Surrey: 14th November 2008 - Heriot
Transcription
Surrey: 14th November 2008 - Heriot
Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Simon J.A. Malham Veerle Ledoux (Ghent), Jitse Niesen (Leeds), Vera Thümmler (D-fine) Heriot–Watt University, Edinburgh, UK Surrey: 14th November 2008 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Spectral problems Parabolic nonlinear systems on R × T: ∂t U = B ∆U + c ∂x U + F (U), Travelling wave Uc . Small perturbations U satisfy: B ∆U + c ∂x U + DF (Uc )U = λU. Two main solution approaches: ◮ Projection. ◮ Shooting. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Motivation Workshop at AIM, Palo Alto, May 2005: Stability criteria for multi-dimensional waves and patterns. Organised by: Chris Jones, Yuri Latushkin, Bob Pego, Björn Sandstede and Arnd Scheel. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Setup On R: B ∆U + c ∂x U + DF (Uc )U = λU ⇔ Y ′ = A(x; λ) Y Assume for λ ∈ Ω ⊆ C: ◮ Exponential dichotomies on R− and R+ ; ◮ Same Morse index k (Sandstede 2002). Matching condition (Alexander, Gardner and Jones 1990): D(λ) ≡ e− Rx 0 TrA(ξ;λ) dξ det Y − (x; λ) Y + (x; λ) . Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Numerical issues ◮ Computational domain. ◮ Different exponential growth rates. ◮ Polynomial complexity. ◮ Flow singularities?! ◮ Where to match? ◮ Retaining analyticity. ◮ How to project transversely. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Outline 1 Grassmann manifolds and flows 2 Patch evolution (GGEM) 3 Applications (planar fronts) 4 Transverse Fourier projection 5 Application (wrinkled fronts) 6 Future work Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Stiefel and Grassmann manifolds ◮ Stiefel manifold: V(n, k) = {k-frames centred at the origin}. ◮ Grassmann manifold: Gr(n, k) = {k-dimensional subspaces of Cn }. ◮ Trivial fibre bundle: V(n, k) ∼ = Gr(n, k) × GL(k) ◮ Projection π : k-frame 7→ spanning k-plane. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Representation Coordinate patches Ui: multi-index i = {i1 , . . . , ik } ⊂ {1, . . . , n}. Example: U{1,...,k} uniquely represented by: 1 0 ··· 0 0 1 ··· 0 .. .. .. .. . . . . 0 0 · · · 1 yi◦ = ŷk+1,1 ŷk+1,2 · · · ŷk+1,k . ŷk+2,1 ŷk+2,2 · · · ŷk+2,k .. .. .. . . . . . . ŷn,1 ŷn,2 ··· ŷn,k Local coordinate chart ϕi : Ui → C(n−k)k given by ϕi : yi◦ 7→ ŷ . Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Grassmannian flows Y ′ = A(x, Y ) Y . Substitute decomposition Y = yi◦ ui: yi′◦ ui + yi◦ ui′ = (Ai + Ai◦ yi◦ ) ui, Project onto ith and i◦ th rows: ŷ ′ = c + d ŷ − ŷ (a + b ŷ ) and ui′ = (a + b ŷ ) ui, where a = Ai×i, b = Ai×i◦ , c = Ai◦ ×i and d = Ai◦ ×i◦ . Linear vector field: A = A(x) only? Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Drury–Oja flow Humpherys and Zumbrun; QR-decomposition of Y ∈ V(n, k): Q ′ = (In − QQ † )A(x)Q, (det R)′ = Tr Q † A(x)Q (det R). Corresponds to Riccati with u ′ = −ŷ † (c + d ŷ ) u. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Grassmannian Gaussian elimination method (GGEM) ϕ−1 i C(n−k)k / Ui id / V(n, k) GGEM C(n−k)k o ϕi ′ Ui′ o QOGE (ΛY0 )∗ / GL(n) log / gl(n) Magnus RK V(n, k) o GL(n) o gl(n) ΛY0 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves exp Quasi-optimal Gaussian elimination (QOGE) GE with free stepwise max pivot, generates: Ym+1 = yi◦ L. ∗ ∗ ∗ ∗ ∗ ∗ ∗ . .. ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ .. . ∗ ∗ ∗ ∗ ∗ ∗ ∗ .. . ∗ ∗ ∗ ∗ ∗ ∗ ∗ .. . ··· ··· ··· ··· ··· ··· ··· .. . ∗ ∗ ∗ ··· ∗ ∗ ∗ ··· ∗ ∗ ∗ ∗ ··· 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ −→ 0 ∗ ∗ . .. .. . ∗ ∗ 0 ∗ ∗ 0 ∗ 1 ∗ ∗ 0 ∗ .. . 0 ∗ 0 ∗ ∗ 1 ∗ .. . 0 ∗ 0 ∗ ∗ 0 ∗ .. . ··· ··· ··· ··· ··· ··· ··· .. . ∗ ∗ ∗ ··· 0 0 0 ··· ∗ ∗ ∗ ∗ ··· Grassmannian spectral shooting and the stability of multi-dimensional travelling waves 0 ∗ 0 ∗ ∗ 0 ∗ .. . ∗ 1 ∗ Applications (planar fronts) ◮ ◮ D(λ) ≡ e− Rx 0 TrA(ξ;λ) dξ det Y − (x; λ) Y + (x; λ) . det Y − Y + = det yi◦− yi◦+ · det ui− · det ui+ . ◮ D(λ; x∗ ) ≡ det yi◦− ◮ Exponentially scale GGEM. yi◦+ · det L− · det L+ . Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Boussinesq system PDE: utt = (1 − c 2 ) uxx + 2c uxt − uxxxx − (u 2 )xx . √ Solitary waves: ū(x) ≡ 32 (1 − c 2 )sech2 21 1 − c 2 x . Stable when 1/2 < |c| < 1 and unstable when |c| < 1/2. 0 1 0 0 0 1 A(x; λ) = 0 0 0 −λ2 − 2ū ′′ 2λc − 4ū ′ (1 − c 2 ) − 2ū Grassmannian spectral shooting and the stability of multi-dimensional travelling waves 0 0 . 1 0 Boussinesq: GGEM −5 1.5 x 10 1.5 1 1 0.5 0.5 − −0.5 Y D(λ) 0 0 −1 −1.5 −0.5 −2 −1 −2.5 −3 0 0.05 0.1 λ 0.15 0.2 −1.5 −8 −6 −4 −2 0 ξ 2 4 6 8 Figure: Evans function with GGEM-RK and x∗ = 8 (left panel). Entries of yi for λ = 0.15543141 (right panel). Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Boussinesq: Evans function vs matching point CO−RK Riccati−RK Mobius−M GGEM−LG GGEM−RK 0 10 |D(λ)| −5 10 −10 10 −8 −6 −4 −2 0 2 4 6 8 matching point Figure: |D(λ)| for λ equal to the eigenvalue for different matching points. The number of steps in the equidistant mesh was N = 512. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Boussinesq: error vs matching point CO−RK Riccati−RK Mobius−M GGEM−LG GGEM−RK Riccati−QOGE error in the eigenvalue −6 10 −7 10 −8 10 −9 10 −8 −6 −4 −2 0 2 matching point 4 6 8 Figure: Error in the eigenvalue for different choices of the matching point: N = 512. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Autocatalytic fronts ∂t u = δ∆u + c∂x u − uv m , ∂t v = ∆v + c∂x v + uv m . 0 0 1 0 0 0 0 1 , A(x; λ) = m m−1 λ/δ + v̄ /δ mūv̄ /δ −c/δ 0 −v̄ m λ − mūv̄ m−1 0 −c Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Autocatalytic fronts: Evans contours −7 −14 x 10 2.2 0.12 0.12 1.8 0.1 x 10 12 0.12 4.5 2 10 4 0.1 0.1 3.5 1.6 8 0.08 1.2 0.06 2.5 0.06 1 6 0.06 2 0.8 0.04 0.08 3 Im(λ) 1.4 Im(λ) Im(λ) 0.08 0.04 4 0.04 1.5 0.6 0.02 1 0.02 0.4 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 2 0.5 0.2 0 0.02 0 0.04 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0 0.04 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0.04 −7 −14 x 10 2.2 0.12 0.12 1.8 0.1 x 10 12 0.12 4.5 2 10 4 0.1 0.1 3.5 1.6 8 0.08 1.2 0.06 2.5 0.06 1 0.8 0.04 0.08 3 Im(λ) 1.4 Im(λ) Im(λ) 0.08 6 0.06 2 0.04 1.5 4 0.04 0.6 0.02 0.4 1 0.02 0.2 0 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0.04 0.02 2 0.5 0 0 0.005 0.01 0.015 0.02 0.025 Re(λ) 0.03 0.035 0.04 0 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0.04 Figure: Contour lines of |D(λ)| for δ = 0.1 and m = 9 using the CO-RK and GGEM-LG (order: top three down to bottom three), matching at positions x∗ = −8, 0, +8 (left to right). Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Autocatalytic fronts: error vs matching point −5 error in the eigenvalue 10 CO−RK Riccati−RK Mobius−M GGEM−LG −6 10 −7 10 −10 −8 −6 −4 −2 0 2 4 6 8 10 matching point Figure: Error in the eigenvalue when δ = 0.1 and m = 9: N = 256. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Transverse Fourier basis On R × T we have: B∆U + c ∂x U + DF (Uc )U = λU. On the Fourier modes k = −K , −K + 1, . . . , K : ∂x Ûk = P̂k , ∂x P̂k = λB −1 Ûk + (k/L̃)2 Ûk − c B −1 P̂k − Grassmannian spectral shooting and the stability of multi-dimensional travelling waves K X ν=−K B −1 D̂k−ν Ûν , Large ODE system ON(2K +1) IN(2K +1) Û Û = ∂x Ã3 (λ) + Â3 (x) −c B −1 ⊗ I2K +1 P̂ P̂ with Ek (λ) ≡ λB −1 + (k/L̃)2 IN : E−K (λ) O ··· O O E−K +1 (λ) · · · O Ã3 (λ) = . . .. . . . . . . . . O ··· O E+K (λ) D̂0 D̂−1 · · · D̂−2K D̂1 D̂0 · · · D̂−2K +1 Â3 (x) = −B −1 ⊗ . . .. .. .. .. . . . D̂2K D̂2K −1 · · · D̂0 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Computing travelling waves: freezing method Substitute U(x, y , t) = V (x − γ(t), y , t) into original PDE: ∂t V = B ∆V + γ ′ (t)∂x V + F (V ), Z T ∂x V̂ (x, y , t) V̂ (x, y , t) − V (x, y , t) dx dy . 0= R×T (Developed by Beyn and Thümmler.) Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Wrinkled fronts (cubic autocatalytic system) Figure: The wrinkled front for δ = 3. Left panel: u component. Right panel: v component. Cut from domain [−150, 150] × [−60, 60], grid 300 × 240, FE rectangles. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Wrinkled front: Evans function for δ = 2.5 −6 2 0.005 0 x 10 0 −0.005 −2 D(λ) D(λ) −0.01 −0.015 −0.02 −4 −6 −0.025 −8 −0.03 −0.035 −8 −6 −4 λ −2 −10 0 −15 −3 x 10 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves −10 λ −5 0 −4 x 10 Wrinkled front: Evans function for δ = 3 −6 2 x 10 1 D(λ) 0 −1 −2 −3 −4 −5 −6 −5 −4 −3 −2 λ −1 0 1 2 −3 x 10 −9 −8 6 1 x 10 x 10 −8 4 x 10 4 0 D(λ) D(λ) D(λ) 2 0 2 −2 −4 −5.45 0 −1 −2 −5.4 −5.35 λ −5.3 −3 x 10 −2 −8 −6 −4 λ −2 0 −4 x 10 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves −4 1.56 1.58 λ 1.6 −3 x 10 Wrinkled front: Eigenvalues for δ = 3 K 3 4 5 6 7 8 9 .. . 24 0.001609 0.001609 0.001589 0.001589 0.001589 0.001589 0.001589 0.001589 0.001592 Eigenvalues (Evans function) −0.000026 −0.000781 −0.001296 0.000002 −0.000001 −0.000519 0.000002 −0.000001 −0.000519 −0.000002 −0.000003 −0.000515 −0.000002 −0.000003 −0.000515 −0.000002 −0.000003 −0.000515 −0.000002 −0.000003 −0.000515 .. . −0.000002 −0.000003 −0.000515 Eigenvalues (ARPACK) 0.000000 0.000000 −0.000514 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves −0.000670 −0.000670 −0.000720 −0.000720 −0.000721 −0.000721 −0.000721 −0.000721 −0.000719 Wrinkled front: contour integration 12 argument (multiples of π) 10 8 6 4 2 0 −2 0.0001 0.0001i 3i λ 1.5+1.5i 1.5 Figure: Left panel: contour. Right panel: arg D(λ) when λ transverses the top half. δ = 3. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Future work ◮ Multiple sources of error: relative influence? ◮ Control theory: Lagrangian Grassmannian. ◮ Schubert cells. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Spectral plane Complex λ plane 15 10 Im[λ] 5 0 −5 −10 −15 −10 −5 0 5 Re[λ] Grassmannian spectral shooting and the stability of multi-dimensional travelling waves 10 15 Boussinesq: Evans function −4 −3 x 10 x 10 7 2.5 6 2 5 4 D(λ) D(λ) 1.5 1 3 2 0.5 1 0 0 −1 −0.5 0 0.05 0.1 λ 0.15 0.2 0 0.05 0.1 λ 0.15 0.2 Figure: Wave speed c = 0.4. Left plot: Riccati-RK (i− = {1, 2} over [−8, 0] and i+ = {3, 4} over [0, 8]). Right plot: CO-RK. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Boussinesq: eigenvalue error I CO−RK Riccati−RK Mobius−M GGEM−LG GGEM−RK Riccati−QOGE −4 error in the eigenvalue 10 −6 10 −8 10 −10 10 0 1 10 10 time (s) Figure: Error in the eigenvalue vs cputime, matching at x∗ = 0. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Boussinesq: eigenvalue error II −4 error in the eigenvalue 10 CO−RK Mobius−M GGEM−LG GGEM−RK Riccati−QOGE −6 10 −8 10 −10 10 −12 10 0 1 10 10 time (s) Figure: Error in the eigenvalue vs cputime, matching at x∗ = 8. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Boussinesq: Evans function 2 5 4 1.5 3 2 1 − 0.5 y D(λ) 1 0 0 −1 −2 −0.5 −3 −1 −1.5 0 −4 0.05 0.1 λ 0.15 0.2 −5 −8 −6 −4 −2 0 ξ 2 4 6 8 Figure: Left: Evans function with Möbius–Magnus: x∗ = +8, Right: entries in ŷ − when λ = 0.15543141. Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Autocatalytic fronts: Evans contours 0.22 0.12 0.12 6 0.12 0.1 5 0.1 0.08 4 0.08 0.06 3 0.04 2 0.04 0.02 1 0.02 1.6 0.2 0.18 0.1 1.4 0.16 0.12 0.06 0.1 0.08 0.04 Im(λ) 1.2 0.14 Im(λ) Im(λ) 0.08 1 0.06 0.8 0.6 0.06 0.4 0.04 0.02 0.2 0.02 0 0 0.005 0.01 0.015 0.02 0.025 Re(λ) 0.03 0.035 0 0.04 0 0.005 0.01 0.015 0.02 0.025 Re(λ) 0.03 0.035 0 0.04 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0.04 0.22 0.12 0.12 6 0.12 0.1 5 0.1 0.08 4 0.08 0.06 3 0.04 2 0.04 0.02 1 0.02 1.6 0.2 0.18 0.1 1.4 0.16 0.12 0.06 0.1 0.08 0.04 Im(λ) 1.2 0.14 Im(λ) Im(λ) 0.08 1 0.06 0.8 0.6 0.06 0.04 0.02 0.4 0.2 0.02 0 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0.04 0 0 0.005 0.01 0.015 0.02 0.025 Re(λ) 0.03 0.035 0.04 0 0 0.005 0.01 0.015 0.02 Re(λ) 0.025 0.03 0.035 0.04 Figure: Contour lines of |D(λ)| for δ = 0.1 and m = 9 using the Riccati-RK, Möbius–Magnus (order: top three down to bottom three), matching at positions x∗ = −8, 0, +8 (left to right). Grassmannian spectral shooting and the stability of multi-dimensional travelling waves Wrinkled front: same with Drury–Oja −42 2 x 10 1 D(λ) 0 −1 −2 −3 −4 −5 −6 −5 −4 −3 −44 x 10 −1 −43 5 x 10 0 D(λ) D(λ) 2 −3 −2 −2 1 x 10 x 10 0 −5.45 0 2 2 D(λ) −2 λ −45 0 −4 −5.4 −5.35 λ −5.3 −3 x 10 −8 −6 −4 λ −2 0 −4 x 10 Grassmannian spectral shooting and the stability of multi-dimensional travelling waves −5 1.56 1.58 λ 1.6 −3 x 10