3 Fluid kinematics
Transcription
3 Fluid kinematics
1 3 Fluid kinematics 3.1 A circular cylinder is moving in motionless environment without friction at constant velocity. Draw the the streamlines and the pathlines for some special fluid particles. 3.2 Determine for the velocity field u = u0 cos(ω t) v = −v0 sin(ω t) with u0 / ω = v0 / ω = 1 m a) the streamlines for ω t = 0 , π / 2 , π / 4 , b) the pathlines, c) the pathline for the particle, that is at t = 0 s in x = 0 m, y = 1 m! 2 4 Basic equations for fluids vektors, tensors, operators 1.) Scalars (Tensors of rank 0) e.g. pressure p, density ρ, temperature T −→ real number (+ physical unit) 2.) Vectors (Tensors of rank 1) x ~ ~ ~ e.g. Position vector ~r = y = x · i + y · j + z · k, z u ~ ~ ~ Velocity vector ~v = v = u·i+v·j+w·k w −→ n dimensions 3.) Dyads (Tensors of rank 2) e.g. Stress tensor τ , (~v ~v ) −→ n dimensions (n × n Matrix) ~ = Nabla - Operator ∇ ∂ ∂ ∂ , , ∂x ∂y ∂z ~ p = Gradient grad p = ∇ ~ · ~v = Divergence div ~v = ∇ ~ × ~v = Rotation ∇ ~i ∂ ∂x u ~j ∂ ∂y v ! ∂p ∂p ∂p , , ∂x ∂y ∂z ! ∂ ∂ ∂ , , ∂x ∂y ∂z ~k ∂ ∂z w u ∂u ∂v ∂w · v = ∂x + ∂y + ∂z w ∂w ∂v − ∂z ∂y = ! ∂w ∂u − ∂z ∂x ∂u ∂v − ∂x ∂y 3 Partial derivatives Total differential of a function f = f (x, y, z) df = ∂f ∂f ∂f · dx + · dy + · dz ∂x ∂y ∂z The total differential describes the increas of a function, e. g. for the velocity ~v = ~v (t, x, y, z) d~v = =⇒ =⇒ ∂~v ∂~v ∂~v ∂~v · dt + · dx + · dy + · dz ∂t ∂x ∂y ∂z ∂~v ∂~v dx ∂~v dy ∂~v dz d~v = + · + · + · dt ∂t ∂x dt ∂y dt ∂z dt d~v ∂~v ∂~v ∂~v ∂~v ∂~v + v· + w· + (~v · ∇) · ~v = = + u· dt ∂x ∂y ∂z ∂t |{z} | ∂t {z } | {z } substantial local convective acceleration 4 4.1 a) Proof the following identities ~ × ∇p ~ = 0 1) ∇ ~ ×∇ ~ 2~v = ∇ ~ 2 (∇ ~ × ~v ) 2) ∇ 2 ~ v = ∇ ~ ~v − ~v × (∇ ~ × ~v ) 3) (~v · ∇)~ 2 b) Formulate the conservation law of mass and momentum for a three-dimensional, incompressible and unsteady flow in vector notation. 4.2 a) A piston is moving in a tube of infinite length and with constant cross section A with the velocity vpiston (t). The density of the fluid is constant. A vKolben( t ) x Kolben Determine the substantial acceleration in the tube. b) A fluid of constant density flows into a diffusor with the constant velocity v = v0 . The cross section of the diffusor is A(x). Determine the substantial acceleration of the fluid along the axis x. 5 4.3 The following continuity equation is formulated in cartesian coordinates. dρ ∂v ∂w ∂u + ρ· + + dt ∂x ∂y ∂z ! = 0 (Eq. 1) u vx with v = v = vy w vz Transform the equation into a) cylindrical coordinates Hint: x = r · cos φ y = r · sin φ z = z √ r = x2 + y 2 y φ = arctan x z = z b) sperical coordinates Hint: x = r · sin Θ · cos φ y = r · sin Θ · sin φ z = r · cos Θ √ x2 + y 2√ + z 2 ! x2 + y 2 Θ = arctan z y φ = arctan x r = + 4.4 An incompressible fluid with the viscosity η is flowing laminar and steady between two parallel plates The flow is radial from inside to outside. The determining differential equations in cylindrical coordinates are 1 ∂(ρ vΘ ) ∂(ρ vz ) 1 ∂(ρ r vr ) + + = 0 r ∂r r ∂Θ! ∂z ! 2 ∂vr ∂p vΘ ∂vr vΘ ∂vr ∂ 1 ∂(r vr ) ρ vr = − + − + vz + η ∂r r ∂Θ r ∂z ∂r ∂r r ∂r 2 ∂vΘ ∂ 2 vr 1 ∂ 2 vr − + + 2 r ∂Θ2 r 2 ∂Θ ∂z 2 Simplify the equations for the flow problem described. ! 6 4.5 The Navier-Stokes equations for rotationally symmetric, unsteady, incompressible flows in cylindrical coordinates read: 1 ∂(r · vr ) ∂vz + = 0 r ∂r ∂z ∂vr ∂vr ∂vr + vr + vz ∂t ∂r ∂z ρ ρ ∂vz ∂vz ∂vz + vr + vz ∂t ∂r ∂z ∂T dp 1 ∂ r +λ dt r ∂r ∂r ! ∂2 T + ∂z 2 " ∂p ∂ = − + η ∂r ∂r ! # 1 ∂ (r vr ) r ∂r " ∂p ∂vz 1 ∂ = − r + η ∂z r ∂r ∂r ∂T ∂T ∂T + vr + vz ∂t ∂r ∂z ρ cp " ! ∂ vr + 2η ∂r !2 + vr r ! 2 ! ! ∂ 2 vr + ∂z 2 ∂ 2 vz + ∂z 2 # # = + ∂ vz ∂z !2 ∂ vr ∂ vz +η + ∂r ∂z Consider a steady, laminar, fully developed, incompressible duct flow with temporal and spatial variable temperature distribution. Simplify the equations for the case described. 4.6 The Navier-Stokes equations for unsteady, incompressible flows in graviational field read: ∇ · ~v = 0 ρ d~v = − ∇p + η∇2~v + ρ~g dt Formulate the equations for a steady, frictionless, twodimensional flow in a cartesian coordinate system (x, y). !2 7 5 Hydrostatics 5.1 A cube swims in two fluids that are arranged in layers. ρ1 = 850 kg/m3 ρ2 = 1000 kg/m3 ρK = 900 kg/m3 a = 0, 1 m Determine the height h! 5.2 A container is filled with a fluid of the density ρ. The drain of the container, filled up to a height h, is closed with a hollow hemisphere ( radius R, weight G ). Given: h, ρ, R, G, g Determine the necessary force F to open the drain. Hint: Volume of a sphere: Vk = 4 π R3 3 5.3 A buoy with the mass mB , which is open on the lower side, is fixed with a cable at the bottom of a sea, and sticks out with a third of its height if the cable is not strained (Sketch 1). With increasing water level the buoy is drawn under the water surface (Sketch 2) and sinks when the immersion depth is H. Determine H! Given: mB , pa , ρW , h, g, ρL << ρW 8 rL , pa g rL , pa 2h 3 H rW h rW 1 2 Hint: Assume, that the temperature inside of the buoy is constant and the enclosed air can be treated as a perfect gas. Neglect the weight of the cable. 5.4 A ship with vertical side walls has a weight of G0 Its draught is h0 and it displaces the volume τ0 in sea water. At the entrance of an estuary the weight is decreased by ∆G in order to avoid the ship runs aground. Now the draught is h1 and the displaced volume is τ1 . The density of sea water is ρM , the density of the rivers water is ρF . G0 = 1, 1 · 109 N ∆G = 108 N h0 = 11 m h1 = 10, 5 m ρM = 1, 025 · 103 kg/m3 ρF = 103 kg/m3 g = 10 m/s2 Determine a) the volume τ0 , b) the deck area A, c) the difference τ2 − τ1 between the displaced volumes in fresh water and sea water, d) the draught h2 in fresh water! 9 5.5 The sketched weir of length L separates two basins of tdifferent depth. Determine the force of water onto the weir. Given: ρ, g, L, a 5.6 A boiler with a small hole at the top is filled with water and is screwed on a plate. R=1m ρW = 103 kg/m3 g = 10 m/s2 Determine the force on the screws by neglecting the boilers weight. 5.7 A vehicle filled with water is moving under constant acceleration ax in x-direction. 1. Determine the pressure gradient ∂p/∂x by using the balance of forces at the plotted volume element of length dx and of an area dA. 2. Determine the vehicle length l. Given: h, ρW , g, ax 10 5.8 A liquid rotates in an open cylindrical jar with a constant angular speed which is such that the liquid just reaches the upper border. Under quiescent condition the liquid fills the jar up to a height of h0 . D = 0, 5 m h0 = 0, 7 m H=1m ρ = 103 kg/m3 pa = 105 N/m2 g = 10 m/s2 Determine a) the height h and the angular speed ω, b) the pressure distribution along the side wall and the bottom! Hint: ∂p = ρω 2 r ∂r ∂p = −ρg ∂z dp = ∂p ∂p dr + dz ∂r ∂z 5.9 A spherical, open, and rigid gas balloon is designed for a ceiling of H = 10km in isothermal atmosphere (temperature T0 ). H = 104 m, RL = 287 Nm , kg K g = 10 m , s2 T0 = 287 K 11 What is the ceiling h, if a hole is in the envelope (see sketch)? 5.10 A wheather balloon with mass m and initial volume V0 ascends in an isothermal atmosphere. Its envelope is loose up to the achievement of the maximal volume V1 . p0 = 105 N/m2 ρ0 = 1, 27 kg/m3 R = 287 Nm/kgK g = 10 m/s2 m = 2, 5 kg V0 = 2, 8 m3 V1 = 10 m3 a) What is the necessary force to hold down the balloon before launch? b) In what altitude the balloon reaches its amximum volume V1 ? c) What ceiling reaches the balloon? 12 6 Continuity and Bernoulli’s equation 6.1 A large lake is connected via overflow to a reservoir and via pipe system with a lower lake (see sketch). Determine the total volume flux V̇ that flows into the lower lake when the overflow is opened. Hint: Neglect the altitude difference in the horizontal pipes and neglect friction! Given: ρ, g, h, A pa g Reservoir h A/2 A 6.2 In order to determine the velocity in a duct flow the pressure difference ∆p is measured. Through strong obstruction the pressure difference deviates from the dynamic pressure of the undisturbed incoming flow. Outline the distribution of v∞ / s 2∆p d in terms of for frictionless flow. ρ D 13 6.3 An incompressible fluid of density ρ is flowing stationarily from a large tank through a well rounded exit of radius R into the surrounding. hB g r R H r(z) z Given: H, hB , R, ρ, g Determine the radius r(z) of the jet as a function of the altitude z. 6.4 Water flows from a large pressurized tank into the open air. The pressure difference ∆p is measured between the cross sections A1 and A2 . A1 = 0, 3 m2 , A2 = 0, 1 m2 , A3 = 0, 2 m2 , h = 1 m, 3 3 5 2 ρ = 10 kg/m , pa = 10 N/m , ∆p = 0, 64 · 105 N/m2 , g = 10 m/s2 14 Compute the a) velocities v1 , v2 , v3 , b) pressures p1 , p2 , p3 and the pressure p above the water surface! 6.5 Two large basins located one upon the other are connected with a duct. A = 1 m2 , Ad = 0, 1 m2 , h = 5 m, H = 80 m, 5 2 3 3 pa = 10 N/m , ρ = 10 kg/m , g = 10 m/s2 a) Determine the volume rate! b) Outline the distribution of static pressure in the duct! c) At what exit cross section bubbles are produced, when the vapour pressure is pD = 0, 025 · 105 N/m2 ? 