiparasitism. Biotropica 38: 574–576. Pérez-Lachaud, G., J.M. Heraty, A. Carmichael, and J.-P. Lachaud. 2006b. Biology and behavior of Kapala (Hymenoptera: Eucharitidae) attacking Ectatomma, Gnamptogenys and Pachycondyla (Formicidae: Ectatomminae and Ponerinae) in Chiapas, Mexico. Ann. Entomol. Soc. Am. 99: 567–576. Pérez-Lachaud G., J.A. López-Méndez, G. Beugnon, P. Winterton, and J.-P. Lachaud. 2010. High prevalence but relatively low impact of two eucharitid parasitoids attacking the Neotropical ant Ectatomma tuberculatum (Olivier). Biol. Control. 52: 131–139. Perfecto, I., and J. Vandermeer. 2002. Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conserv. Biol. 16: 174–182. Perfecto, I., R.A. Rice, R. Greenberg, and M.E. Van der Voort. 1996. Shade coffee: a disappearing refuge for biodiversity. BioScience 46: 598–608. Philpott, S.M., and I. Armbrecht. 2006. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31: 369–377. 112 Philpott, S.M., W.J. Arendt, I. Armbrecht, P. Bichier, T.V. Dietsch, C. Gordon, R. Greenberg, I. Perfecto, R. Reynoso-Santos, L. Soto-Pinto, C. Tejeda-Cruz, G. Williams-Linera, J. Valenzuela, and J.M. Zolotoff. 2008a. Biodiversity loss in Latin American coffee landscapes: Review of the evidence on ants, birds, and trees. Conserv. Biol. 22: 1093–1105. Philpott, S.M., B.B. Lin, S. Jha, and S.J. Brines. 2008b. A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agric. Ecosyst. Environ. 128: 12–20. Philpott, S.M., O. Soong, J.H. Lowenstein, A.L. Pulido, D. Tobar Lopez, D.F.B. Flynn, and F. DeClerck. 2009. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol. Appl. 19: 1858–1867. Pinkus Rendón, M. A., G. Ibarra-Núñez, V. Parra-Tabla, J.A. García-Ballinas, and Y. Hénaut,. 2006. Spider diversity in coffee plantations with different management in southeast Mexico. J. Arachnol. 34: 104–112. Pocock, M.J.O., and N. Jennings. 2008. Testing biotic indicator taxa: the sensitivity of insectivorous mammals and their prey to the intensification of lowland agriculture. J. Appl. Ecol. 45: 151–160. Power, A.G. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B. 365: 2959–2971. Quilici, S., and P. Rousse. 2012. Location of host and host habitat by fruit fly parasitoids. Insects 3: 1220–1235. R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 113 http://www.R-project.org/. Rezende, M.Q., M. Venzon, A.L. Perez, I.M. Cardoso, and A. Janssen. 2014. Extrafloral nectaries of associated trees can enhance natural pest control. Agric. Ecosyst. Environ. 188: 198–203. Rodríguez, M.Á., and B.A. Hawkins. 2000. Diversity, function and stability in parasitoid communities. Ecol. Lett. 3: 35–40. Shik, J.Z., and M. Kaspari. 2010. More food, less habitat: how necromass and leaf litter decomposition combine to regulate a litter ant community. Ecol. Entomol. 35: 158–165. Sperber, C.F., K. Nakayama, M.J. Valverde, and F.S. Neves. 2004. Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl. Ecol. 5: 241–251. Steffan-Dewenter I. 2002. Landscape context affects trap-nesting bees, wasps, and their natural enemies. Ecol. Entomol. 27: 631–637. Steffan-Dewenter, I., U. Münzenberg, C. Bürger, C. Thies, and T. Tscharntke. 2002. Scale dependent effects of landscape context on three pollinator guilds. Ecology 83: 1421–1432. Strobl, C., T. Hothorn, and A. Zeileis. 2009. Party on! A new, conditional variable-importance measure for random forests available in the party package. The R Journal 2: 14–17. Thies, C., I. Steffan-Dewenter, and T. Tscharntke. 2003. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101: 18–25. Torréns, J. 2013. A review of the biology of Eucharitidae (Hymenoptera: Chalcidoidea) from Argentina. Psyche 2013, Article ID 926572, 14 pages. doi: 10.1155/2013/926572. Townes, H. 1960. Host selection patterns in some Nearctic ichneumonids. Proc. 11 th Intern. Congr. Entomol., Vienna, Austria 2: 738–741. 114 Tscharntke, T., I. Steffan-Dewenter, A. Kruess, and C. Thies. 2002. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol. Appl. 12: 354–363. Tscharntke, T., A.M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8: 857–874. Tylianakis, J.M., A.-M. Klein, T. Tscharntke. 2005. Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 86: 3296–3302. Tylianakis, J.M., T. Tscharntke, and O.T. Lewis. 2007. Habitat modification alters the structure of tropical host-parasitoid food-webs. Nature 445: 202–205. Vandermeer, J., and R. Carvajal. 2001. Metapopulation dynamics and the quality of the matrix. Am. Nat. 158: 211–220. Vandermeer, J., I. Perfecto, and S. Philpott. 2010. Ecological complexity and pest control in organic coffee production: Uncovering an autonomous ecosystem service. BioScience 60: 527–537. Varone, L., and J. Briano. 2009. Bionomics of Orasema simplex (Hymenoptera: Eucharitidae), a parasitoid of Solenopsis fire ants (Hymenoptera: Formicidae) in Argentina. Biol. Control 48: 204–209. Vásquez-Ordóñez A.A., I. Armbrecht, and G. Pérez-Lachaud. 2012. Effect of habitat type on parasitism of Ectatomma ruidum by eucharitid wasps. Psyche 2012: Article ID 170483, 7 pages. doi: 10.1155/2012/170483. Venables, W.N., and B.D. Ripley. 2002. Modern applied statistics with S, 4th edn. Springer, New York. 495 pp. 115 Visser, U., K. Wiegand, V. Grimm, and K. Johst. 2009. Conservation biocontrol in fragmented landscapes: persistence and parasitation in a host-parasitoid model. Open Ecol. J. 2: 52–61. Wheeler, W.M. 1915. On the presence and absence of cocoons among ants, the nest-spinning habits of the larvae and the significance of the black cocoons among certain Australian species. Ann. Entomol. Soc. Am. 8: 323–342. Wilby, A., and M.B. Thomas. 2002. Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. Ecol. Lett. 5: 353–360. Wilkinson, E.B., and D.H. Feener Jr. 2007. Habitat complexity modifies ant–parasitoid interactions: implications for community dynamics and the role of disturbance. Oecologia 152: 151–161. Wilkinson, E.B., and D.H. Feener Jr. 2012. Exploitative competition and risk of parasitism in two host ant species: the roles of habitat complexity, body size, and behavioral dominance. Psyche 2012: Article ID 238959, 8 pages. doi: 10.1155/2012/238959. Wojcik, D.P. 1989. Behavioral interactions between ants and their parasites. Fla. Entomol. 72: 43–51. 116 Table 1. Ant morphospecies in the subfamilies Ectatomminae, Formicinae, and Ponerinae examined for eucharitid parasitoids in forest and coffee habitats in Chiapas, Mexico §¶. Data show total numbers of cocoons, parasitized cocoons, and the proportion of parasitized cocoons for 10 forest (F) sites, 13 high-shade coffee sites (HSC), and 17 low-shade coffee sites (LSC) sampled during the dry and the rainy season of 2010. No. cocoons No. parasitized Parasitized cocoons collected cocoons (%)§§ Morphospecies F HSC LSC F HSC LSC F HSC LSC Camponotus atriceps 0 153 88 NA 11 0 NA 7.19 0 29 0 0 0 NA NA 0 NA NA Gnamptogenys sp. 1 79 184 0 13 0 NA 16.46 0 NA Gnamptogenys striatula 66 58 211 0 0 0 0 0 0 135 871 425 2 10 3 1.48 1.15 0.71 0 81 13 NA 0 0 NA 0 0 Leptogenys sp. 1* 13 7 3 0 0 0 0 0 0 Odontomachus chelifer 11 43 421 0 3 14 0 6.98 3.33 0 29 0 NA 2 NA NA 6.90 NA (F. Smith) Camponotus striatus (F. Smith) Mayr* Gnamptogenys sulcata (F. Smith)* Gnamptogenys wheeleri (Santschi) (Latreille)* Odontomachus meinerti 117 Forel Pachycondyla apicalis 21 42 39 0 0 0 0 0 0 8 173 442 0 0 0 0 0 0 41 0 49 0 NA 0 0 NA 0 32 79 18 2 0 0 6.25 0 0 Pachycondyla sp. 1 0 7 0 NA 0 NA NA 0 NA Platythyrea punctata (F. 0 12 13 NA 0 0 NA 0 0 0 105 0 NA 0 NA NA 0 NA (Latreille)* Pachycondyla cf. cognata (Emery)* Pachycondyla harpax (Fabricius) Pachycondyla impressa (Roger)* Smith) Typhlomyrmex rogenhoferi Mayr § Morphospecies in bold print were parasitized. *Species with cocoons found in all three habitats ¶ NA indicates that there were no cocoons in that habitat that could have been parasitized. §§ Calculated based on total number of parasitized and unparasitized cocoons across all sites sampled. 