6.6 The flap at the exit of the water pipe (constant width B) of a large container is opened abruptly. The appearing flow is without any losses. Given: H, h1 , h2 , g, L ; L >> h1 Determine a) the differential equation for the exit velocity v3 b) - the local acceleration - the convective acceleration - the substantial acceleration at x = L when the exit velocity reaches half of its asymptotic final value! 2 Hint: The computation of v(t) is not necessary for solving this problem. 15 6.7 The exit of a large container is build as diffusor. The flap at the end of the diffusor is opened at t = 0 abruptly. Given: L, pa , p2 ≈ pa , A2 , h Determine dv2 a) the acceleration in point ”2” immediately after the opening, dt b) the position x in the diffusor, where the the pressure has its maximum, when v2 reaches half of its asymptotic final value. 16 6.8 Water flows from a large reservoir into a lower lying basin whose drain orifice is decreased to one third of its origin size abruptly. Determine the time interval in that the water surface quadrupels from its origin altitude h. 2 A = 0, 03 m , Hint : Z 2 AB = 1 m , dh dt 2 h = 5 m, g = 10 m/s , !2 << (vA )2 h √ √ i dx √ = 2 (a − x) − a ln(a − x) + C a− x 6.9 A spring well fountain is feeded from a large container. When the pump is switched on a pressure difference of ∆p is created. After a time of 7. 6 seconds the velocity at the end of the duct reaches 99,9 % of its asymptotic value (v(t→∞) ). 2 g H pa 0 h 1 L kW )p T99,9 = 7.6 s, L = 10 m, g = 10 m/s2 At ”1” the fountain is a free jet. a) Determine the altitude h of the fountain for t → ∞. b) At what time t1/2 it reaches 50 % of this altitude? 17 Hint: Neglect the friction losses!. Z a2 1 1 a+x dx = ln 2 −x 2a a−x 6.10 A piston pump surges water with a vapour pressure pD from a reservoir. The piston has the frequency ω and the stroke ξ0 . The pump has a constant cross-section A and the pistons position is in the altitude h above the water surface. The length of the inlet is L. Given: pa , L, ξ0 , h, A, ρ, pD , g a) Determine the nondimensional pressure pK / (ρL2 ω 2 ) = f (ω) at the piston head in terms of the piston frequency. b) Determine the critical pump frequency for ξ0 << L when the vapour pressure pD is just reached at the piston head. c) Determine the average displaced volume per time V̇ . 6.11 Water flows under the influence of gravity from a large reservoir through a convoluted duct into open air. At t = 0 the convoluted duct is accelerated by an engine up to the angular speed ωr . a) At what time ∆T the flow reaches 50 % of the velocity which is at t → ∞ in the vertical part of the duct? b) Determine the pressure at point 1 for t → ∞ in the duct that rotates with ω = ωr . Given: h, l, R, A, ωr , ρW , pa , ~g 18 rW h g l A R A 1 Hint: Z Motor 1 a+x dx = ln + C a2 − x2 2a a−x ; ∂p = ρ ω2 r ∂r 19 7 Momentum and momentum of momentum equation 7.1 A pitot tube in a gas pipeline is connected via two u-tubes with a pressure hole (see sketch). Determine the force F on the fitting of the pitot tube. Assume an incompresible fluid! Neglect the friction in the pipeline! Given: ρHq ≫ρGas , g, ∆h1 , ∆h2 , D 7.2 Determine the pressure difference ∆p = p2 − p1 in the plotted bifurcation by neglecting the friction. 1 Given: v1 , v2 , A3 = A, α, ρ = konst. 4 20 7.3 Water is flowing through a bifurcation into open air stationarily. The pressure in the incoming tube is ∆p higher than in the surrounding. A1 = 0, 2 m2 A2 = 0, 03 m2 ∆p = 104 N/m2 ρ = 103 kg/m3 A3 = 0, 07 m2 α2 = 30 α3 = 20 Determine a) the velocities v1 , v2 , v3 , b) the force Fs in section 1, c) the angle α3 , when Fsy vanishes. 7.4 A flat plate of constant thickness with the mass m and the length l is hung at a hinge and is passed by a planar water jet of height h and width B with the velocity v. The flow in the jet is without any losses. a) Determine the force F1 , at the lower end of the plate, that is necessary to fix the plate in a vertical position. b) Determine the necessary forceF2 , when a deflector blade is mounted on the plate. c) Compute the rotation angle θ for the steady state if the plate is swinging undisturbedly.. Given: m, a, l, h, B, v, ρ, g, pa Hint: The volume forces are neglectable. 21 7.5 A rocket is moving at constant velocity. The passing air is displaced radially. Inside the jet the velocity is vA , outside v1 . Given: v1 , vA , ρ1 , ρA , AR Determine a) the displaced air mass, b) the thrust and the engine power. 7.6 A propeller is passed with constant velocity v1 . At a certain distance downstream of the propeller the velocity inside the jet is v2 , and v1 outside the jet. A′ = 7, 06 m2 v1 = 5 m/s v2 = 8 m/s Determine a) the velocity v ′ in the propeller plane, b) the efficiency. ρ = 103 kg/m3 22 7.7 The shell of a propeller is passed with constant velocity. The inlet is well rounded. A = 1 m2 v1 = 10 m/s p1 = 1, 345 · 105 N/m2 p1′ = 105 N/m2 a) Outline the distribution of the static pressure along the axis and determine b) the mass flux, c) the thrust, d) the power that the propeller emits to the flow. 7.8 Two fans sucking air from the surrounding differ in their inlets Given: ρ, A, ∆p ρ = 103 kg/m3 23 Compute a) the volume flux, b) the power of the fans, c) the force on the fitting. 7.9 An air cushion vehicle of weight G, width B and length L is hovering above the ground in steady state. Compute by neglecting the friction and the compressibility a) the pressure p1 and the volume flux V̇ that is flowing through the hover craft, b) the power that is emitted from the fans to the flow and the power losses throught the accumulation of vortices. Given: ∆p, ρ, G, A, BL = 20 A, h(B + L) = A Hint: Neglect the differences between the geodetic altitudes. 24 7.10 A ball of weight G is passed frictionless by a fluid jet (e. g. air jet) and is hovering from the forces of the jet. Tne jet is flowing with the velocity v1 under the influence of the angle α1 (see sketch). Determine a) the downstream velocity v2 b) the angle α2 of the downstream jet, c) the mass flux ṁ, to hang the ball in balance. Given: v1 , G, α1 . Hinweis: Neglect the force of gravity of the jet! 7.11 A sprinkler with three arms is supplied by a large tank and rotates with the angular velocity ω = const.. The angle between the outflowing jets and the circumferential direction is α. H = 10 m R = 0, 5 m h=1m A = 0, 5·10−4 m2 A1 = 1, 5.10−4 m2 pa = 105 N/m2 ρ = 103 kg/m3 g = 10 m/s2 , ω = 15 s−1 Determine a) the relative exit velocity, b) the torque and the volume flux, c) the pressure p1 , d) the maximum torque. α = 30 25 7.12 A atnk with the weight G is fixed in a rotatable bearing in D. Its drain-pipe has a 90◦ bend. The center of gravity of the system has the distance h to point D. What is the angle α between the pipe-axis and the vertical axis, if the water flows without friction? Given: G, l, h, A, ρ Hint: The tank is such large that the water surface is not moving. 26 9 laminar viscous flows 9.1 An oil film of constant thickness and width is flowing on an inclined plane. m δ = 3 · 10−3 m B = 1 m α = 30o ρ = 800 kg/m3 η = 30 · 10−3 Ns/m2 g = 10 2 s Calculate the volume flux. 9.2 A viscous oil film is flowing on an inclined plane (angle α) under the influence of gravity.The wall temperature of the plane is T0 and the temperature at the surface of the oil is Tδ . The temperature distribution of the oil is linearly in terms of y and constant in x-direction. The thickness of the film is δ and is constant. The kinematic vviscosity ν is constant and the density in the important temperature range is Temperaturbereich mit − TT ρ = ρ0 · e 0 The density is independent of the pressure Given: g, δ, α, ν, ρ0 = ρ(y = 0), T0 = T (y = 0), Tδ = T (y = δ) 27 a) Compute the shear stress τ (y). b) Compute the velocity u(y). ∂p c) Show that = 0 by using the momentum equation in y-direction. ∂x 9.3 A car is in a wind tunnel with the velocity u∞ . To simulate the relative motion between the vehicle and the roadway a bend-conveyor with the velocity u∞ is mounted unde the fixed car (see sketch). Between the lower side of the vehicle and the bend-conveyor a gap flow is formed. The flow shall be analyzed for 1. for the non-moving bend-conveyor (uB = 0) 2. for the moving bend-conveyor (uB = u∞ ) and Assume, the flow is fully devloped in both cases. The following relation is valid: d2 u dp =η 2 dx dy mit dp = konst < 0 dx a) Compute and sketch the velocity profiles u(y) in the gap for the non-moving and the moving bend-conveyor. b) Compute the friction per unit width, that the flow affects on the lower side of the car over the length l for the non-moving and the moving conveyor. Given: dp , h, l, η, u∞ dx 9.4 A Newtonian fluid is flowing between two horizontal plates. The upper one is moving at a velocity uw . The lower oneis standing still. The pressure is decreasing linearly in x-direction. Given: H, uw , ρ, η, dp/dx Determine for a fully developed laminar flow a) the velocity distribution, 28 b) the relation between the shear stresses at y = 0 and y = H, c) the volume flux for a width of B, d) the maximum velocity for uw = 0, e) the momentum flux for uw = 0, f) the wall shear stress in non-dimensional form for uw = 0. g) Outline the distribution of the velocity and the shear stress for uw > 0, uw = 0, and uw < 0. 