118 1 7 0±0 cocoons parasitized Prop. of O. chelifer 0.023±0.01 3 0.003±0.00 0±0 6 0.023±0.01 2 0.002±0.00 3 0.026±0.01 2 0.002±0.00 6 0.006±0.00 4 0.035±0.01 4 0.015±0.01 3 0.133±0.04 1 0.281±0.08 Wet Dry 0.024±0.02 0.03±0.023 0±0 6 0.016±0.01 9 0.024±0.01 5 0.286±0.12 5 0.286±0.12 Season 11 17 20 12 27 46 46 N 0.402 0.762 <0.001 0.673 0.523 0.450 0.446 t Habita 0.297 6.726* <0.001 0.510 1.424* 0.139 0.016 n Seaso F-value § cocoons parasitized 7 6 4 4 Presence or absence in indiivdual sites was coded as 0 or 1, and the mean across all sites was calculated, and reported here. * P < 0.05 0.048±0.02 0.025±0.02 0.007±0.00 Prop. of G. sulcata 0±0 1 0.055±0.02 5 8 0.018±0.01 0±0 9 0.017±0.01 6 0.078±0.04 5 4 0.232±0.08 0.176±0.09 Low-shade 0.368±0.11 shade High- cocoons parasitized Prop. of Pachycondyla cocoons parasitized Prop. of Odontomachus cocoons parasitized Prop. of Gnamptogenys 0.043±0.03 0.25±0.134 Prop. of species parasitized 0.3±0.153 Presence of parasitism§ Forest Habitat shade coffee agroecosystems and in the wet and dry season in coffee landscapes in Chiapas, Mexico. 119 <0.001 <0.001 <0.001 <0.001 0.453 0.009 0.005 Season Habitat x Table 2. Results of a generalized linear mixed model testing for differences in ant parasitism by Eucharitidae in forest, high-, and low- <0.001 VCI + AI2 + number of NA 0.038 NA NA AI2 VCI2 AI2 AI2 Prop. of Odontomachus cocoons parasitized Prop. of Pachycondyla cocoons parasitized Prop. of G. sulcata cocoons parasitized Prop. of O. chelifer cocoons parasitized Prop. of Gnamptogenys cocoons parasitized NA NA <0.001 NA NA NA NA VCI2 0.313 0.087 NA 0.641 0.237 0.376 0.329 AI † NA indicates that variable was not included in the best model. Numbers show p-values for predictor variables as determined with generalized linear mixed models. § NA AI2 Gnamptogenys cocoons NA AI2 + number of cocoons Presence of parasitism Prop. of species parasitized VCI Best Model Dependent Variable agrochemical index (AI) and the number of ant cocoons found in a site. §† 0.003 <0.001 NA 0.001 <0.001 0.002 <0.001 AI2 NA NA NA NA <0.001 NA 0.025 cocoons Number of 120 Table 3. Results of generalized linear models testing relationships between dependent variables, the vegetation complexity index (VCI), Figure legends. Figure 1. Relationships between presence of parasitism of ants by eucharitid parasitoids (a, b) and proportion of species parasitized by eucharitids (c, d) and vegetation complexity and agrochemical use in coffee landscapes. Figure 2. Relationship between proportion of Gnamptogenys (a, b), Odontomachus (c, d), Pachycondyla (e, f), G. sulcata (g, h) and O. chelifer (i, j) and vegetation complexity (VCI) and agrochemical use (AI) in coffee landscapes. Figure 3. Conditional inference trees testing relationships between 13 local and 7 regional factors and: a) presence of parasitism, b) proportion of parasitized ant species, and c) proportion of parasitized Gnamptogenys cocoons in coffee landscapes. Predictor variables in boxes are ranked (top, highest correlation with dependent variable). P-values indicate the significance at 95% of confidence in the relationship tested. Box plots include the inner quartiles (grey box), the median values (solid black line), and 1.5 x the inner quartiles (error bars) of cocoons parasitized associated with each string of predictor variables. Sample sizes at each terminal node show the number of sites in that box plot. 0.0 0.2 0.2 0.6 0.2 0.8 1.0 c 1.0 0.4 0.4 VCI VCI 0.6 0.6 0.8 0.6 0.8 0.2 0.4 Prop species 0.4 0.0 0.0 0.0 Prop. parasitized species 0.0 0.0 0.2 0.2 0.6 0.4 0.6 Presence of parasitism 0.4 0.8 0.8 Presence or absence of parasitism 1.0 1.0 Presence of parasitism Figure 1. a b VCI 0.8 0.0 0.0 0.2 0.2 0.4 AI 0.4 AI AI 0.6 0.6 0.8 d 0.8 Figure 2. Figure 3. Table S1. Results from Moran’s test for spatial autocorrelation using a spatial weights matrix. Results are shown for best-fit model GLMs and for the conditional inference trees (CIT). Dependent variable (test)§ Moran’s statistic Moran I Expectation Variance P standard deviate statistic Presence of parasitism (GLM) 1.7286 0.131114 -0.029411 0.008623 0.042 Prop. of species parasitized (GLM) 1.006 0.060946 -0.02941 0.00806 0.157 Prop. of Gnamptogenys cocoons 0.5664 -0.022905 -0.04761 0.00190 0.285 -0.1685 -0.146028 -0.1000 0.0746 0.567 0.5664 -0.022905 -0.04761 0.00190 0.286 3.6474 0.248209 -0.07142 0.00767 <0.001 0.7071 -0.3088 -0.333333 0.001201 0.240 Presence of parasitism (CIT) -0.8663 -0.11139 0.02941 0.00895 0.807 Prop. of species parasitized (CIT) 0.4778 0.01493 -0.02941 0.008614 0.316 Prop. of Gnamptogenys cocoons 0.4266 -0.01478 -0.052631 0.00787 0.335 -1.3745 -0.48874 -0.10000 0.07998 0.915 -0.7734 -0.085185 -0.05555 0.00146 0.780 -1.0477 -0.16272 -0.07142 0.007593 0.853 -0.7071 -0.9999 -0.33333 0.88888 0.760 parasitized (GLM) Prop. of Odontomachus cocoons parasitized (GLM) Prop. of Pachycondyla cocoons parasitized (GLM) Prop. of G. sulcata cocoons parasitized (GLM) Prop. of O. chelifer cocoons parasitized (GLM) parasitized (CIT) Prop. of Odontomachus cocoons parasitized (CIT) Prop. of Pachycondyla cocoons parasitized (CIT) Prop. of G. sulcata cocoons parasitized(CIT) Prop. of O. chelifer cocoons parasitized(CIT) § The tests autocorrelation for general linear models with the vegetation complexity index (VCI), agrochemical index (AI) and for conditional inference trees (CIT) for each dependent variable tested. Table S2. Ant species and morphospecies and their eucharitid parasitoids encountered in three habitats in a coffee landscape. Ant morphospecies Eucharitid morphospecies Seaso Habitat(s) Stage/Sex N† collected¶ n Camponotus atriceps Obeza n. sp.¶¶ Wet High-shade adult F 11 Gnamptogenys sp. 1 Kapala izapa Wet Forest adult M 12 Gnamptogenys sp. 1 Kapala sp. Wet Forest pharate adult 1 Gnamptogenys sulcata Kapala izapa Dry High-shade adult M, adult 8 F Gnamptogenys sulcata Kapala nr sulcifacies§ Wet Low-shade adult F 2 Gnamptogenys sulcata Kapala sp. Wet High-shade pharate adult 1 Gnamptogenys sulcata Eucharitidae Dry High-shade pharate adult 1 Gnamptogenys sulcata Eucharitidae Wet Low-shade pupa 1 Odontomachus chelifer Kapala nr sulcifacies§ Wet High-shade adult M 3 Odontomachus chelifer Kapala nr sulcifacies§ Wet Low-shade adult F 14 Odontomachus meinerti Eucharitidae Wet High-shade pharate adult 2 Pachycondyla harpax Kapala nr sulcifacies§ Wet Low-shade adult F 1 Pachycondyla harpax Eucharitidae Wet Low-shade pupa 1 Pachycondyla impressa Kapala nr sulcifacies Wet Forest adult F 2 ¶ Some pharate and pupal forms could not be identified to genus, species, or to sex. Indicates the number of instances of the relationship was encountered. ¶¶ Undescribed species § All individuals found belonged to the same morphospecies. † Capítulo V. DISCUSION Y CONCLUSIONES Este trabajo tuvo como propósito estudiar la diversidad y abundancia de hormigas, servicios ecosistemicos que este grupo ofrece a través del parasitismo que ciertos géneros de parasitoides en un paisaje cafetalero. Las preguntas centrales de esta investigación fueron: ¿Cuáles son los factores locales y paisaje que afectan la diversidad y abundancia de hormigas? ¿Qué factores influyen en los servicios ecosistémicos de remoción de presas que este grupo ofrece? ¿Cúales afectan la relación de parasitismo que sufren las hormigas por parasitoides? Este trabajo se centra en la hipótesis de que la intensificación de hábitats reduce la diversidad y abundancia de ciertos grupos de insectos en menor o mayor grado, lo que afectará los servicios ecosistémicos debido a la simplificación de grupos funcionales y se encontrará un menor parasitismo en sitios con mayor intensificación. En los análisis, además de medir variables de complejidad en cada sitio, se incluyeron el efecto del uso y frecuencia de agroquímicos en las diferentes labores de control y nutrición, así como factores de paisaje: distancia a los parches de bosque, mediciones espaciales del porcentaje de áreas conservadas (bosque y café rustico) en cada sitio de muestreo, variables poco estudiadas en agroecosistemas tropicales. Con base a los resultados generados en esta investigación, encontramos que la diversidad y abundancia de los diferentes grupos de hormigas responde en mayor grado a características locales de vegetación (por ejemplo, humus, circunferencia