9.5 An incompressible fluid is flowing through a pipe with radius R. The volume flux is V̇ . The shear stresses are depicted with the model of Ostwald-de-Waele τ = −ηOdW Given: V̇ , L, R, ηOdW du dr du dr The pressure decreases within a length of L with ∆p. u R r . V L )p Compute the pressure decrease ∆p for a fully developed pipe flow. Hinteis: The equation of motion for a fully developed flow r dp d(τ r) + =0 dx dr 29 9.6 The velocity distribution of a laminar pipe flow can be described in the inlet with the following approximation u = um f 2 y y y 2 − f( ) = δ δ δ 1 um y y δ 2δ 1 1− + 3R 6 Given: um , R, ρ, η δ R !2 0 ≤ y ≤ δ(x) δ(x) ≤ y ≤ R R *(x) x Le Determine in the inlet cross section, at the end of the inlet section and for δ/R = 0, 5 a) the momentum flux, b) the wall shear stress. 9.7 The velocity u1 in the inlet cross-section (1) of a circular pipe with radius R is constant. In the cross-section (2) the velocity" of a fully #developed laminar pipe flow can be written as 2 r . parabola of the form u2 (r) = u2max 1 − R Given: ρ, R, u1 30 Determine a) the pressure loss (p1 − p2 ), ρ b) the coefficient of the pressure loss ζE = (p1 − p2 )/ ū2 2 Hint: Neglect the wall friction. 9.8 A Bingham fluid is flowing between two infinite parallel plates under the influence of gravity. Given: b, ρ, η, τ0 , g, dp/dz = 0 Assume a fully developed flow and determine a) the distance a, b) the velocity distribution. 9.9 A Bingham fluid is in a basin. A vertical bend-conveyor, moving with the velocity uB is used to transport the fluid in another basin. Given: uB , δ, g, ̺, η, τ0 = ̺g δ 2 du du für <0 dy dy τ = du du für >0 −τ0 − η dy dy +τ0 − η 31 a) Determine and sketch the distribution of the shear stress in section I. b) Determine and sketch the distribution of the velocity in section I. c) What is the minmum velocity uB,min for conveying mass? Hint: The flow at the conveyor is fully developed and laminar. The thickness δ of the fluid is assumed to be constant. 9.10 A Newtonian fluid is moving between two coaxial cylinders. Given: R, a, η, dp/dx Bestimmen Sie für eine ausgebildete laminare Strömung a) the velocity distribution. Outline the result, b) the relation of the shear stresses for r = a and r = R, c) the average velocity. 32 9.11 A Couette viscosimeter consists of two concentrical cylinders with the length L. The interstice is filled with a Newtonian fluid. The oute cylinder rotates with the angular velocity ω, and the inner one is standing still. At the inner cylinder the hinge momentum Mz is measured. Ra = 0, 11 m Ri = 0, 1 m L = 0, 1 m ω = 10 s−1 Mz = 7, 246 · 10−3 Nm Determine a) the velocity distribution, b) the dynamic viscosity of the fluid. Hint: The differential equations for the velocity- and the shear stress distribution are: " d 1 d (rv) dr r dr # = 0 d τ = −ηr dr v r 33 10 Turbulent pipe flows 10.1 Proof the following rules: a) f = f b) f + g = f + g c) f · g = f · g d) e) ∂f ∂f = ∂s ∂s R s f · ds = R s f · ds. 10.2 The velocity profile in a fully developed flow in a pipe with a smooth surface can be approximated with the potential law: v̄ v̄max Re n 1 · 105 6 · 105 1.2 · 106 2 · 106 7 8 9 10 = 1 − r R 1 n , mit n = n(Re). a) Use the continuity equation to compute the relation between the average velocity v̄m and v̄m the maximum velocity v̄max , i. e. = f (n). v̄max r b) At what position is v̄(r/R) = v̄m ? R c) How can the results of a) and b) be used, if the volume flux shall be measured? 10.3 The velocity distribution of a turbulent pipe flow can be approximated with the following 34 law: ū / ūmax = (y / R)1/7 . Determine a) the ratio of the velocities ūm / ūmax , b) the ratio of the momentum fluxes I˙ / ρ ū2m π R2 . 10.4 Water is flowing through a hydrauliccaly smooth pipe. D = 0, 1 m Re = 105 ρ = 103 kg/m3 η = 10−3 Ns/m2 Determine a) the wall shear stress, b) the ratio of the velocities ūm / ūmax , y u∗ y u∗ c) the velocity for = 5 and for = 50, ν ν y u∗ d) the mixing length for = 100. ν 10.5 Water is pumped through a pipe (roughness ks ) from h1 to h2 . V̇ = 0, 63 m3 /s ρ = 103 kg/m3 h1 = 10 m h2 = 20 m L = 20 km D = 1 m ν = 10−6 m2 /s pa = 105 N/m2 g = 10 m/s2 ks = 2 mm 35 a) Sketch the distribution of the static pressure along the pipe axis. Determine b) the pressure at the pump inlet, c) the pressure at the pump exit, d) the net power of the pump. 10.6 The pressure decrease ∆p along L is measured in a fully developed pipe flow with the volume flux V̇ . V̇ = 0, 393 m3 /s L = 100 m η = 5 · 10−3 Ns/m2 D = 0, 5 m ∆p = 12820 N/m2 Determine a) the skin-friction coefficient, b) the equivalent roughness of the pipe, c) the wall shear stress and the force of the support. d) What is the pressure decrease, if the pipe is smooth? ρ = 900 kg/m3 36 10.7 Air is pumped with a fan through a rough pipe with a well rounded inlet. L = 200 m ks = 1 mm Determine the ratio of the net power for D = 0, 1 m and D = 0, 2 m for a constant volume flux. Assume a very large Reynolds number. 10.8 Water is pumped through a channel with a quadratic cross-section. At a certain position the water is pumped through a bundle of 100 pipes with the length L. V̇ = 0, 01 m3 /s L = 0, 5 m a = 0, 1 m D = 0, 01 m ρ = 103 kg/m3 η = 10−3 Ns/m2 Compute the length of the channel that produces the same pressure loss as the pipe bundle. Hint: The pipes are hydraulically smooth. 37 11 Similarity theory a) dimensional analysis Frequently used quantities and their dimensions Quantity Dimension * * * * meter, m kilogram, kg second, s Kelvin K [1K] = [o C] + 273, 16 kg m Newton N, s2 m/s m/s2 kg/m3 Pascal, P a = N/m2 kg/s m3 /s Joule, J = Nm Watt, W = Nm/s kg Ns/m2 = m·s m2 /s m2 J = 2 kg K s ·K m2 J = 2 kg K s ·K Length L Mass M Time t Temperature T Force F Velocity u, v, w, ~u Acceleration a, b,~a Density ρ Pressure, Stress p, τ, σ Massflux ṁ Volumeflux V̇ Momentum, work, energy M, W, E Power P dyn. viscosity µ, η kin. viscosity ν spec. heat capacity cp , cr spec. gas constant R * Basic dimensions 38 11.1 The wake of a long cylinder with the diameter D is anlyzed experimentally in a windtunnel. On certain circumastances a periodic vortex configuration is generated, the Kármán vortex street. The dimensionless parameters of the problem shall be determined. How many variations of parameters are necessary in this investigation to measure the frequency of the vortex street? 11.2 A liquid is flowing steadily through a hydraulical smooth pipe. The flow is laminar and fully developed. a) Deduce from the Ansatz V̇ = sional analysis! ∆p L α η β D γ the Hagen-Poisseuille law by using the dimen- b) Show, that the skin-friction coefficient in a pipe is inversely proportional to the Reynolds number! 11.3 An upward directed flow develops along a vertical plate with the temperature TW . At a large distance away from plate the temperature is T∞ . The temperature distribution can be written with the equation y T − T∞ , , g, ρ, η = 0 F TW − T∞ x1/4 T − T∞ Deduce, using the dimensional analysis, an expression for the temperature ratio in TW − T∞ terms of the nondimensional coordinate µ=f y x1/4 , g, ρ, η ! 11.4 What is the ratio of drag for spheres with different diameter and with the same Reynolds numbers, if one is flown against with air and the other with water and if the drag coefficient is only a function of the Reynolds number? ρL = 0, 125 · 10−2 ρW ηL = 1, 875 · 10−2 ηW 39 11.5 The necessary power of a car with quadratic surface A to overcome the air drag shall be analyzed experimentally in a windtunnel test. The surface of the model must not exceed Am from technical reasons. A = 4 m2 Am = 0, 6 m2 v = 30 m/s a) Choose the wind velocity for the model tests? ′ b) Determine the power of the car, if the drag force FW = 810N is measured at the largest possible model! 11.6 An axial fan (diameter D, number of revolutions n) shall be designed for air. In a model test with water (reduced scale 1:4) the increase of total pressure ∆p′0 is measured. V̇ = 30 m3 /s D=1m n = 12, 5 s−1 ρ′ = 103 kg/m3 ρ = 1, 25 kg/m3 η ′ = 10−3 Ns/m2 η = 1, 875 · 10−5 Ns/m2 ∆p′0 = 0, 3 · 105 N/m2 Determine a) the volume flux and the number of revolutions in the model test, b) the increase of the total pressure for the fan, c) the power and the torque for the model and for the fan. 11.7 A pontoon swims at the bank of a river. A test with a model and the reduced scale 1:16 shall be carried out. L = 3, 6 m B = 1, 2 m ′ FW =4N H = 2, 7 m h′ = 2, 5 cm v = 3 m/s ρ = 103 kg/m3 40 Determine a) the flow velocity in the experiment, ′ , b) the resulting force on the pontoon, if the model force is FW c) the drag coefficient of the pontoon, d) the height of the wave h upstream of the pontoon, if the wave height in the model is h′ ! 11.8 The following Couette flow can be described with a partial differential equation ∂p ∂2u =η 2 ∂x ∂y a) Determine the dimensionless parameters of this problem using the method of differential equations. b) How many parameters are achieved with the Π-theorem? 11.9 Deduce from the momentum equation in x-direction ∂u ∂u ∂u ρ +u +v ∂t ∂x ∂y ! ∂p ∂2u ∂2u =− +η + ∂x ∂x2 ∂y 2 ! the dimensionless parameters! 11.10 In a gas flow the heat transfer is determined from the viscous and from heat # " effects kgm , the dynamic visconduction. The influencing quantities are the heat conductivity λ 3 sK " # kg cosity η and the reference values for the temperature, the velocity, and the length. The ms physical relationship can be described with the energy equation ∂u ∂2T λ 2 +η ∂y ∂y !2 = 0. 41 Deduce the dimensionless parameters of the problem a) with the method differential equations b) with the Π-theorem. c) Expand the resulting parameter with the specific heat capacity cp and formulate the new coefficient as a product of three different parameters. Hint: The material quantities are constant. The fourth basic dimension is the temperature. 11.11 The equilibrium of forces in a fully developed laminar pipe flow is described with the differential equation ! ∂p du η d − r = 0. + ρg + ∂x r dr dr Determine the parameters of the problem a) with the method of differential equations b) with the Π-theorem. Interpret the relationship between the solutions of a) and b) 11.12 The hydrodynamic attributes of a motor ship shall be analyzed with a model in a water cahnnel. a) Determine the dimensionless parameters of the problem with the method of differential equations using the momentum equation in z-direction, that is decisive for the wave motion. ρ Use only the given quantities. Given: l, u∞ , η, ρ, g dw ∂p = − − ρg + η∇2 w dt ∂z 42 b) Compute the velocity u′∞ and the kinematic viscosity ν ′ of the model fluid such that the flows are similar. Given: u∞ , ν, l/l′ = 10 c) Compute the power of the motor ship at the velocity u∞ . Given: l/l′ = H/H ′ = 10, u∞ , u′∞ , ρ, ρ′ , Drag force in the experiment F′ 11.13 The energy equation for steady, compressible flows with constant material quantities is ∂ u2 ρu cp T + ∂x 2 ! ∂ u2 + ρv cp T + ∂y 2 ! ∂2u ∂u = uη 2 + η ∂y ∂y !2 +λ ∂2T ∂y 2 Determine with the method of differential equations a) the dimensionsless form of the differential equation, b) the dimensionless parameters of the problem. c) Determine the isentropic coefficient γ , if the equation is independent of the Mach-number u∞ M∞ = . c∞ Hint: c = √ γRT cp = γR γ−1 43 11.14 The steady flow of a water jet colliding with a deflector blade shall be analyzed experimentally. a) Determine with the method of differential equations from the x-momentum equation ∂2u ∂2u + ∂x2 ∂y 2 ∂u ∂u 1 ∂p η u +v =− + ∂x ∂y ρ ∂x ρ ! the dimensionless parameters of the problem. Use only the given quantities as reference quantities and define the reference velocity by using the pressure difference p0 − pa . b) Interpret the solutions of a). Given: D, pa , p0 , ηW , ρW 11.15 The laminar boundary layer flow on a flat plate, neglecting the viscous heat, can be described with the continuity, the momentum, and the energy equation in the following form: ∂u ∂v + =0 ∂x ∂y ∂u ∂u ρ u +v ∂x ∂y ρcp ! ∂T ∂T +v u ∂x ∂y =η ! ∂2u ∂y 2 =λ ∂2T ∂y 2 a) Determine the dimensionless parameters of the problem. 44 b) Reformulate the resulting parameters by using well known parameters of fluid mechanics. Assuming constant material quantities the flow field is independent of the temperature field. Both distributions can be computed separately. c) Specify the assumptions to determine the temperature distribution in the boundary layer directly from the velocity distribution. Hint for c): Compare the differential equations and assume that the velocity distribution ~v (x, y) is already known. 45 14 Potential flows Complex Potential F(z) Potential φ(x, y) Streamfunction ψ(x, y) (u∞ − iv∞ )z Parallel flow u∞ x + v∞ y u∞ y − v∞ x E ln z 2π Source E > 0, Sink E < 0 E E q 2 ln r = ln x + y 2 2π 2π E E y ϕ= arctan 2π 2π x Γ i ln z 2π Vortex, Γ < 0 clockwise Γ > 0 counterclockwise Γ y arctan 2π x m z Dipole mx x2 + y 2 − E ln z 2π Parallel Flow+Source/Sink u∞ z + R2 ) z Parallel Flow + Dipole = Cylinder Flow u∞ (z + R2 Γ )− i ln z z 2π Cylinder Flow + Vortex u∞ (z + Parallel Flow + Vortex u∞ x + u∞ x(1 + u∞ x(1 + E ln r 2π R2 ) x2 + y 2 − Γ q 2 ln x + y 2 2π − my x2 + y 2 u∞ y + u∞ y(1 − E ϕ 2π R2 ) x2 + y 2 R2 R2 Γ Γ u y(1 − ) + ϕ )− ln r ∞ 2 2 2 2 x +y 2π x +y 2π u∞ x + Γ ϕ 2π u∞ y − Γ ln r 2π 46 velocity u velocity v u∞ v∞ E x 2 2π x + y 2 E y 2 2π x + y 2 velocity √ c = u2 + v 2 c∞ = Streamlines ψ = const q 2 u2∞ + v∞ E 2πr y − Γ y 2 2π x + y 2 m y 2 − x2 (x2 + y 2)2 u∞ + x E 2π x2 + y 2 Γ x 2 2π x + y 2 −m − 2xy (x2 + y 2 )2 Γ 2πr m r2 E y 2π x2 + y 2 on the cylinder: 2u∞ sin2 ϕ −2u∞ sin ϕ cos ϕ 2u∞ | sin ϕ| on the cylinder: 2u∞ sin2 ϕ − Γ sin ϕ 2πR u∞ − y Γ 2 2π x + y 2 +2u∞ sin ϕ cos ϕ + + Γ cos ϕ 2πR x Γ 2 2π x + y 2 2u∞ | sin ϕ| − Γ 2πR x 47 14.1 The twodimensional flow around the sketched body shall be described with the potential theory by superimposing a parallel flow, a source, and a s ink with a distance a from the center, respectively. Determine a) the positions xs of the stagnation points. b) What is the equation to determine the contour of the body? 14.2 Proof, if the stream function and the potential exist for the following velocity fields! a) u = x2 y, v = y2x b) u = x, v=y c) u = y, v = −x d) u = y, v=x Compute the stream, function and the potential 14.3 The stream function is given ψ = ψ1 + ψ2 Γ q with ψ1 = − ln (x − a)2 + y 2 2π 2Γ q ψ2 = − ln (x + a)2 + y 2 2π Given: a, Γ > 0 Determine a) the coordinates of the stagnation point, b) the pressure coefficient on the x-axis cp (x, y = 0) such, that cp = 0 in the origin of the 48 coordinate system. 14.4 The complex stream function is given F (z) = E 2 u∞ 3 √ z2 + ln(z) 3 L 2π Given: L, u∞ Determine a) the potential φ(r, θ) and the streamfunction ψ(r, θ). b) the components of the velocity vr , vθ . c) the constant E such that a stagnation point is at (x = −L, y = 0) , d) the equation that describes the contour rk (θ). Hints: z = x′ + iy ′ = reiθ vr = 1 ∂ψ ∂φ = , ∂r r ∂θ vθ = 1 ∂φ ∂ψ =− r ∂θ ∂r U 14.5 A planar flow is described by the stream function ψ = ( )xy. The pressure in xref = L 0, yref = 1 m is pref = 105 N/m2 . U = 2 m/s L=1m ρ = 103 kg/m3 49 a) Proof, if the flow has a potential! Determine b) the stagnation points, the pressure coefficient, and the lines of constant total velocity c) the velocity and the pressure at x1 = 2m, y1 = 2m, d) the coordinates of a particle at t = 0.5s, if it passes at t = −0 the point x1 , y1 , e) the pressure difference between these two points. f) Sketch the stream lines. 14.6 A plane half-body with the width 2h is flown against with the velocity u∞ . Gegeben: u∞ , p∞ , h Determine: a) the stagnation point and the velocity at x = xs , y = h, b) the contour of the half-body, c) the pressure distribution on the contour, d) the isobars, ρ e) the curve on that the pressure is u2∞ larger than the pressure p∞ at infinity, 4 f) the lines of constant velocity, u∞ , g) the area in which the velocity v is larger than 2 h) the curve on which the streamlines have an inclination of 45o , i) the maximum deceleration for a particle on the x-axis between x = −∞ and the stagnation point! 50 14.7 The following stream function is given ψ = u∞ y(1 − R2 ) . x2 + y 2 a) Sketch the stream lines for x2 + y 2 ≥ R2 . Determine b) the pressure distribution on the contour ψ = 0, c) the time, a particle needs to come from point x = −3R, y = 0 to point x = −2R, y = 0. 14.8 A bridge pylon with a circular cross-section is flown against with the velocity u∞ . Far away from the pylon the water depth is h∞ . u∞ = 1 m/s h∞ = 6 m R=2m ρ = 103 kg/m3 Determine a) the water depth at the pylon wall as a function of θ, b) the water depth in the stagnation points, c) the smallest water depth over the ground. Hint: Assume a twodimensional flow. g = 10 m/s2 51 14.9 A wind energy facility shall be positioned on a hill. Assume, that the wind flow can be described with a potential flow to determine the energy. The flow over the hill is given by the stream function u∞ H 2 F (z) = u∞ z + 0.8 , z assuming that the countour of the hill is a streamline itself. a) Compute the contour of the hill fk (x, y) = 0 in cartesian coordinates, b) Compute the power that can be extracted from the flow between the contour and the contour line in a distance H I. far away from the hill (x → −∞) and II. on top of the hill (x = 0). c) Sketch the potential theoretical velocity profile on the hill (x = 0) as well as a realistic profile for viscous flow. Given: u∞ , ρ, H 14.10 A rotating cylinder of length L is flown against with the velocityu∞ normal to its axis. At the surface, the rotational part of the velocity is vt . a) Determine the circulation. b) Discuss the flow field for vt = u∞ . c) Compute the force on the cylinder. 52 14.11 The twodimensional flow at a 90o -corner can be described with the complex stream function 2 F (z) = Az 3 , A = konst. Given: |~v|(r=l, θ=0) = u1 Determine: a) the constant A b) the pressure distribution cp along the wall. Sketch it! c) Sketch carefully the lines of constant pressure. d) What is the equation r = r(θ) for the streamlines? e) Sketch the flow field. 