de árboles) y en menor, pero no de mínima importancia, a las características de paisaje (proporción de áreas de bosque y cafetales de café rustico). Por lo tanto, el grado de complejidad del hábitat está fuertemente correlacionada con la diversidad y abundancia de hormigas (Armbrecht et al 2005, Rivera y Armbrecht 2005, Teodoro et al 2010), debido a las condiciones microclimaticas, las labores culturales (podas, fertilización) que se realizan en menor o mayor grado (Philpott 2005, MacGlynn et al 2009), las condiciones nutrimentales del suelo, sitios de anidación, entre otros factores, y están directamente relacionadas con cambios en la comunidad de hormigas (Perfecto y Vandermeer 1996). Similares resultados se encontraron en estudios con abejas en la misma zona de estudio, donde la complejidad del hábitat favorece la riqueza, abundancia y composición de una comunidad de abejas (Jha y Vandermeer 2010), y no los efectos de paisaje como ha sido estudiado en otros agroecosistemas con diversos grupos de himenópteros (Tylianakys et al 2005). Un factor local de manejo agronómico (fertilización) afectó negativamente la abundancia de hormigas del suelo, este dato no había sido reportado en sistemas tropicales de café; pero se debe continuar estudiando detalladamente e incluso con otros organismos, por ejemplo evaluando la residualidad de los productos aplicados (Matlock y de la Cruz 2003). A pesar de que factores de paisaje no son estadísticamente importantes para algunas hormigas, otros factores biológicos no considerados, como la capacidad de dispersión de las diferentes especies, están relacionados estrechamente a cambios en el paisaje que indirectamente afectan la diversidad y abundancia de hormigas (Livinston et al. 2013). Por ejemplo, se conoce que las hormigas que anidan en ramas dependen de la disponibilidad de ramas huecas (factor local) y son consideradas relativamente sésiles (Philpott y Foster 2005); en este estudio, contrario a la predicción inicial, se encontró que la distancia al bosque fue el factor que influye en la diversidad de este grupo de hormigas, a mayor distancia al bosque, aumenta la diversidad de hormigas que anidan en ramas y esto se debe que existe una mayor disponibilidad de ramas huecas a mayor distancia al bosque. Este trabajo reporta, que en agroecosistemas de café el hábitat (con manejo agronómico moderado) es el factor importante para este grupo de hormigas; en sitios con intensificación moderada (por ejemplo cafetal de tipo policultivo comercial) la diversidad es mayor en comparación con agroecosistemas más complejos como café rústico o bosque, como se esperaba encontrar. Analizando detalladamente patrones locales (disponibilidad de ramas huecas) y de paisaje (distancia al bosque) en esta investigación, encontramos que existe una relación positiva entre la disponibilidad de ramas huecas y la distancia al bosque, hay mas ramas disponibles a mayor distancia al bosque. Así también, recientemente se ha demostrado que la altitud es un factor de paisaje que influye en la diversidad de este grupo de hormigas, aspecto considerado para esta investigación pero significativamente no importante (Gillette et al en revisión). Paralelamente, se ha estudiado las implicaciones por pérdida o aumento de algunas especies de hormigas (o su abundancia) en la remoción de presas potenciales en cafetales para diversas plagas como broca y minador de la hoja de café (De la Mora et al 2008, Larsen y Philpott 2010). Este trabajo apoya la hipótesis de que la riqueza y abundancia de hormigas están correlacionadas postivimanente con las tasas de remoción de presas en agroecosístemas de café. Se encontró que la abundancia y la riqueza de hormigas tuvieron una tendencia positiva y fuertemente correlacionada con la proporción de presas removidas, incluso cuando otros factores locales y el paisaje fueron incluidos en los análisis. Sin embargo, de acuerdo con nuestros datos la remoción de presas puede estar influenciada indirectamente por características locales del sitio; por ejemplo, la riqueza de árboles, el número de ramas huecas de café y un factor del paisaje (café rústico a 500 m); estas características físicas promueven una mayor riqueza y abundancia de hormiga que directa y positivamente se correlacionan con la remoción de presas. No se encontró una relación positiva con la distancia al bosque, contrario a estudios previos en la región de estudio, donde la distancia al bosque es inversamente proporcional al número de presas removidas (Armbrecht y Perfecto 2003); sin embargo en este estudio se concluye que la diversidad de hormigas está correlacionada y es mayor a distancias menores al bosque (un efecto indirecto de la diversidad). Así, los servicios de control de plagas en paisajes cafetaleros están fuertemente impulsados por la diversidad biológica de depredadores, con cierta influencia de factores físicos que promueven la diversidad y abundancia de grupos de depredadores (como las hormigas, aves y murciélagos) y complementan la regulación de insectos nocivos potenciales (Garcia Estrada 2006, Philpott et al 2009, Larsen and Philpott 2010). Inicialmente se esperaba encontrar una relación negativa entre el porcentaje de pupas parasitadas y cafetales complejos, así como en sitios sin uso de agroquímicos. Sin embargo un resultado importante de este trabajo es que la frecuencia por el uso de algún agroquímico afecta el parasitismo en hormigas. Por otro lado, la focalización sobre un determinado grupo de pupas (cocones) limitó el conocimiento sobre el parasitismo real que afecta a hormigas en un paisaje de café. A partir de esto, los análisis realizados señalaron que el factor importante para el parasitismo en hormigas es el uso de agroquímicos, seguido de la cantidad de humus y dos factores de paisaje. Las variables de paisajes corroboran la importancia de mantener sitios con mayor complejidad que provean refugios, sitios de alimentación y anidación para otros himenópteros, como abejas y avispas demostrado en estudios previamente revisados (Landis et al 2000, Sperber et al 2004). Adicionalmente, como parte de los resultados del estudio de parasitismo, se encontró un parasitoide perteneciente a la subfamilia Eucharitidae (género Obeza spp.) en la hormiga Camponotus atriceps Mayr, que de acuerdo con la literatura ha sido reportado previamente para otra especie de Camponotus (posiblemente no descrita) (ver Pérez-Lachaud y Lachaud 2014). Como discusión final, se puede argumentar que los diferentes hábitats no fueron un factor determinante para nuestros estudios, pero si, ciertas características físicas locales y de paisaje para cada grupo de hormigas. El índice de agroquímicos únicamente fue significativo para la abundancia de hormigas que anidan en troncos de café y para la relación hormiga-parasitoide, pero es necesario estudiar más a fondo esta relación, pues a nivel mundial está poco abordada. La diversidad y abundancia de hormigas son los principales factores que determinaron la remoción, así también factores locales y de paisaje están indirectamente relacionados con el fenómeno de remoción. Finalmente, este y otros estudios demuestran que la intensificación en agroecosistemas afecta la diversidad y abundancia de diferentes organismos. Así también, se conoce que la pérdida de biodiversidad afectará los servicios ecosistemicos que los sistemas complejos proveen, por lo que se debe considerar evaluar desde diferentes perspectivas el impacto del manejo agronómico que se realice en los agroecosistemas. Es deseable incentivar áreas de amortiguamiento o corredores biológicos con árboles que promuevan la conservación de diferentes organismos a través de la matriz agrícola en paisajes de café. CONCLUSIONES 1.