53 14.12 The stream function ψ(x, y) for the flow of an incompressible fluid through the sketched plane nozzle is given. y ψ(x, y) = u∞ L h(x) 1 Given: u∞ , L, B, h1 = L, h2 = L 3 a) Determine the upper and the lower contour h(x) such that the flow can be described with the potential theory, b) Compute the velocity distribution u(x, y) and v(x, y). c) Determine the volume flux for a nozzle with the width B. 54 15 Laminar boundary layers 15.1 A flat plate is flown against parallel to the surface with water. Determine for a laminar boundary layer the momentum thickness as an integral of the wall shear stress − Z 0 x τ (x′ , y = 0) ′ dx ! ρu2∞ 15.2 A flat plate (length L, width B) is flown against parallel to the surface with air. u∞ = 10 m/s L = 0.5 m B=1m ρ = 1.25 kg/m3 ν = 1.5 · 10−5 m2 /s a) Sketch the velocity profiles u(y) for different x! b) Specify the bouindary conditions for the boundary equations! c) Sketch the distribution of the shear stress τ (y) at a position τ (y)! d) Determine the boundary layer thickness at the end of the plate and the drag force! 15.3 From exercise 15.2 the drag of a flate plate, wetted on both sides, of length x and width B can be determined with W = Z x 0 τw (x)Bdx = ρ Z 0 δ(x) u(u∞ − u)Bdy. Using this equation and with the approximation of the velocity profile 2 y y u(x, y) = a0 + a1 + a2 u∞ δ δ the boundary s layer thickness δ(x) is to be determined and compared with the Blasius solution νx δ(x) = 5.2 . u∞ Given: ν, u∞ 55 15.4 The velocity profile of a laminar incompressible boundar layer with constant viscosity η can be described with a polynomial: 2 u(x, y) y y + a2 (x) = a0 + a1 (x) ua (x) δ δ + a3 (x) 3 y δ The outer velocity ua (x) is given by the following approach: ua (x) = ua1 − C · (x − x1 )2 . ua1 is the outer velocity at x1 and C is a positive constant. The boundary layer thickness at x2 is δ(x2 ). Given: ρ, η, x1 , ua1 , δ(x2 ), C, mit: C > 0 Determine: a) the pressure gradient∂p/∂x in the flow as a function of x. b) the coefficient a0 and the coefficients a1 (x), a2 (x), a3 (x). 15.5 In the boundary layer of a flat plate the velocity profiles and the pressure distribution 2 p(x) x are measured. Thre pressure distribution on the surface is described with = 1−k , p0 l with k = const < 1 and the velocity profiles are presented with y u(x, y) = ua (x) δ0 with a constant boundary layer thickness δ0 . 1 2 56 Determine the wall shear stress τw using the Kármán integral equation dδ2 1 dua τ (y = 0) =0 + (2δ2 + δ1 ) + dx ua dx ρu2a Given: p0 , k, δ0 , l Boundary layer equation (x-momentum): u ∂u 1 ∂p η ∂ 2 u ∂u +v =− + ∂x ∂y ρ ∂x ρ ∂y 2 15.6 The fluid along a flat plate is sucked off through the porous wall with the velocity va . ua Element dx d u( y ) r,h y x va Determine the suction velocity va by using a balance for the sketched element under the condition that the boundary layer thickness δ is independent of the length x. Assume that the tangential component of the velocity increases linearly. Given : ρ, η, δ 57 15.7 The velocity profile in the laminar boundary layer of a flat plate (length L) is described by a polynomial of fourth order 2 u y y + a2 = a0 + a1 ua δ δ + a3 3 y δ + a4 4 y δ . a) Determine the coefficient of the polynomial! b) Proof the following relationships: δ1 = 3/10 δ δ2 = 37/315 δ q δ = 5.84/ Rex x q cw = 1.371/ ReL 15.8 In the stagnation point of a flat plate that is flown against normally to the outer flow ua (x) is accelerated in such a way that a constant boundary layer thickness δ0 is generated. The velocity profile is assumed to be linear as a first approximation. y u(x, y) = a0 + a1 ua (x) δ0 Determine: a) the constants a0 , a1 b) the distribution of the outer velocity ua (x) using the von Kármán integral equation. c) the tangential force that is applied between x = 0 and x = L on the plate with the width B. Given: δ0 , L, η, ρ, B von Kármán integral equation 1 dua τw dδ2 + (2δ2 + δ1 ) = 2 dx ua dx ρua 58 u a (x) d0 y x x=0 x=L 15.9 The velocity profile of a laminar boundary layer in a flow along a flat plate (length l) is approximated with A) a polynomial of third order 3 3 y 1 y u = − ua 2 δ 2 δ and B) a sinusoidal approach π y u . = sin ua 2 δ a) Determine δ1 , δ2 , δ and cw ! b) Compute for ua = 1 m/s L = 0.5 m B=1m ρ = 103 kg/m3 ν = 10−6 m2 /s the boundary layer thickness at the end of the plate and the drag force. 59 16 Turbulent boundary laters 16.1 A flat plate is flown against parallel to the surface with air. ν = 1, 5 · 10−5 m2 /s u∞ = 45 m/s Determine a) the transition point for Recrit = 5 · 105 , b) the velocity in the point x = 0, 1 m, y = 2 · 10−4 m using the Blasius solution. What is the coordinate y with the same velocity at x = 0, 15 m? Sketch c) the distribution of the boundary layer thickness δ(x) and a velocity profile for x < xcrit and x > xcrit . d) the wall shear stress as a function of x for dp/dx < 0, dp/dx = 0 and dp/dx > 0. 16.2 Representing the Reynolds averaged Navier-Stokes equations the averaged form of the x-momentum equation of a twodimensional, unsteady, incompressible flow is to be determined. ∂u ∂u2 ∂(uv) ρ + + ∂t ∂x ∂y ! ∂p ∂2u ∂2u = fx − +η + ∂x ∂x2 ∂y 2 ! a) Proof ∂u ∂u2 ∂(uv) + + ρ ∂t ∂x ∂y ! ! ∂u ∂u ∂u =ρ . +u +v ∂t ∂x ∂y b) Determine the averaged form odf the x-momentum equation in the time intervall [0, T ]. 16.3 Two planar rectanguular plates have the same lengths L1 and L2 . Plate no. 1 is flown against parallel to L1 and die plate no. 2 is flown against parallel to L2 with the velocity u∞ . L1 = 1 m L2 = 0, 5 m ν = 10−6 m2 /s a) Determine the ratio of viscous forces for u∞ = 0, 4m/s; 0, 8m/s; 1, 6m/s. b) What is the velocity for plate 2, assuming that the velocity for plate 1 is u∞ = 0, 196 m/s and the drag coefficients are the same? Hint: cw = 0, 074 1/5 ReL − 1700 for 5 · 105 < ReL < 107 ReL 60 17 Boundary layer separation 17.1 The lower border of a divergent channel is formed by a flat plate. At x = xa the flow separates. The velocity profile is described with a polynomial of third order: u(x, y) y y = a0 (x) + a1 (x) + xa2 ua (x) δ(x) δ(x) !2 y + a3 (x) δ(x) !3 Given: xa Determine the velocity profile u(xa , y/δ(xa )) at the separation point. ua (xa ) Sketch 3 velocity profiles for x < xa ; x = xa ; x > xa . 17.2 Assume that the flow on a circular cylinder separatesat α = 120o, the pressure up to the separation is determined from the potential flow, and the pressure in the separation region is constant. bestimmt und der Druck im Totwasser konstant ist. Determine thedrag coefficient of the cylinder by neglecting the viscous drag. 61 17.3 A cylinder with radius R is flown against normal to its axis with the velocity u∞ . The velocity of the frictionless outer flow at the cylinder wall is x ua (x) = 2u∞ sin R Assume δ(x) = 5 s ηx ρua (x) for the boundary layer thickness. a) Determine the local velocity profiles in the boundary layer for the (x, y) coordinate system with the following approach 2 y y u + a2 (x) = a0 (x) + a1 (x) ua (x) δ δ + a3 (x) 3 y δ b) Determine the angle where the separation occurs (τw = 0)! Hints: - boundary layer equation ∂u ∂u dp ∂2u ρu + ρv =− +η 2 ∂x ∂y dx ∂y - Approximation for ϕ ≈ π/2: sin ϕ ≈ 1 cos ϕ ≈ π/2 − ϕ 17.4 A sphere and a cylinder made from the same material are falling at constant velocity through air. The axis of the cylinder is normal to the falling direction. For 0 < Re ≤ 0, 5 the drag coefficient for a sphere cw = 24/Re and the cylinnder cw = 8π/[Re(2 − lnRe)] are given. ρ = 800 kg/m3 ρL = 1, 25 kg/m3 νL = 15 · 10−6 m2 /s Determine a) the maximum diameters for these laws being valid, b) the corresponding sink velocity. g = 10 m/s2 62 17.5 A sphere is falling steady with the constant velocity v1 through non-moving air. A downward blast increases the velocity up to v2 . D = 0, 35 m G = 4, 06 N v1 = 13 m/s 3 −6 ρL = 1, 25 kg/m νL = 15 · 10 m2 /s v2 = 18 m/s a) What is the drag coefficient before the blast? b) What is the final steady velocity of the sphere after the decay of the blast? 17.6 A sphere with the diameter D and the density ρK is shot vertically with the initial velocity v0 upwards through non-moving air. D = 0, 1 m v0 = 30 m/s g = 10 m/s2 ρH = 750 kg/m3 ρM = 7, 5 · 103 kg/m3 ρL = 1, 25 kg/m3 Determine generally with the assumption of a constant drag coefficient a) the ceiling, b) the ascend time, c) the velocity when the sphere hits the ground, d) the descend time. e) Determine these values for a wooden sphere with the density ρH and for a metallic sphere with the density ρM , if cw = 0, 4 and cw = 0. 63 19 compressible flow 64 65 19.1 A plane flies over an observer horizontally H = 577 m v = 680 m/s T = 287 K R = 287 Nm/kgK γ = 1.4 a) What is the Machnumber of the plane? b) What is the distance covered by the plane before it can be heard by the observer? c) When was the sound created? 19.2 One jet passes another at a distance b. vA = 510 m/s vB = 680 m/s b = 170 m T = 287 K R = 287 Nm/(kgK) γ = 1.4 How mauch later the pilot of the passed jet can hear the sound of the faster plane? 19.3 Air is flowing isentropically (γ = 1.4) from a large and frictionless supported container through a well rounded nozzle into the open air. a) Determine the dimensionless thrust Fs /p0 AD for the pressure ratios pa /p0 = 1; 0.6; 0.2; 0 ! b) What are these values for an incompressible fluid? 