- La presente investigación utilizó al grupo taxonómico Hymenoptera para relacionar el efecto de factores locales y de paisaje sobre la diversidad y abundancia de hormigas en tres diferentes hábitats (café de baja sombra, café de sombra, y bosque). Encontramos que los factores locales afectan principalmente a la diversidad de hormigas, pero cada grupo responde de manera diferente a ciertos aspectos de manejo agrícola (hormigas de hojarasca, hormigas que anidan en ramas de café, en troncos podridos y hormigas arbóreas). Particularmente, en este trabajo se determinó que la cantidad de humus, el número de ramas secas de café, la circunferencia de los árboles, el número de troncos podridos, son factores locales que promueven los patrones de diversidad y abundancia para las especies de los cuatro grupos de hormigas. Sin embargo, cada grupo de hormigas responde en abundancia y riqueza a factores específicos. Interesantemente, el uso y frecuencia de la aplicación de fertilizantes afecta negativamente la abundancia de hormigas que anidan en trocos podridos. 2.- Interesantemente, el uso y frecuencia de la aplicación de fertilizantes afecta negativamente la abundancia de hormigas que anidan en trocos podridos. Se demostró un efecto negativo de la fertilización sobre la abundancia de un grupo de hormigas. Este resultado contribuye al número de estudios que evidencian una de las problemáticas que representa la intensificación de los agroecosistemas por el uso de productos químicos que afectan indirectamente a insectos benéficos o susceptibles a ciertos productos químicos. 3.- Este trabajo tuvo como propósito estudiar los servicios ecosistémicos, con un enfoque sobre la remoción de presas por hormigas en un paisaje de café. Nos apoyamos en la hipótesis de que la intensificación del manejo agronómico disminuye los servicios ecosistémicos y a partir de una serie de análisis realizados en esta investigación, se puede argumentar que no hay efectos negativos directos de la reducción de la complejidad de la vegetación o por el uso de agroquímicos sobre la remoción de presas por las hormigas. Sin embargo, este trabajo apoya la hipótesis de que la riqueza y abundancia de hormigas están correlacionadas con las tasas de remoción de presas en agroecosístemas de café. Se encontró que la abundancia y la riqueza de hormigas tuvieron una tendencia positiva y fuertemente correlacionada con la proporción de presas removidas, incluso cuando otros factores locales y del paisaje fueron incluidos en los análisis. Sin embargo, la remoción de presas puede estar influenciada indirectamente por características locales del sitio (troncos podridos, disponibilidad de ramas secas en cafetos) y factores del paisaje (distancia y porcentaje de bosque en cada sitio) pues estas características físicas promueven una mayor riqueza y abundancia de hormigas (ver Capítulo II) que directamente se correlacionan positivamente con la remoción de presas. 5.-No se encontró un efecto positivo entre la proporción de parasitismo y los índices de complejidad para la mayoría de nuestras variables dependientes, únicamente para el género Gnamptogenys spp. Sin embargo un resultado importante en este trabajo ha sido demostrar que la frecuencia del uso de algún agroquímico afecta el parasitismo en hormigas (Capítulo IV). La focalización del estudio sobre las especies de hormigas para las cuales la pupación se realiza dentro de un capullo limitó el conocimiento sobre el parasitismo real que afecta a las hormigas en general en un paisaje de café. Los análisis realizados señalaron que los factores importantes para el parasitismo en hormigas son el uso de agroquímicos, la cantidad de humus y dos factores de paisaje (proporción de cafetal rústico y bosque en cada sitio), siendo el primero (uso de agroquímicos) el más significativo estadísticamente (ver Capítulo IV). 6.- Como parte de los resultados del estudio de parasitismo, se encontraron varias asociaciones nuevas de eucharítidos con Ponerinae y Ectatomminae. Se encontró un parasitoide perteneciente a la subfamilia Eucharitidae (género Obeza sp.) en la hormiga Camponotus atriceps Mayr, que de acuerdo con la literatura, recientemente este género de Eucharitidae ha sido reportado atacando Camponotus aff. textor por parte de una especie no descrita de este género. Lo anrerior, puede generar futuros estudios para conocer la diversidad de parasitoides y sus posibles asociaciones entre Obeza sp. y diferentes especies de Camponotus. RECOMENDACIONES 1.- Sustentado por los datos generados en esta investigación, se recomienda conservar una diversidad de árboles de sombra en cafetales, lo que generaría directamente refugio o sitios de anidación y alimentación para las hormigas (como ramas huecas, troncos podridos y exudados florales); así como también aumentaría la complejidad de interacciones tróficas y relaciones ecológicas con otros organismos (depredación, parasitismo y competencia inter e intra especifica). 2.- Se propone implementar una diversidad estructural, promoviendo la diversidad de especies para la sombra de café con la vegetación original, con el fin de aumentar la riqueza y abundancia de hormigas para promover los servicios ecosistémicos de depredación sin intervenir con las metas de producción. Con acciones en la diversificación estructural de la sombra de café, otros taxa como los murciélagos, aves, arañas complementarán las labores de regulación de insectos potenciales, y se enfatiza la importancia de la diversidad biológica de los depredadores en las fincas de café que está altamente relacionada con la regulación de insectos-plaga. 3.- Algunos factores de paisaje (por ejemplo áreas de bosque y cafetal rustico) promueven la relación ecológica de las hormigas con sus depredadores, por lo cual, la implementación de zonas de amortiguamiento y conectividad entre fragmentos de bosque puede ayudar a mantener reguladas las comunidades de hormigas, dentro de ellas, las consideradas como insectos-plaga. CAPÍTULO VI. LITERATURA CITADA Agosti, D. y Alonso, L. E. 2000. The ALL protocol, pp. 204–206. In: Agosti, D., Majer, J. D., Alonso, L. E. y Schultz, T. R. (Eds.). Ants. Standard Methods for Measuring and Monotoring Biodiversity. Smithsonian Institution Press, Washington, USA. Altieri, M. A. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74:19-31. Armbrecht, I. y Perfecto, I. 2003. Litter-twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agriculture, Ecosystems and Environment, 97:107-115. Armbrecht, I. y Gallego, M. C. 2007. Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomologia Experimentalis et Applicata, 124:261267. Baillie, J. E. M., Hilton-Taylor, C. y Stuart, S. N. (Eds). 2004. 2004 IUCN Red List of Threatened Species. A Global Species Assessment. IUCN, Gland, Switzerland and Cambridge, UK. Benjamini, Y. y Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57:289-300. Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Bernat, A., Blanchet, G., Blankmeyer, E., Carvalho, M., Christensen, B., Chun, Y., Dormann, C., Dray, S., Halbersma, R., Krainski, E., Legendre, P., Lewin-Koh, N., Li, H., Ma, J., Millo, G., Mueller, W., Ono, H., Peres-Neto, P., Piras, G., Reder, M., Tiefelsdorf, M. y Yu, D.. 2012. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-46. http://CRAN.R-project.org/package=spdep. Accessed Dec 2012. Bjornstad, O. 2009. ncf: spatial nonparametric covariance functions. R package version 1.1-3. http://CRAN.R-project.org/package=ncf. Accessed Dec. 2012 Bolton, B. 1994. Identification guide to the ant genera of the world. Harvard University Press, Cambridge. Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. E. A., Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J., Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., Galloway, J. N., Genovesi, P., Gregory, R. D., Hockings, H., Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., McGeoch, M. A., McRae, L., Minasyan, A., Hernández Morcillo, M., Oldfield, T. E. E., Pauly, D., Quader, S., Revenga, C., Sauer, J. R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S. N., Symes, A., Tierney, M., Tyrrell, T. D., Vié, J.-C. y Watson, R. 2010. Global biodiversity: indicators of recent declines. Science, 328:1164-1168. De la Mora, A., y Philpott, S. M., 2010. Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environmental Entomology, 39:1473-1481. De la Mora, A., Livingston, G. y Philpott, S. M. 2008a. Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica, 40:742-746. De la Mora, A., Pérez-Lachaud, G., y Lachaud, J.