19.4 An airplane flies at supersonic speed. A shock is generated, that is normal in front of the airplane nose. u1 = 680 m/s T1 = 287 K R = 287 Nm/(kgK) Determine the temperature change across the shock. γ = 1.4 66 19.5 A turbine engine sucks air from the atmosphere. Immediately before the compressor the pressure is p1 . p0 = 105 N/m2 T0 = 287 K p1 = 0.74 · 105 N/m2 R = 287 Nm/(kgK) γ = 1.4 A = 9 · 103 mm2 Compute the mass flux flowing through the engine! 19.6 Air is flowing from a large reservoir through a well rounded nozzle into the open air. At the exit cross section A1 a normal shock develops. A1 = 0.018 m2 T0 = 287 K A∗ = 0.01 m2 pa = 105 N m2 R = 287 a) Compute the mass flux b) Sketch the distribution of the static pressure along the nozzle axis. J kg K 67 Hints: p2 2γ =1+ (M12 − 1) p1 γ+1 3,0 A A* 2,0 1,0 0 0 0,5 1,0 1,5 2,0 M 2,5 19.7 A rocket is equipped with a Laval nozzle. At liftoff (1) the jet has the velocity ME1 = 2 with a jet temperature TE1 . The surrounding pressure is pa . At the altitude H (2) the 1 surrounding pressure is only pa . Under the condition that p0 , T0 and AE are constant during 4 the flight, the smallest cross section A∗ has to be adapted in such a way that no shocks develop in the jet. Determine the ratio between the smallest cross sections A∗2 /A∗1. γ = 1.4 ME1 = 2 γR cp = ; γ−1 T = T0 p p0 ! γ−1 γ ; 68 A∗ M =" # 1 γ+1 A γ − 1 2 2 γ−1 2 1+ M γ+1 2 19.8 Air flows through a Laval nozzle. At positio ’1’ a normal shock is located. ṁ = 200 kg/s T0 = 300 K p0 = 2.2 · 105 N/m2 pa = 105 N/m2 p01 = 1.39 (ratio of total pressure across the shock) R = 287 Nm/(kg K) p01′ γ = 1.4 Determine at the exit of the nozzle (’2’) a) the Mach number M2 , b) the velocity u2, c) the stagnation density ρ0 2 , d) the exit cross section A2 . Hint: T0 p0 = p T γ γ−1 19.9 The velocity V1 in front of a straight shock is given by the normal component un1 = 400m/s and the tangential component ut1 = 300m/s. The static temperature changes to T2 = 1.2 · T1 69 Determine with γ = 1.4 and R = 287 Nm/(kgK): a) the Mach number M1 and the statictTemperature T1 in front of the shock, b) the Mach number M2 and the deflection angle β behind the shock, c) for M1 = const. the velocity components un1 and ut1 in such a way that M2 = 1. Compute the deflection angle β. 19.10 An oblique shock in a supersonic flow at M1 = 2.2 hits a flat wall at an angle of 40o . At the impinging point the wall is kinked outwars with 6o . γ = 1.4 M1 = 2.2 Determine: M2 , R = 287 Nm/(kgK) M3 , p2 , p1 p3 , p2 T2 , T1 T3 T1 19.11 Atmospheric air (T = 280 K, p = 1 bar) is sucked through a supersonic wind tunnel into an evacuated boiler (see sketch). The laval nozzle is designed for ME in the test section. p = 1 bar ME = 2.3 T = 280 K γ = 1.4 R = 287 Nm/(kgK) AH = 0.1 m2 VK = 1000 m3 During the test the reservoir temperature in the boiler is TK = 280 K = const.. At the time 70 t = 0 the boiler pressure is pk (t = 0) = 0.08 bar. a) Determine the available testing time ∆t. (undisturbed flow in the test section, ME = 2.3.) b) Determine for the boiler pressure pK = 0.16 bar the following quantities: Shock angle σ, deflection angle β, p0 2′ , M2 , T2 , T02 and the velocity V2 behind the shock. c) A wedge 2 · βK = 40o is mounted in the test section. What is the maximum angleof attack ǫ without the development of a detached shock? What is the pressure difference pu − pob and the Mach numbers Mob and Mu for this case? 19.12 The sketched diffusor with three shocks decelerates the flow from M∞ to M3 . The conditions of the incoming flow, and the normal velocity component un in front of the last shock are known. 71 M∞ = 3 β1 = 15o T∞ = 270 K p∞ = 1 bar β2 = 10o un = 649 m/s γ = 1.4 R = 287 J/(kg K) a) Compute the Mach numbers M1 and M2 as well as the shock angles σ1 and σ2 . b) Determine for point ’3’ the Mach number M3 , the contour angle β3 , the shock angle σ3 and the static pressure p3 . 19.13 The interaction of two oblique shocks of different intensities is sketched. The flow behind the shocks is splitted from a discontinuity line. The ratio of the total pressures in the areas ’1’ and ’2’ and the Mach number in ’1’ are known. γ = 1.4 R = 287 Jkg −1K −1 p01 /p02 = 1.2 M1 = 1.6 a) Calculate the Mach number M2 in area ’2’. ~2 |/|V ~1| and the density ratio ρ2 /ρ1 . b) Compute the ratio of the velocities |V 72 3 Fluid Kinematics 3.1 Unsteady flow for the resting observer, steady flow for the moving observer. 3.2 v v0 dy = = − tan(ωt) dx u u0 a) Integration : y = − v0 tan(ωt) x + c u0 Straight lines with slope 0, -1, -∞ b) x(t) = Z u dt + c1 = u0 sin(ωt) + c1 ω y(t) = Z v dt + c2 = v0 cos(ωt) + c2 ω =⇒ Circles with radius 1 m c) Circle around the origin ω u0 2 (x − c1 )2 + ω v0 2 (y − c2 )2 = 1 73 4 Basic equations for fluids 4.1 a) ∂ ∂p ∂p ∂x ∂x ∂x ∂p ∂ ∂p ~ ~ ~ ∇ × ∇p = ∇ × = × ∂y ∂y ∂y 1) = ! ∂ − ∂z ∂ ∂y ∂p ∂z ∂p ∂y = ∂2p ∂2p − ∂y ∂z ∂z ∂y ∂p ∂z ! , , ∂ ∂z ∂ ∂p ∂z ∂z ! ! ∂ ∂p ∂p − ∂x ∂x ∂z ∂2p ∂2p − ∂z ∂x ∂x ∂z , , ∂ ∂x ∂p ∂y ∂2p ∂2p − ∂x ∂y ∂y ∂x ! ∂ − ∂y ∂p ∂x !T = 0 , If the second partial derivatives of p exist the orser of the differentiation is irrelevant. 2) 3) analogous to 1) analogous to 1) ~ · ~v = 0 ∇ b) 2 ∂~v ~ ~v + ∇ ρ ∂t 2 ! ~ × ~v − ~v × ∇ ! ~ p − η∇ ~ × ∇ ~ × ~v = ρ · ~g − ∇ 4.2 ∂v ∂v dv = + v· (onedimensional) a) in general (substantial acceleration): dt ∂t ∂x From the continuity equation A · v = const follows v · ∂v = 0 ∂x ∂v ∂vpiston = 6= 0 ∂t ∂t =⇒ dv ∂vpiston = (local acceleration) dt ∂t b) in general (substantial acceleration): ∂v ∂v dv = + v· dt ∂t ∂x Constant inflow velocity v = v0 ∂v = 0 ∂t =⇒ Continuity : A(x) · v(x) = konst !!T 74 =⇒ =⇒ =⇒ ∂A(x) ∂v(x) · v(x) + · A(x) = 0 ∂x ∂x ∂A(x) v(x) ∂v(x) = − · 6= 0 ∂x ∂x A(x) dv ∂v(x) ∂A(x) v(x) = v(x) · = − · · v(x) dt ∂x ∂x A(x) (only convective acceleration) 4.3 ∂ ∂r ∂ ∂φ ∂ ∂z ∂ = · + + · ∂x ∂x ∂r ∂x ∂φ ∂x ∂z a) ∂r ∂x ∂φ ∂x ∂z ∂x = = = − 1 x 1 2 x = x + y 2 2 · 2x = √ 2 = cos φ 2 2 r x + y y y y sin φ −2 = − 2 − = − 2 = − 2 · x 2 y x + y r r 1 + x 0 ∂ =⇒ ∂x ∂ analogous ∂y ∂ ∂z vx = vy = vz = = = = ∂ (cos φ) · + ∂r ∂ (sin φ) · + ∂r ∂ ∂z ! − sin φ ∂ r ∂φ ! cos φ ∂ r ∂φ dx dr dφ = · cos φ − r · sin φ = vr · cos φ − sin φ · vφ dt dt dt dy dr dφ = · sin φ + r · cos φ = vr · sin φ + cos φ · vφ dt dt dt dz dz = dt dt =⇒ mit vφ = ∂vx ∂vx ∂r ∂vx ∂φ ∂vx ∂z ∂u = = · + + · ∂x ∂x ∂r ∂x ∂φ ∂x ∂z ∂x r · dφ dt 75 ∂r ∂φ − sin φ ∂z = cos φ = = 0 ∂x ∂x r ∂x ∂vr ∂φ ∂vx = · cos φ − sin φ ∂r ∂r ∂r ∂vx ∂vφ = − vr · sin φ − cos φ · vφ − sin φ ∂φ ∂φ ∂vx = 0 ∂z ∂w ∂v and are computed analogous. ∂y ∂z Introducing in eq. 1) results in 1 ∂ ∂ 1 ∂ ∂ρ + ρ· (r · vr ) + vφ + vz ∂t r ∂r r ∂φ ∂z ! = 0 b) analogous to a) vx = vr · sin Θ · cos φ − vφ · sin φ + vΘ · cos Θ · cos φ vy = vr · sin Θ · sin φ − vφ · cos φ + vΘ · cos Θ · sin φ vz = vr · cos Θ − vΘ · sin Θ ∂ρ 1 1 1 ∂ 2 ∂ ∂vΘ =⇒ r · vr + + ρ· 2 (sin Θ vΘ ) + ∂t r ∂r r · sin Θ ∂Θ r · sin Θ ∂φ 4.4 incompressible, steady flow in r-direction: =⇒ ∂ = 0 , vΘ = 0 , vz = 0 , ρ = const. ∂t ! = 0 76 Symmetrical problem =⇒ ∂(r vr ) = 0 ∂r =⇒ Conti: Momentum eq.: 4.5 steady flow ρ vr ∂ ∂p ∂ vr = − + η ∂r ∂r ∂r invompressible 1 r ∂(r vr ) ∂ 2 vr + 2 ∂z | ∂r {z } = 0 ∂ vr ∂ vz = = 0 ∂z ∂z ρ = konst ∂(r vr ) = 0 =⇒ vr = 0 ∂r momentum eq.: ∂p = 0 ∂r ∂vz η ∂ ∂p r + − ∂z r ∂r ∂r energy eq.: 4.6 steady: ∂ vr ∂ vz = = 0 ∂t ∂t fully developed Conti.: ∂ = 0 ∂Θ ρ cp ∂T ∂T + vz ∂t ∂z ! ! = 0 ∂p ∂T 1 ∂ = vz r + λ ∂z r ∂r ∂r ! ∂ = 0, frictionless: η ∇2 ~v = 0 ∂t =⇒ Navier-Stokes eqns for incompressible, steady, frictionless flows: ∂v ∂u + = 0 ∂x ∂y ∂u ∂u ρ u + v ∂x ∂y ! = − ∂p + ρ gx ∂x ∂v ∂v + v ρ u ∂x ∂y ! = − ∂p + ρ gy ∂y ∂2 T + ∂z 2 ! ∂ vz + η ∂r !2 77 5 Hydrostatics 5.1 Lift = Weight FA = G FA = ρ1 h a2 g + ρ2 (a − h) a2 g G = ρK a3 g ρ2 − ρK =⇒ h = a = 6, 67 · 10−2 m ρ2 − ρ1 5.2 X F = 0 F − G + Fp = 0 F = G − Fp Fp is the resulting pressure force. Fp can be determined with the principle of Archimedes taking into account that the body is not fully wet. Fp = VHK · ρ g − ρ g h · AHK VHK = ˆ Volume of the half sphere Fp = AHK = ˆ Base area of the halph sphere 1 4 π R3 ρ g − ρ g h π R2 2 3 2 R − h Fp = ρ g π R 3 2 2 R − h =⇒ F = G − ρ g π R 3 2 5.3 Force equilibrium( τ : volume of the buoy,τH : encosed volume of air ) 1) at the surface : g mB 2) indepth H : g mB 1 = τ g ρw 3 = τH g ρw =⇒ τH = 1 τ 3 78 enclosed air mass is constant: =⇒ 2 1 τ ρL0 = τH · ρLH = τ · ρLH =⇒ 2 ρL0 = ρLH 3 3 1 1 h pa + ρw g H + pa + ρw g h 3 3 =⇒ 2 = RL TL RL TL 1 pa + h =⇒ H = ρw g 3 5.4 a) G0 = 1, 07 · 105 m3 ρM g ∆G = ρM A(h0 − h1 ) g τ0 = b) =⇒ A = 1, 95 · 104 m2 c) G0 − G0 − ∆G =⇒ τ2 − τ1 = ρM · g d) τ2 − =⇒ h2 = 10, 625 m ∆G = ρM ! τ1 g = ρF τ2 g ρM − 1 = 2, 44 · 103 m3 ρF τ1 = (h2 − h1 ) A 5.5 1 F1 = Z d F1 = Z coordinate transformation : with S = p (z1 )·L·ds z1 cos α ; ds = d z1 cos α F1x = F1 · cos α =⇒ F1x = Z2a 0 F1z = − F1 · sin α Z2a d z1 cos α p(z1 ) · L ρ g z1 L d z1 = 2 ρ g a2 L = cos α 0 79 F1z = − Z2a 0 d z1 sin α p(z1 ) · L = − cos α Z2a 0 tan α · ρ g z1 L d z1 = − with tan α = 2 3 F3x = + 2 3 F2z = 2ρ g a2 L F2x = 0 ; Z4a p(z1 )·L dz1 = + Z4a ρ g z1 L dz1 = 6 ρ g a2 L ; F3z = 0 2a 2a 4 , 5 , 6 1 ρ · g · a2 · L ; F6z = 0 2 =⇒ F45z = F456x = − Fx = 25 ρ g 5a · 5a · L = − ρ g a2 · L 2 2 X Fix = − 9 ρ g a2 L 2 X Fiz = + 7 ρ g a2 L 6 i Fz = i Fges = q 4 ρ g a2 L 3 Fx2 + Fz2 = 4.65 ρ g a2 L 80 5.6 Screw force FS = ? The origin of the force is the different pressure distributions pi (z) , pa (z). The force FS depends on the shape of the boiler. the resulting pressure force Fp res can be With GGefäß = 0 =⇒ Fp res − FS = 0 determined. pressure distributions EHE (inside) pi (z) = pa + ρW · g(R − z) outside: d pi d pL = ρL g << ρW g = − dz dz due to ρL << ρW pressure gradient can be neglected outside. =⇒ pa (z) = pa Resulting pressure force from the integration of all forces: z d Fa R d Fi . d Fi sin Q d Fa . sin Q dA Q dFi = pi · dA 81 dFa = pa · dA z - component: dFpz = (dFi − dFa ) · sin Θ = (pi (z) − pa ) dA sin Θ surface element dA dA = R · dΘ · r · dϕ mit r = R · cos Θ dA = R2 · cos ΘdΘ dϕ =⇒ EHE: pi − pa = ρW · g(R − z) = ρW · g(R − R · sin Θ) Fpz = R dFpz = 2π R π/2 R 0 0 ρW · gR(1 − sin Θ) R2 cos Θ · sin Θ dΘ dϕ substitution: sin Θ = η Fpz = 2πρW · g R =⇒ Fpz = 3 Z1 0 (η − η 2 ) dη π ρW · g R3 = FS 3 alternative solution Assume a completely submerged body FS = 0, pi (z) unchanged the difference is the weight of the hatched water =⇒ FS = GW = = = ρW · g (Vcylinder − 1 ρW · g (π R3 − 2 3 π ρW · g · R · 3 Vhalfsphere ) 4 · R3 π) 3 V = ˆ volume 82 5.7 1. X F = 0 = p dA − ! ∂p dx p + ∂x 2. =⇒ p = − ρW ax · x + c1 and =⇒ p∗ = pa + ρgh = pa + ρax l g =⇒ l = h ax 5.8 boundary condition: r = 0, z = h : dA − ρW ax dx dA =⇒ p = − ρW g · z + c2 p = pa ∂p = − ρW ax ∂x 83 p − pa = ρ g(h − z) + 1 ρω 2 r 2 2 a) Surface: p = pa ; z0 (r) is the surface coordinate ω 2 r2 2g r = R : z0 = H H −h =⇒ ω 2 = 2g R2 =⇒ =⇒ z0 (r) = h + z0 (r) = h + (H − h) r2 R2 Volume of water: 2 π R h0 = ZR z0 (r) 2π r dr = π R2 h + 0 =⇒ =⇒ b) 1 π R2 (H − h) 2 h = 2h0 − H = 0, 4 m ω = s 4g (H − h0 ) = 13, 9 s−1 R2 r = R : p = pa + ρ g (H − z) z = 0: p = pa + ρ g h + ρ 2 2 ω r 2 from hint: dp = ρ ω 2 r dr − ρ g dz =⇒ Zp pa dp = Zr r=0 2 ρ ω r dr − Zz z=h ρ g dz 84 ρ ω 2 r2 − ρ g (z − h) 2 =⇒ p − pa = 1 ρ ω 2 r2 2 =⇒ p − pa = ρ g (h − z) + 5.9 z = H: z = h: 0 = FA − FG − FN ; FA = ρL (H) 0 = FA − FG − FN ; FA = ρL (h) =⇒ ρL (H) ρL (H) ρL (H) − ρG gH , = ρ0 exp − RL T0 open balloon: pL = pG FN = RL 1 − RG = ρL ρL (h) g (h) RL 1 − RG 1 2 (H) τB , FG = ρG 2 gτB = ρL (h) gτB (h) − ρG gh = ρ0 exp − RL T0 =⇒ ρL RL T0 = ρG RG T0 h = H − 5.10 (H) gτB , FG = ρG ! gH =⇒ ρ0 exp − RL T0 RL T0 ln 2 = 4290 m g τB 2 1 g τB 2 (h) (T = const) =⇒ ρG = ρL g RL RG 1 gh = ρ0 exp − 2 RL T0 ! 85 a) FA = FS + FN and FS = FA − FN =⇒ FS = ρ0 · V0 · g − m · g = (ρ0 · V0 − m) · g (mit m = mGas + mstructure ) b) General equation für V (z) : V = mg ρg (z) with perfect gas assumption =⇒ pressure equalization: =⇒ V (z) = pg (z) Rg · Tg mg · Rg · Tg pg (z) pg = pa (z) = ρa (z) · Ra · Ta V (z) = mg · Rg · Tg ρa (z) · Ra · Ta ρa (z) = ? ,,Scale Height Relation”: temperatureequalization =⇒ =⇒ −g ·z pa (z) = p0 · e Ra · T0 ρa (z) = pa (z) Ra · T0 −g · ρ0 · z ρa (z) · Ra · T0 = ρ0 · Ra · T0 · e p0 =⇒ For z = 0 ρg (z) = g · ρ0 ·z mg · Rg · e p0 V = ρ0 · Ra V = V0 =⇒ mg · Rg V0 = ρ0 · Ra =⇒ g · ρ0 ·z V (z) = V0 · e p0 Tg = Ta 86 for z = z1 follows: g · ρ0 · z1 V 1 = V 0 · e p0 p0 V1 =⇒ z1 = · ln g · ρ0 V0 c) −→ For z ≥ z1 the balloon is rigid. −→ gas mass and volume is contant =⇒ no pressure equalization. Ceiling is reached when Fa (z2 ) = G −g · ρ0 ·z Fa (z2 ) = ρa (z2 ) · V1 · g = ρ0 · V1 · g · e p0 = m·g =⇒ z2 = ln ρ0 · V1 p0 · m g · ρ0 87 6 Continuity and Bernoulli’s equation 6.1 a) Volume flux V̇ = v5 · A 1 2 h 4 5 H z 3 ρ 2 v 2 3 ρ 2 v Bernoulli 2 −→ 4 : pa + ρ g (H + h) = p4 + 2 4 with p3 = p4 =⇒ v3 = v4 =⇒ no mixing losses: ρ 2 v Bernoulli 1 −→ 5 : pa + ρ g (H + h) = p5 + 2 5 √ √ with p5 = pa + ρ g H =⇒ v5 = 2 g h =⇒ V̇ = 2 g h A Bernoulli 1 −→ 3 : pa + ρ g (H + h) = p3 + 6.2 Bernoulli : p0 = p∞ + ρ ρ 2 v∞ = p2 + v22 2 2 =⇒ ∆p = p0 − p2 = ρ 2 v 2 2 v∞ π D 2 = v2 π (D 2 − d2 ) Conti : =⇒ v2 = s 2 ∆p D2 = v∞ 2 ρ D − d2 v∞ s = 1 − 2∆p ρ =⇒ 1 vh 2D p w r d D 1 d D !2 88 6.3 1 hB r R H r(z) 2 z Bernoulli 1 −→ 2 : pa + ρ g H = pa + ρ g z + =⇒ v(z) = ρ 2 v (z) 2 q 2gH − 2gz = q 2 g(H − z) π R2 vR = π r 2 (z) v(z) conti : =⇒ r(z) = R r(z) = R r(z) = R v u u v(z t s vR v(z) = H − hB ) v(z) v u 4u t 2g(H − H + hB ) 2g(H − z) s r(z) = R 4 hB H −z 6.4 a) Bernoulli : p1 + conti : v1 A1 = v2 A2 = v3 A3 =⇒ v2 = s 2 ∆p = 12 m/s ρ [1 − (A2 /A1 )2 ] =⇒ v1 = 4 m/s b) Bernoulli : ρ 2 ρ v1 = p2 + v22 2 2 p2 + v3 = 6 m/s ρ ρ 2 v2 = p3 + v32 2 2 89 p3 = pa = 105 N/m2 (Outflow to the surrounding) =⇒ p2 = 0, 46 · 105 N/m2 =⇒ p1 = 1, 1 · 105 N/m2 Bernoulli : p + ρ g h = pa + p = 1, 08 · 105 N/m2 6.5 v 2 0 3 h 1 g pa r A H z 4 s 5 Ad a) Bernoulli 0 −→ 5 : pa + ρ g H = p5 − ρ g s + ρ 2 v 2 5 p5 = pa + ρ g s =⇒ V̇ = Ad b) q 2 g H = 4 m3 /s ρ 2 v 2 3 90 c) bubbles occur, if p2 = p3 = pD . v5∗ A∗d = v ∗ A conti : Bernoulli : pa = pD + ρ g h + =⇒ A∗d = A s ρ ∗2 v 2 pa − pD h − = 0, 244 m2 ρgH H 6.6 Bernoulli 0 −→ 3 : Z3 ρ 2 v + pa + ρ g H = p3 + 2 3 Z3 0 = ρ ∂v ds ≃ 0 (h1 << L) ∂t = Z2 ρ ∂v ds , ∂t I23 = = dv2 ρ dt ρ Z3 2 Z2 1 v = v2 h2 h Z2 , + , p3 = pa , v2 = v3 Z3 2 1 = 1 I12 + Z1 0 I12 Z1 0 0 I01 ∂v ds ∂t ρ h = h1 + h2 − h1 x L dv2 h2 L h2 dv2 h2 L dx = ρ ln = ρ h2 − h1 dt h2 − h1 h1 dt x h1 + L ∂v dv2 ds = ρ L ∂t dt introduce in Bernoulli: dv3 ρ 2 v3 + ρ (L + L) 2 dt ! v32 dv3 1 gH − = dt 2 L + L pa + ρ g H = pa + t→∞: gH − q 1 2 v3e = 0 =⇒ v3e = 2 g H 2 local acceleration: ∂v dv3 h2 = , bl ∂t dt h convective acceleration: bl = bk = v (v3 = 21 v3e , x= L ) 2 h2 dh ∂v = − v32 32 ∂x h dx , = 1 2 h2 3 gH 4 h1 + h2 L+L dh h2 − h1 = dx L 91 g H h22 (h1 − h2 ) L (h1 + h2 )3 bk(v3 = 1 v3e , bs = dv ∂v ∂v = + v = bl + bk dt ∂t ∂x 2 x= L ) 2 = 4 substantial acceleration: h2 g H h22 (h1 − h2 ) 3 gH + 4 2 L + L h1 + h2 L (h1 + h2 )3 bs = 6.7 a) Bernoulli 0 −→ 2 : ρ 2 v + ρ pa + ρ g h = p2 + 2 2 (1) conti: ZL 2/3 L ∂v dx ∂t v · A = v2 · A2 =⇒ ρ ZL 2/3 L ∂v ∂v2 dx = ρ ∂t ∂t Introduce in (1): ∂v2 ∂t b) Bernoulli x −→ 2 : t=0 ZL 2/3 L dv2 = dt A2 ∂v2 dx = ρ A ∂t = t=0 ZL 2/3 L L2 ∂v2 L dx = ρ 2 x ∂t 2 2gh 2 g h − v22 = L L ρ 2 ρ 2 p + v = p2 + v + ρ 2 2 2 ZL x ∂v dx ∂t 92 conti: A2 · v2 A v = ρ p = p2 + v22 2 =⇒ 1 − A2 A L4 ρ 2 v2 1 − 4 =⇒ p = p2 + 2 x Extremum for p(x) from 2 ! ! ZL L2 ρ 2 + 2 g h − v2 dx 2 L x x + ρ 2gh − v22 L −1 + x dp 1 q 2 g h: = 0 bei v2 = dx 2 ! ρ 1 4 L4 =⇒ 0 = · 2gh 2 4 x5 L4 3 L =⇒ 0 = 5 − x 2 x2 d2 p ρgh = 2 d x x=xm L2 1 L 2gh · − 2 4 x + ρ 2gh − =⇒ s 3 2 L ≈ 0, 87 L 3 x = 3 1 −5 + ·2· 2 (2/3) 2 2/3 ! ρgh 27 = <0 − 2 L 4 s 3 2 ·L =⇒ Maximum bei x = 3 6.8 conti : AB Torricelli : q v1 = 2 g h1 √ introducing = √ 3 AB 2 2g A A dh = v1 A − vA · dt 3 , vA = q 2 g h(t) 3 h1 − q h(t) ! q q 3 AB dh = 3 h1 − h(t) 2 g A dt 4h1 3 AB Z dh q =⇒ T = √ √ 2g A h h(t) − 3 1 h1 q dh << vA dt − 3 q h1 ln q 3 h1 − q h(t) 4h1 h1 = 108 s 93 6.9 a) steady Bernoulli 0 −→ 1 for t −→ ∞ pa + ρ g h = pa + ρ g h + =⇒ vmax = s ρ 2 v − ∆p 2 max 2∆p ρ unsteady Bernoulli 0 −→ 1 Z ρ 2 ∂v pa + ρ g h = pa + ρ g h + v(t) − ∆p + ds ρ 2 ∂t L dv ρ 2 v(t) + ρ L 2 dt 2L 2L ρL dv = 2 dv =⇒ dt = ρ 2 dv = 2 ∆p 2 vmax − v(t) 2 ∆p − v − v 2 ρ =⇒ ∆p = vmax + v v=.999 vmax L 1 + .999 ln ln = T = vmax vmax − v v=0 vmax 1 − .999 L 10 m vmax = · 7.6 = · 7.6 = 10 m/s T 7.6 s Integration : Bernoulli 1 −→ 2 L for t −→ ∞ ρ 2 v = ρgH 2 max b) vH/2 =⇒ H = vmax L ln = √ =⇒ tH/2 = vmax 2 2 vmax = 5m 2g vmax vmax ! 1 1+ √ 2! = 1, 763 sec 1 1− √ 2 6.10 a) Bernoulli 0 −→ K : pa = pK conti : =⇒ ρ L+ξ Z 0 ρ 2 v + ρgh + ρ + 2 K v · A = vK · A dvK ∂v ds = ρ (L + ξ) ∂t dt L+ξ Z 0 ∂v ds ∂t 94 vK = dξ 2 = − ξ0 ω sin (ωt); vK = ξ02 ω 2 sin2 (ωt) dt dvK d2 ξ = = − ξ0 ω 2 cos (ωt) dt dt2 =⇒ pK = pa − =⇒ ρ 2 2 ξ ω sin2 (ωt) − ρ g h + ρ ξ0 ω 2 cos (ωt) (L + ξ0 cos (ωt)) 2 0 pa − ρ g h 1 ξ02 ξ0 ξ02 pK 2 = − sin (ωt) + cos (ωt) + cos2 (ωt) 2 2 2 2 2 2 ρL ω ρL ω 2 L L L pa − ρ g h ξ0 pK = + =⇒ 2 2 2 2 ρL ω ρL ω L ξ0 b) Minimum of L " " 1 ξ0 cos (ωt) − (1 − 3 cos2 (ωt)) 2 L # 1 ξ0 π cos (ωt) − (1 − 3 cos2 (ωt)) at t = für ξ0 << L! 2 L ω 2 =⇒ pD = pa − ρ g h − ρ ξ0 (L − ξ0 ) ωK =⇒ ωK = s pa − ρgh − pD ρ ξ0 (L − ξ0 ) c) ∆T = 2π ω 1 V̇ = ∆T Zω Period of piston movement 2π π ω 2π ω A vK (t) A dt = 2π Zω vK dt π ω 2π ω V̇ = A 2π Zω (−ξ0 ω sin (ωt)) dt = π ω =⇒ V̇ = ω A ξ0 π 2π ω cos ωt ω A ξ0 ω 2π ω ωπ # 95 6.11 a) Bernoulli from surface −→ pipe end : 1) ω = 0 : pa + ρ g (h + l) = pa + =⇒ v (t < 0) = 2) ω = q ρ 2 v 2 2 g (h + l) ρ 2 ρ 2 2 v − ω R 2 2 r q =⇒ v (t → ∞) = 2 g (h + l) + ω 2 R2 ωr : pa + ρ g (h + l) = pa + unsteady Bernoulli: pa + ρ g (h + l) = pa + =⇒ ρ 2 ρ 2 2 dv v − ωr R + ρ(l + R) 2 2 dt dv 2g(h + l) + ωr2 R2 − v 2 a2 − v 2 = = dt 2(l + R) 2(l + R) 1 v(t→∞) 2 Integration : Z ∆T = v(t<0) 1 2(l + R) dv a + v 2 v(t→∞) 2(l + R) = ln a2 − v 2 2a a − v v(t<0) with v(t → ∞) = a =⇒ ∆T = 3 ωr2 R2 l+R ln a (a + v(t < 0))2 b) ∂p 1 = ρ ω 2 r =⇒ p(r) = ρ ωr2 r 2 + c ∂r 2 boundary condition : r = R =⇒ p = pa =⇒ c = pa − ρ ωr2 (R2 − r 2 ) 2 ρ ωr2 2 R point 1 : r = 0 =⇒ p1 = pa − 2 =⇒ p = pa − 1 ρ ωr2 R2 2 96 7 Momentum and momentum of momentum equation 7.1 Force equilibrium in the u-tubes: p1 + ρHg g∆h1 = p01 = p2 + ρHg g∆h2 =⇒ p1 − p2 = ρHg g(∆h2 − ∆h1 ) Momentum equation in x-direction: 0 = (p1 − p2 )AD − F =⇒ F = ρHg g(∆h2 − ∆h1 ) 7.2 Momentum: conti: πD 2 4 dIx = −ρv12 A + ρv22 A − v3 cos αρv3 A3 = (p1 − p2 )A dt v1 A + v3 A3 = v2 A =⇒ 1 v1 + v3 = v2 4 =⇒ v3 = 4(v2 − v1 ) mit 1 A3 = A 4 =⇒ F = (p1 − p2 )AD 97 =⇒ p2 − p1 = ρ (v12 − v22 + 4(v2 − v1 )2 cos α) 7.3 a) ρ ρ ρ p1 + v12 = pa + v22 = pa + v32 2 2 2 ∆p = p1 − pa v1 A1 = v2 A2 + v3 A3 v1 = v u u 2∆p u u ρ t v2 = v3 = 1 A1 A2 + A3 2 = 2, 58 m/s −1 A1 v1 = 5, 16 m/s A2 + A3 b) Momentum in x-direction: −ρv12 A1 + ρv22 A2 cos α2 + ρv32 A3 cos α3 = (p1 − pa )A1 + Fsx =⇒ Fsx = −866, 4 N Momentum in y-direction: ρv22 A2 sin α2 − ρv32 A3 sin α3 = Fsy =⇒ Fsy = −238, 4 N c) A2 sin α2 − A3 sin α3∗ = 0 =⇒ α3∗ = 12, 37◦ 98 7.4 a) X ~ =0 M R Momentum: x-direction: ~va ⊥~v ; a =⇒ F1 = Fw1 l =⇒ aFw1 − lF1 = 0 ρ~v (~v · ~n)dA = ΣF P F = −Fw1 ; p = pa a =⇒ −ρv 2 hB = −Fw1 =⇒ F1 = ρ v 2 hB l b) Momentum in x-direction: Bernoulli: −ρv 2 hB − 2ρv22 h2 B = −Fw2 ρ ρ 1 −→ 2 p1 + v12 = p2 + v22 2 2 p1 = p2 = pa ; v1 = v =⇒ v2 = v 99 conti: vh = 2vh2 1 =⇒ h2 = h 2 =⇒ Fw2 = 2ρv 2 hB = 2Fw1 X ~ = 0 =⇒ F2 = a Fw2 =⇒ F2 = 2ρ a v 2 hB = 2F1 M l l c) X ~ = 0 =⇒ − l mg sin θ + a Fw3 = 0 =⇒ Fw3 = 1 l mg sin θ cos θ M 2 cos θ 2a Momentum in z-direction: ρv cos θvhB = Fw3 =⇒ ρv 2 cos θhB = 1l mg sin θ cos θ 2a 2a hB 2 v l mg ! 