-P. 2008b. Mandible strike: the lethal weapon of Odontomachus opaciventris against small prey. Behavioural Processes, 78:64-75. De la Mora, A., Murnen, C. J. y Philpott, S. M., 2013a. Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodiversity and Conservation, 22:871-888. De la Mora, A., García-Ballinas, A. y Philpott, S. M. 2013b. Local, landscape and diversity drivers of predation services provided by ants in coffee landscapes. Agriculture, Ecosystems and Environment, En revisión.AGEE10440. Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Kissling, W. D., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., y Wilson, R. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609-628. Folgarait, P. J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation, 7:1221-1244. García Estrada, C., Damon, A., Sánchez Hernández, C., Soto Pinto, L. y Ibarra Núñez, G., 2006. Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biological Conservation, 132:351-361. Heraty, J. M. 1997. Eucharitidae. In: Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). Gibson, G. A. P., Huber, J. T. y Woolley, J. B. (Eds). National Research Council of Canada Press, Ottawa, Ontario, Canada, pp. 321-326. Hölldobler, B. y Wilson, E. O. 1990. The Ants. Springer, Berlin. Hothorn, T., Hornik, K. y Zeileis, A. 2006. Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical Statistics,15:651-674. Ibarra-Núñez, G. 1990. Los artrópodos asociados a cafetos en un cafetal mixto del Soconusco, Chiapas, México: I Variedad y abundancia. Folia Entomológica Mexicana, 79:207-231. IBM-SPSS 2010. http://www-01.ibm.com/software/mx/analytics/spss/. Acceso 10 de Abril 2010. Jenkins, M. 2003. Prospects for biodiversity. Science, 302:1175-1777. Jha, S. 2009. Movement in the Matrix: pollination and dispersal processes in a tropical coffee and forest landscape mosaic. Tesis doctoral. Universidad de Michigan. Jiménez, E., Fernández, F., Arias, T. M., Lozano-Zambrano, F. H. (Eds.). 2008. Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D. C., Colombia. Lachaud, J.-P. y García Ballinas, J. A. 2001. Diversité de la myrmécofaune (Ponerinae et Cerapachyinae) dans les agrosystèmes de café et cacao au Mexique. Actes des Colloques Insectes Sociaux, 14:95-99. Lachaud, J.-P. y Pérez-Lachaud, G. 2001. Fourmis ponérines associées aux parasitoïdes du genre Kapala Cameron (Hymenoptera, Eucharitidae). Actes des Colloques Insectes Sociaux, 14:101-105. Lachaud, J.-P. y Pérez-Lachaud, G. 2009. Impact of natural parasitism by two eucharitid wasps on a potential biocontrol agent ant in southeastern Mexico. Biological Control, 48:92-99. Lachaud, J.-P. y Pérez-Lachaud, G.. 2012. Diversity of species and behavior of hymenopteran parasitoids of ants: a review. Psyche 2012: Article ID134746, 24 pages. doi: 10.1155/2012/134746. Lachaud, J.-P., Pérez-Lachaud, G. y Heraty, J. M. 1998. Parasites associated with the ponerine ant Ectatomma tuberculatum (Hymenoptera: Formicidae): first host record for the genus Dilocantha (Hymenoptera: Eucharitidae). The Florida Entomologist, 81:570-574. Landis, D. A., Wratten, S. D. y Gurr, G. M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45:175-201. Longino, J. T. 2009. Additions to the taxonomy of New World Pheidole (Hymenoptera: Formicidae). Zootaxa, 2181:1-90. Longino, J.T. 2011. Ants of Costa Rica. http://academic/evergreen.edu/projects/ants/AntsofCostaRica.html. Accessed January, 2011. Longino, J. T. y Colwell, R. K. 1997. Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecological Applications, 7:1263-1277. Mayfield, M. M., Ackerly, D. y Daily, G. C. 2006. The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. Journal of Ecology, 94:522-536. Moguel, P. y Toledo, V. M. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13:11-21. Olden, J. D., Lawler, J. J. y Poff, N. L. 2008. Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology, 83:171-193. Pérez-Lachaud, G., Heraty, J. M., Carmichael, A. y Lachaud, J.-P. 2006a. Biology and behavior of Kapala (Hymenoptera: Eucharitidae) attacking Ectatomma, Gnamptogenys, and Pachycondyla (Formicidae: Ectatomminae and Ponerinae) in Chiapas, México. Annals of the Entomological Society of America, 99:567-576. Pérez-Lachaud, G., López-Méndez, J. A., y Lachaud, J.-P. 2006b. Eucharitid parasitism of the neotropical ant Ectatomma tuberculatum: parasitoid co-occurrence, seasonal variation, and multiparasitism. Biotrópica, 38:574-576. Pérez-Lachaud, G., López-Méndez, J. A., Beugnon, G., Winterton, P. y Lachaud, J.-P. 2010. High prevalence but relatively low impact of two eucharitid parasitoids attacking the Neotropical ant Ectatomma tuberculatum (Olivier). Biological Control, 522:131-139. Perfecto, I. y Snelling, R. 1995. Biodiversity and tropical ecosystem transformation: ant diversity in the coffee agroecosystem in Costa Rica. Ecological Applications, 5:1084-1097. Perfecto, I. y Vandermeer, J. 2002. Caficultura y biodiversidad: cafetales como reservas de biodiversidad y biodiversidad como benefactora de la caficultura. In Pohlan, J. (Ed.) México y la cafeticultura chiapaneca: Reflexiones y alternativas para los caficultures. Shaker; Verlag. Aachen. pp. 75-86. Perfecto, I., Mas, A., Dietsch, T. y Vandermeer, J. 2003. Conservation of biodiversity in coffee agroecosystems: A tri-taxa comparison in southern México. Biodiversity and Conservation, 12:1239-1252. Perfecto, I., Vandermeer, J., López, G., Ibarra-Núñez, G., Greenberg, R., Bichier P. y Langridge, S. 2004. Greater predation of insect pests in a diverse agroecosystem: The role of resident Neotropical birds in shade coffee farms. Ecology, 85:2677-2681. Perfecto, I., Armbrecht, I., Philpott, S. M., Soto-Pinto, L. y Dietsch, T. V. 2007. Shaded coffee and the stability of rainforest margins in the Northern Latin America. En: Tscharntke T., Leuschner C., Zeller M., Guhardja E., y Bidin, A. (Eds). The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation, Springer Verlag Berlin, pp 227-267. Philpott, S. M. 2005. Effects of shade tree pruning on arboreal ants in coffee agroforestry systems. Agroforestry Systems, 64:219-224. Philpott, S. M. y Armbrecht, I. 2006. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31:369-377. Philpott, S. M., Perfecto, I. y Vandermeer, J. 2008a Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity. Journal of Animal Ecology, 77:505-511. Philpott, S. M., Perfecto, I. y Vandermeer, J. 2008b. Behavioral diversity of predatory ants in coffee agroecosystems. Environmental Entomology, 37:181-191. Philpott, S. M., Arendt, W., Armbrecht, I., Bichier, P., Dietsch, T., Gordon, C., Greenberg, R., Perfecto, I., Soto-Pinto, L., Tejeda-Cruz, C., Williams, G. y Valenzuela, J. 2008c. Biodiversity loss in Latin American coffee landscapes: reviewing evidence on ants, birds, and trees. Conservation Biology, 22:1093-1105. Reese, K. M., y Philpott, S. M. 2012. Environmental and habitat drivers of relative abundance for a suite of Azteca-attacking Pseudacteon phorid flies. Environmental Entomology, 41:11071114. Richards, J. F., y Tucker, R. P. 1988. World deforestation in the twentieth century. Duke University Press. Ribas, C. R., Sobrinho, T. G., Schoereder, J. H., Sperber, C. F., Lopes-Andrade, C. y Soares, S. M. 2005. How large is large enough for insects? Forest fragmentation effects at three spatial scales. Acta Oecologica, 27:31-41. Rojas-Fernández, P. 2001. Las hormigas del suelo en México: diversidad, distribución e importancia (Hymenoptera: Formicidae). Acta Zoologca Мехicana. Número especial, 1:189238. Sperber, C. F., Nakayama, K., Valverde, M. J., y Neves, F S. 2004. Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic and Applied Ecology, 5:241251. Strobl, C., Hothorn, T., Zeileis, A. 2009. Party on! A new, conditional variable-importance measure for random forests available in the party package. The R Journal 2: 14-17. The R Development Core Team, 2011. An introduction to R. Version 2.2.0 R-Project, URL: http://CRAN.R-project.org. Accessed July, 2012. Thies, C., Steffan-Dewenter, I., y Tscharntke, T. 2003. Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos, 101:18–25. Tscharntke, T. y Lewis, O. T. 2007.Habitat modification alters the structure of tropical host– parasitoid food webs. Nature, 445:202-205. Tscharntke, T., Steffan-Dewenter, I., Kruess, A. y Thies C. 2002. Characteristics of insect populations on habitat fragments: A mini review. Ecological Research, 17: 229-239. Tscharntke, T., Sekercioglu C. H., Dietsch, T. V., Sodhi, N. S., Hoehn, P. y Tylianakis, J. M. 2008. Landscape constraints on functional diversity of birds and insects in tropical agroecosysms. Ecology, 89:944-951. Uno, S., Cotton, J. y Philpott, S. M.2010. Diversity and species composition of ants in urban green spaces. Urban Ecosystems, 13:425-441. van Nouhuys, S. 2005. Effects of habitat fragmentation at different trophic levels in insect communities. Annales Zologici Fennici, 42:433-447. Vandermeer, J. y Perfecto, I. 2007. The agricultural matrix and the future paradigm for conservation. Conservation Biology, 21:274-277. Vandermeer, J., Perfecto, I., Ibarra-Núñez, G., Philpott, S.M. y García-Ballinas, A. 2002. Ants (Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agroforestry Systems, 56:271-276. Vásquez-Ordóñez A. A., I. Armbrecht, G. Pérez-Lachaud. 2012. Effect of habitat type on parasitism of Ectatomma ruidum by eucharitid wasps. Psyche 2012: Article ID 170483, 7 pages. doi:10.1155/2012/170483. Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S, 4th edn. Springer, New York. 495 pp. Wilby A. y Thomas, M. B. 2002. Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. Ecology Letters, 5:353-360. Williams-Guillén, K., Perfecto, I. y Vandermeer, J. 2008. Bats limit insects in a tropical agroforestry system. Science, 320:70. Yanoviak, S. P., y Kaspari, M. 2000. Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos, 89:259-266. ANEXO 1. Acuse de recibido del artículo aceptado: Local and landscape drivers of biodiversity of four guilds of ants in coffee landscapes. Biodiversity Conservation, 22:871-888. ANEXO 2. Normas editoriales del articulo sometido de la revista Agriculture, Ecosystems, and Environment AGRICULTURE, ECOSYSTEMS & ENVIRONMENT An International Journal for Scientific Research on the Interaction Between Agroecosystems and the Environment AUTHOR INFORMATION PACK TABLE OF CONTENTS . • • • • • • . Description Audience Impact Factor Abstracting and Indexing Editorial Board Guide for Authors DESCRIPTION . Agriculture, Ecosystems & Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, complemented as appropriate by dynamic and statistical modelling, that bridge scientific disciplines, integrate knowledge, and are placed in an international or wide comparative context. The focus is on the following areas:• Biological and physical characteristics of agroecosystems including land, air, and water quality.• Ecology, diversity and sustainability of agricultural systems.• Relationships between agroecosystems and the natural environment.• Agroecosystem and global environmental changes including climate change and air pollution.• Ecological consequences of intensification, soil degradation, waste application, irrigation, and mitigation options. • Environmental implications of agricultural land use and land use change. All manuscripts are initially screened on their topic suitability and linguistic quality. The following topics are discouraged unless they provide new information regarding processes operating at the agroecosystem-environment interface: inventory and survey analysis and impact assessment, including life cycle and emergy analysis; greenhouse or laboratory-based studies; development of models or methodologies; studies that are purely agronomic, socio-economic, or political. A section of this journal is published as the companion journal Applied Soil Ecology. Please bookmark this page as: http://www.elsevier.com/locate/agee Fore more information/suggestions/comments please contact [email protected] AUDIENCE . Scientists in Agriculture, Forestry, Ecology and the Environment, Administrators and Policy-Makers in these fields. IMPACT FACTOR . 2009: 3.130 © Thomson Reuters Journal Citation Reports 2010 ABSTRACTING AND INDEXING . Biological and Agricultural Index Current Contents/Agriculture, Biology & Environmental Sciences EMBiology Ecological Abstracts Elsevier BIOBASE Environmental Abstracts Environmental Periodicals Bibliography GEOBASE Science Citation Index Scopus TROPAG/RURAL Database EDITORIAL BOARD . Editor-in-Chief: J. Fuhrer, Air Pollution/Climate Group, Agroscope Reckenholz-Taenikon ART, Reckenholzstrasse 191, 8046 Zürich, Switzerland, Fax: 41 1 3777 201, Email: [email protected] Associate Editors: J.P. Aeschlimann, Montpellier, France M. Carter, Charlottetown, PE, Canada A. de Rouw, Paris, France M.J. Jones, Dorset, UK S. Saggar, Palmerston North, New Zealand G. Seneviratne, Kandy, Sri Lanka T.A. Veldkamp, Enschede, Netherlands Editorial Advisory Board: B. Amon, Universität für Bodenkultur Wien (BOKU), Wien, Austria A. Arunachalam, North Eastern Regional Inst. of Sci. & Technology, Nirjuli, Arunachal Pradesh, India restoration ecology, crop production, natural resource management, remote sensing and GIS, soil nutrient management P. Audet, University of Ottawa, Ottawa, ON, Canada E. Baggs, University of Aberdeen, Aberdeen, UK K.L. Bailey, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada biopesticides, biological control, plant pathology, microbiology, plant diseases and weeds N. Batjes, ISRIC - World Soil Information, Wageningen, Netherlands C. Boutin, National Wildlife Research Centre, Hull, QC, Canada plant and weed diversity, non-crop habitats, organic farming, phytotoxicity, landscapes F. Burel, Université de Rennes I, Rennes, France landscape ecology, biodiversity, connectivity, invertebrates, hedgerows K.N. Cahill, Lund University, Lund, Sweden I. Cardoso, Federal University of Vicosa, Vicosa, Brazil M. Centritto, Consiglio Nazionale delle Ricerche (CNR), Monterotondo Scalo RM, Italy plant physiological ecology, gas-exchange (carbon assimilation, transpiration and isoprenoid emission), physiological responses of plants to environmental stress, climate-vegetation interactions, climate change impacts K.Y. Chan, University of New South Wales, Wagga Wagga, NSW, Australia soil structure, soil health, soil organic carbon, conservation tillage, earthworms X. Chen, Zhejiang University, Zhejiang, China F. Conen, Universität Basel, Basel, Switzerland C. Drury, Agriculture and Agri-Food Canada, Harrow, ON, Canada A.C. Edwards, Peterhead, Aberdeenshire, UK soil, nutrients, cycles, impacts, agriculture F. Ewert, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany climate change (impacts), agroecosystems (physiology), resource use and management (land, water), systems analysis and modelling, agricultural sustainability assessment L.G. Firbank, Institute of Grasslands and Environmental Research, Okehampton, UK biodiversity, agro-ecology, ecosystem services, land use, sustainable farming systems A.J. Franzluebbers, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Watkinsville, GA, USA M. Frei, Japan International Research Center for Agricultural, Tsukuba, Ibaraki, Japan J. Helenius, University of Helsinki, University of Helsinki, Finland agroecology, biodiversity (in farmland), ecosystem services, food systems, agroecosystem W.B. Hoogmoed, Wageningen University, Wageningen, Netherlands Y. Huang, Chinese Academy of Sciences (CAS), Beijing, China M.B. Kirkham, Kansas State University, Manhattan, KS, USA A. Légère, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada J. Leifeld, Research Station Agroscope Reckenholz, Zürich, Switzerland soil organic matter quality and turnover in agricultural systems, soil responses to land-use and management, analytical techniques in soil chemistry, greenhouse gases in agricultural systems (measurement and modelling), environmental performance of farming systems F-M. Li, Lanzhou University, Lanzhou, Gansu Province, China Y. Li, Chinese Academy of Agricultural Sciences, Beijing, China N.Z. Lupwayi, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada Soil Microbiology E.J.P. Marshall, Marshall Agroecology Limited, Winscombe, UK agroecology, biodiversity, vegetation management, field margins, weeds, dispersal W.J. McConnell, Michigan State University (MSU), East Lansing, MI, USA G. Moreno Marcos, Universidad de Extremadura, Plasencia, Spain K. Mueller, AgeResearch Ltd., Hamilton, New Zealand J. Nyamangara, Int. Crops Research Institute for the Semi Arid Tropics (ICRISAT), Bulawayo, Zimbabwe O. Oenema, Wageningen University, Wageningen, Netherlands D.M. Olszyk, Corvalis, OR, USA A. Ouin, INP ENSAT, Castanet-Tolosan, France J. Pant, The WorldFish Center, Bayan Lepas, Penang, Malaysia D. Pimentel, Cornell University, Ithaca, NY, USA H. Pleijel, Göteborgs Universitet, Göteborg, Sweden S.L. Poggio, Universidad de Buenos Aires, Buenos Aires, Argentina D.D. Poudel, University of Louisiana at Lafayette, Lafayette, LA, USA A. Reenberg, University of Copenhagen, Copenhagen K, Denmark M. Shiyomi, Ibaraki University, Mito, Japan P. Smith, University of Aberdeen, Aberdeen, UK L. Sparrow, Tasmanian Institute of Agricultural Research, Kings Meadows, TAS, Australia M. Sperow, West Virginia University, Morgantown, WV, USA F. Van der Pol, Royal Tropical Institute, Amsterdam, Netherlands B. Vanlauwe, TSBF-CIAT, Nairobi, Kenya E.F. Viglizzo, INTA Centro Regional La Pampa, Santa Rosa, La Pampa, Argentina C. Wellstein, Universität Bayreuth, Bayreuth, Germany H. Xiubin, Chinese Academy of Sciences (CAS), Yangling Shaanxi, China H. Yao, Zhejiang University, Hangzhou, China GUIDE FOR AUTHORS . INTRODUCTION Agriculture, Ecosystems and Environment deals with the interface between agriculture and the environment. Preference is given to papers that develop and apply interdisciplinarity, bridge scientific disciplines, integrate scientific analyses derived from different perspectives of agroecosystem sustainability, and are put in as wide an international or comparative context as possible. It is addressed to scientists in agriculture, food production, agroforestry, ecology, environment, earth and resource management, and administrators and policy-makers in these fields. The journal regularly covers topics such as: ecology of agricultural production methods; influence of agricultural production methods on the environment, including soil, water and air quality, and use of energy and non-renewable resources; agroecosystem management, functioning, health, and complexity, including agro-biodiversity and response of multi-species ecosystems to environmental stress; the effect of pollutants on agriculture; agro-landscape values and changes, landscape indicators and sustainable land use; farming system changes and dynamics; integrated pest management and crop protection; and problems of agroecosystems from a biological, physical, economic, and socio-cultural standpoint. Types of papers Types of papers 1. Original papers (Regular Papers) should report the results of original research. The material should not have been published previously elsewhere, except in a preliminary form. 2. Reviews should cover a part of the subject of active current interest. They ay be submitted or invited. 3. A Short Communication is a concise, but complete, description of a limited investigation, which will not be included in a later paper. Short Communications should be as completely documented, both by reference to the literature and description of the experimental procedures employed, as a regular paper. They should not occupy more than 6 printed pages (about 12 manuscript pages, including figures, etc.). 4. In the section 'Comments', short commentaries on material published in the journal are included, together with replies from author(s). 5. The section 'News and Views' offers a forum for discussion of emerging or controversial ideas, or new approaches and concepts, in all areas covered by the journal. Contributions to this section should not occupy more than 2 printed pages (about 4 manuscript pages). BEFORE YOU BEGIN Ethics in Publishing For information on Ethics in Publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics andhttp://www.elsevier.com/ethicalguidelines. Conflict of interest All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflictsofinterest. Submission declaration and verification Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection software iThenticate. See also http://www.elsevier.com/editors/plagdetect. Changes to authorship This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts: Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed. After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum. Copyright Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright see http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions. Retained author rights As an author you (or your employer or institution) retain certain rights; for details you are referred to: http://www.elsevier.com/authorsrights. Role of the funding source You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding. Funding body agreements and policies Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies. Open access This journal offers you the option of making your article freely available to all via the ScienceDirect platform. To prevent any conflict of interest, you can only make this choice after receiving notification that your article has been accepted for publication. The fee of $3,000 excludes taxes and other potential author fees such as color charges. In some cases, institutions and funding bodies have entered into agreement with Elsevier to meet these fees on behalf of their authors. Details of these agreements are available at http://www.elsevier.com/fundingbodies. Authors of accepted articles, who wish to take advantage of this option, should complete and submit the order form (available at http://www.elsevier.com/locate/openaccessform.pdf). Whatever access option you choose, you retain many rights as an author, including the right to post a revised personal version of your article on your own website. More information can be found here: http://www.elsevier.com/authorsrights . Language and language services Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who require information about language editing and copyediting services pre- and post-submission please visit http://webshop.elsevier.com/languageediting or our customer support site at http://support.elsevier.com for more information. Full Online Submission Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail removing the need for a paper trail. All submissions must be accompanied by a cover letter detailing what you are submitting. Please indicate: • The author to whom we should address our correspondence (in the event of multiple authors, a single 'Corresponding Author' must be named) • A contact address, telephone/fax numbers and e-mail address • Details of any previous or concurrent submissions. Please see our Authors' Rights section for more copyright information. • It is also useful to provide the Editor-in-Chief with any information that will support your submission (e.g. original or confirmatory data, relevance, topicality). Referees Authors are required to identify four persons who are qualified to serve as reviewers. Authors are requested not to suggest reviewers with whom they have a personal or professional relationship, especially if that relationship would prevent the reviewer from having an unbiased opinion of the work of the authors. A working e-mail address for each reviewer is essential for rapid review in the event that reviewer is selected from those that are identified by the authors. You may also select reviewers you do not want to review your manuscript, but please state your reason for doing so. PREPARATION Use of wordprocessing software It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic illustrations. To avoid unnecessary errors you are strongly advised to use the "spell-check" and "grammar-check" functions of your wordprocessor. Article structure Subdivision - numbered sections Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to "the text". Any subsection may be given a brief heading. Each heading should appear on its own separate line. Introduction State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results. Results This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature. Conclusions The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section. Appendices If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc. Essential title page information Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. • Author names and affiliations. Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author. • • Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author. • Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes. Abstract A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself. Optional graphical abstract A Graphical abstract is optional and should summarize the contents of the paper in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the paper. Graphical abstracts should be submitted with a caption. Supply captions separately, not attached to the graphical abstract. A caption should comprise a brief title (not on the graphical abstract itself). Graphical abstracts should be submitted as a separate file in the online submission system. Maximum image size: 400 × 600 pixels (h × w, recommended size 200 × 500 pixels). Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. Highlights Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters including spaces, or, maximum 20 words per bullet point). See http://www.elsevier.com/highlights for examples. Keywords Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes. Acknowledgements Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.). Math formulae Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text). Footnotes Footnotes should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many wordprocessors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list. Table footnotes Indicate each footnote in a table with a superscript lowercase letter. Artwok Electronic artwork General points • Make sure you use uniform lettering and sizing of your original artwork. • Save text in illustrations as "graphics" or enclose the font. • Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol. • Number the illustrations according to their sequence in the text. • Use a logical naming convention for your artwork files. • Provide captions to illustrations separately. • Produce images near to the desired size of the printed version. • Submit each figure as a separate file. A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions You are urged to visit this site; some excerpts from the detailed information are given here. Formats Regardless of the application used, when your electronic artwork is finalised, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below): EPS: Vector drawings. Embed the font or save the text as "graphics". TIFF: color or grayscale photographs (halftones): always use a minimum of 300 dpi. TIFF: Bitmapped line drawings: use a minimum of 1000 dpi. TIFF: Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500 dpi is required. If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply "as is". Please do not: • Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG); the resolution is too low; • Supply files that are too low in resolution; • Submit graphics that are disproportionately large for the content. Color artwork Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions. Please note: Because of technical complications which can arise by converting color figures to "gray scale" (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations. Figure captions Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Tables Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article. References Citation in text Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either "Unpublished results" or "Personal communication" Citation of a reference as "in press" implies that the item has been accepted for publication. Web references As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list. References in a special issue Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue. Reference management software This journal has standard templates available in key reference management packages EndNote (http://www.endnote.com/support/enstyles.asp) and Reference Manager (http://refman.com/support/rmstyles.asp). Using plug-ins to wordprocessing packages, authors only need to select the appropriate journal template when preparing their article and the list of references and citations to these will be formatted according to the journal style which is described below. Reference style Text: All citations in the text should refer to: 1. Single author: the author's name (without initials, unless there is ambiguity) and the year of publication; 2. Two authors: both authors' names and the year of publication; 3. Three or more authors: first author's name followed by "et al." and the year of publication. Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically. Examples: "as demonstrated (Allan, 1996a, 1996b, 1999; Allan and Jones, 1995). Kramer et al. (2000) have recently shown ...." List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters "a", "b", "c", etc., placed after the year of publication. Examples: Reference to a journal publication: Van der Geer, J., Hanraads, J.A.J., Lupton, R.A., 2000. The art of writing a scientific article. J. Sci. Commun. 163, 51–59. Reference to a book: Strunk Jr., W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York. Reference to a chapter in an edited book: Mettam, G.R., Adams, L.B., 1999. How to prepare an electronic version of your article, in: Jones, B.S., Smith , R.Z. (Eds.), Introduction to the Electronic Age. E-Publishing Inc., New York, pp. 281–304. Video data Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content. Supplementary data Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, highresolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions. Submission checklist The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item. Ensure that the following items are present: One Author designated as corresponding Author: • E-mail address • Full postal address • Telephone and fax numbers All necessary files have been uploaded • Keywords • All figure captions • All tables (including title, description, footnotes) Further considerations • Manuscript has been "spellchecked" and "grammar-checked" • References are in the correct format for this journal • All references mentioned in the Reference list are cited in the text, and vice versa • Permission has been obtained for use of copyrighted material from other sources (including the Web) • Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print or to be reproduced in color on the Web (free of charge) and in black-and-white in print • If only color on the Web is required, black and white versions of the figures are also supplied for printing purposes For any further information please visit our customer support site at http://support.elsevier.com. AFTER ACCEPTANCE Use of the Digital Object Identifier The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. The correct format for citing a DOI is shown as follows (example taken from a document in the journal Physics Letters B): doi:10.1016/j.physletb.2010.09.059 When you use the DOI to create URL hyperlinks to documents on the web, they are guaranteed never to change. Proofs One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html. If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately – please let us have all your corrections within 48 hours. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received. Offprints The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. The PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use. AUTHOR INQUIRIES For inquiries relating to the submission of articles (including electronic submission) please visit this journal's homepage. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher. You can track accepted articles at http://www.elsevier.com/trackarticle. You can also check our Author and/or contact Customer Support via FAQs (http://www.elsevier.com/authorFAQ) http://support.elsevier.com. © Copyright 2010 Elsevier | http://www.elsevier.com