2a ρhBv 2 =⇒ θ = arcsin l mg =⇒ sin θ = ρ 100 7.5 a) Conti: ρ1 v1 A∞ = ρ1 v1 (A∞ − AR ) + ∆ṁ =⇒ ∆ṁ = ρ1 v1 AR b) Momentum in x-direction Z −ρ1 v12 A∞ + ρ1 v12 (A∞ − AR ) + ρA vA2 AR + Für A∞ /AR ≫ 1 : vx = v1 Z AM ρ1 vx vr dA = v1 Z AM AM ρ1 vx vr dA = Fs ρ1 vr dA = v1 ∆ṁ =⇒ Fs = ρA vA2 AR =⇒ P = Fs v1 = ρA vA2 v1 AR 7.6 a) Bernoulli1 −→ 1′ : Bernoulli2′ −→ 2 : ρ ρ pa + v12 = p1′ + v ′2 2 2 ρ ρ p2′ + v ′2 = pa + v22 2 2 Konti : v1 A1 = v ′ A′ = v2 A2 Momentum in x − direction for the small surface : Momentum in x − direction for the large control surface 0 = (p1′ − p2′ )A′ + Fs −ρv12 A∞ + ρv22 A2 + ρv12 (A∞ − A2 ) − ∆ṁv1 = Fs (see Exercise 7.5) 101 conti: =⇒ ρv1 A∞ + ∆ṁ = ρv2 A2 + ρv1 (A∞ − A2 ) v1 + v2 v′ = = 6, 5 m/s 2 b) η= 7.7 a) v1 Fs v1 = ′ = 0, 769 ′ Fs v v 102 b) Bernoulli 1 −→ 1’: ρ ρ p1 + v12 = p1′ + v12′ 2 2 s 2 =⇒ v1′ = v2 = (p1 − p1′ ) + v12 ρ ṁ = ρAv1′ = 13 · 103 kg/s c) Momentum in x-direction: −ρv12 A∞ − ∆ṁv1 + ρv22 A + ρv12 (A∞ − A) = Fs Konti: (see Exercise 7.5) ρv1 A∞ + ∆ṁ = ρv1 (A∞ − A) + ρv2 A =⇒ Fs = ρv2 (v2 − v1 )A = 0, 39 · 105 N d) P = V̇ (p02 − p01′ ) = V̇ (p1 − p1′ ) = 448, 5 kW 7.8 well rounded inlet a) Bernoulli ∞ −→ 1 : ρ pa = p1 + v12 2 ∆p = p2 − p1 = pa − p1 s 2∆p A =⇒ V̇ = vA = ρ 103 b) P = V̇ (p02 − p01 ) = s 2∆p ∆pA ρ c) Momentum in x-direction: ρv 2 A = Fs = 2∆pA sharp edged inlet a) Momentum in x-direction for the dotted control surface: ρv 2 A = (pa − p1 )A ∆p = p2 − p1 = pa − p1 s ∆p =⇒ V̇ = vA = A ρ b) P = V̇ (p02 − p01 ) = s ∆p ∆pA ρ c) Momentum in x-direction for the dashed line ρv 2 A = Fs = ∆pA 7.9 a) Bernoulli ∞ =⇒ 1 : ρ pa = v12 + p1 − ∆p 2 104 dIy = −ρv12 2A = (p1 − pa )BL − G dt Momentum in y-direction: =⇒ ρv12 = 1 (G − (p1 − pa )BL) 2A 1 (G − (p1 − pa )BL) + p1 − ∆p 4A BL G BL = p1 1 − − ∆p + =⇒ pa 1 − 4A 4A 4A G ∆p − 4A 1 G =⇒ p1 = pa + = pa + − ∆p 4 4A 1 − BL 4A =⇒ pa = ρ =⇒ v12 = pa − p1 + ∆p 2 =⇒ v1 = s s V̇ = v1 2A = 2A b) Power: pressure loss: conti: ρ ρ ∆pv = po1 − po2 = p1 + v12 − pa − v22 2 2 =⇒ v1 = v2 1G 1 5∆p − 2ρ 4A P = ∆pV̇ 2Av1 = 2h(B + L)v2 1 1G 5∆p − 2ρ 4A 1 G − ∆p =⇒ ∆pv = p1 − pa = 4 4A 105 Pv = ∆pv V̇ = V̇ 4 G − ∆p 4A 7.10 In frictionless flow the Bernoulli equation is valid. If the distance from the ball is large enough a constant flow velocity is assumed. In a constant velocity field the pressure gradient across the flow is zero. a) Bernoulli ∞ −→ 1 −→ 2 −→ ∞ : pa + ρ v2 v2 v2 v12 = p1 + ρ 1 = p2 + ρ 2 = pa + ρ 2 2 2 2 2 =⇒ v1 = v2 b) Momentum in x-direction: −ṁv1 cos α1 + ṁv2 cos α2 = X Fpx + Fstx = 0 p = pa =⇒ v1 = v2 =⇒ α1 = α2 , with the absolute values α1,2 . c) Momentum in y-direction: −ṁv1 sin α1 + (ṁv2 (− sin α1 )) = −G 106 =⇒ ṁ = G 2v1 sin α1 7.11 a) ~va = vabsolut ~vr = vrelativ ω ~ · R = vFahrzeug vr Bernoulli with acceleration term ~va = ~vr + ~ω R Z s2 ρ w 2 R2 ρ ρ(~b · d~s) = pa + vr2 − ρ gH + 0 → 2 : pa = pa + vr2 − 2 2 2 s0 q m =⇒ vr = 2gH + w 2R2 = 16 s b) Steady flow in a moving coordinate system. =⇒ Z KF ~ = Σ ~r × F~ (~r × ~v)ρ~v · ~ndA = ΣM ~ = =⇒ M Z KF KV (~r × ~va ) ρv~r · ~ndA |~r × ~va | = |R(ωR − vr cos α)| torsional moment for 3 arms: =⇒ M = 3ρvr AR (ωR − vr cos α) = −6.8 Nm ! 107 ~ operates in the direction of ~ω . F~ and ~v are in opposite direction. The torsional moment M V̇ = 3vr A = 2.4 · 10−3 m3 s c) Bernoulli 0 −→ 1: ρ pa + ρg(h + H) = p1 + v12 2 V̇ v1 = A1 2 ρ V̇ N =⇒ p1 = pa + ρg(h + H) − = 0.82 · 105 2 2 2 A1 m d) dM =0 dω =⇒ maximum for ω = 0 q q =⇒ vr = √ 2gH =⇒ M = 3ρ 2gHAR − 2gH cos α = −6ρgHAR cos α = 13 Nm 7.12 Momentum of momentum: R KF ~ ρ(~r × ~v)~v · ~ndA = ΣM =⇒ ρlv12 A = Ghg sin α Bernoulli 0 −→ 1 : ρ ρgl cos α = v12 2 108 =⇒ v1 = q 2gl cos α =⇒ Aρl2gl cos α = Ghg sin α =⇒ Gh tan α = 2 ρ l2 A ! Aρl2 =⇒ α = arctan 2 Gh 109 9 Laminar viscous flow 9.1 R Volume flux : Momentum in x−direction : boundary conditions : =⇒ =⇒ V̇ = B 0δ u(y)dy dτ = ρg sin α dy du τ = −η dy y =0: u=0 y =δ: τ =0 ! y2 ρg sin α δy − u(y) = η 2 ρgB sin α 3 V̇ = δ = 1, 2 · 10−3 3η 9.2 a) Momentum in x-direction: − ∂τ + ρg sin α = 0 ∂y m3 /s 110 with − TT ρ = ρ0 e 0 y Tδ − T0 T = +1 T0 δ T0 and and the constant k = − Tδ − T0 T0 follows y ∂τ eδk = ρ0 g sin α ∂y e Integration: τ= Boundary condition: τ (y = δ) = 0 =⇒ ρ0 gδ sin α y k e δ + C(x) ke =⇒ τ (y) = C= −ρ0 δg sin α ke ek ρ0 δg sin α y k e δ − ek ke b) τ = −η ∂u ∂u ρ0 gδ sin α y k e δ − ek = −ρν = ∂y ∂y ke y −gδ sin α ∂u 1 − ek(1− δ ) = ∂y kν ! y δ −gδ sin α y + ek(1− δ ) + C(x) u = kν k Integration : Boundary condition: u(y = 0) = 0 =⇒ =⇒ C= gδ 2 sin α k e k2ν y gδ sin α δ u(y) = − y + (ek(1− δ ) − ek ) kν k ! c) Momentum in y-direction: − Integration: Boundary condition: ∂p = ρg cos α ∂y p = f (y) + C(x) p(y = δ) = pa =⇒ =⇒ C = pa + f (y) 6= f (x) ∂p = 0 ∂x 111 9.3 a) PDE : dp d2 u = η 2 dx dy 1. Integration : 1 dp du = y + C1 dy η dx 2. Integration : u= 1 dp 2 y + C1 y + C2 2η dx 1) non-moving bend Boundary conditions y=0: u = 0 −→ C2 = 0 y=h: u = 0 −→ C1 = − =⇒ u(y) = h2 2η h 2η dp y 2 y ( ) − dx h h dp dx 2) moving bend Boundary conditions: y=0: u = u∞ −→ C2 = u ∞ ! h dp u∞ + y = h : u = 0 −→ C1 = − 2η dx h 2 h y dp y 2 y =⇒ u(y) = ( ) − + u∞ (1 − ) 2η dx h h h 112 b) Friction per unit width at the bottom: 1) non-moving bend F du = lη B dy y = h ( h dp h− dx 2η =⇒ lh dp F = B 2 dx 1 F = ηl B η dp dx ) 2) moving bend =⇒ = h dp u∞ 1 dp ηl h− − η dx 2η dx h F B = lh dp l − η u∞ 2 dx h =⇒ 9.4 a) ( F B |F |2) > |F |1) ) 113 dp dτ + = 0 dx dy Momentum in x−direction : du dy 1 dp d2 u = dy 2 η dx τ = −η =⇒ Boundarycondition : y= 0: u=0 y = H : u = uw 1 dp 2 H u(y) = 2η dx Integration : " y H 2 b) 1 dp 2 H τ (y = H) 2η dx = 1 dp 2 τ (y = 0) H uw − 2η dx uw + c) V̇ = um BH = B Z H 0 u(y)dy = ! uw dp H 2 BH − 2 dx 12η d) umax = − dp H 2 dx 8η e) dIx =B dt Z H 0 6 ρu(y)2dy = ρu2m BH 5 f) τw = η um = ∂u ∂y 2 umax 3 using u from a) see script p. 140 and dimensionless: g) τw 12 ρ 2 = Re u 2 m # y y + uw − H H 114 9.5 a) Computation of τ (r) dp ∆p d(rτ ) ∆p = const. = =⇒ = r dx L dr L ∆p dr =⇒ d(rτ ) = r L r 2 ∆p rτ = c + 2L c r∆p + =⇒ τ = r 2L fully developed : Integration : boundary condition: r −→ 0 =⇒ τ −→ 0 =⇒ c = 0 =⇒ τ = r ∆p 2 L Computation of u(y) τ = −ηOdW =⇒ for a given r is du <0 dr du dr du dr s du r∆p = dr 2L du r∆p = − dr 2ηL s r∆p ∆p √ du rdr =− =⇒ du = − =⇒ dr 2ηOdW L 2ηOdW L =⇒ u = c− s ∆p 2 3 r2 2ηOdW L 3 115 boundary condition: u(r = R) = 0 =⇒ 1 u(r) = 3 =⇒ 2 c= 3 s s ∆p 3 2ηOdW L R2 3 2∆p 3 R2 − r2 ηOdW L Computation of V̇ V̇ = Z R 0 2π u(r)2πrdr = 3 s 2∆p ηOdW l =⇒ =⇒ Z R 0 3 2 R r−r π = 7 V̇ ∆p = s 5 2 2π dr = 3 s 2∆p 7 R2 ηOdW L 7V̇ πR 7 2 !2 ηOdW L 2 9.6 a) r = R−y Z 1 u dIx Z R 2 2 2 ˙ I= = ρu 2πrdr = 2ρum πR dt um 0 o δ = 0: =⇒ δ = R: 2 u =1 um I˙ = ρu2m πR2 " u r =2 1− um R 2 # 7 7 2∆p R 2 2R 2 − ηOdW l 2 7 r r d R R 116 I˙ = 1, 33ρu2mπR2 =⇒ R δ = : 2 =⇒ I˙ = 2ρu2m πR2 (Z 0,5 0 24 17 2 r 96 r 1− 17 R R r 96 r 1− u 17 R R = 24 um 17 r r + d R R Z 1 0,5 R ≤r≤R 2 R 0≤r≤ 2 2 r r d R R ) = 1, 196ρu2mπR2 b) τw = ηum 2/δ 1 2δ + 1− 3R 6 δ R !2 δ −→ 0 : τw −→ ∞ δ = R : τw = 4 δ= η · um R R η · um : τw = 5, 65 2 R 9.7 Momentum in x-direction: −ρu21 πR2 + =⇒ =⇒ =⇒ − ρu21 πR2 + Z 0 R ρu22 (r)2πrdr = (p1 − p2 )πR2 ρ2πu22max Z 0 R " r 1− R 2 #2 rdr = (p1 − p2 )πR2 1 − ρu21 πR2 + ρπu22max R2 = (p1 − p2 )πR2 3 1 2 p1 − p2 = u ρ − ρu21 3 2max 117 Continuity: ūπR 2 =⇒ u1 =⇒ p1 − p2 b) 2 = u1 πR = Z R 0 u2 (r)2πrdr = 1 = ū = u2max 2 1 1 ρ4ū2 − ρū2 = ρū2 = 3 3 2 p1 − p2 = ζE = ρ 3 · ū2 2 9.8 a) For y ≤ a the fluid behaves like a rigid body equilibrium of forces : ρga∆z = τ0 ∆z τ0 =⇒ a = ρg b) a ≤ y ≤ b: Momentum in z−direction : dτ = ρg dy τ = −η dw + τ0 dy u2max 2 πR 2 118 Boundary conditions : y =a: y =b: τ = τ0 w=0 ρg [(b − a)2 − (y − a)2 ] 2η ρg w(y) = (b − a)2 2η Integration : w(y) = 0≤y≤a: 9.9 a) Force equilibrium: dτ dy) dxB = 0 dy dτ = −ρg =⇒ dy τ dxB − ρgdxdyB − (τ + Integration: Boundary condition: τ = −ρgy + C1 y = δ : τ = 0 =⇒ τ = ρg(δ − y) b) du <0 dy =⇒ τ = τ0 − η du dy 119 τ0 − η =⇒ du dy du dy =⇒ Integration : Boundary condition: y=0 =⇒ Remark: δ 2 = τ0 − ρg(δ − y) for |τ | > |τ0 | η τ0 − ρg(δ − y) dy η τ0 ρg y2 y − (δy − ) + C2 η η 2 = du = u(y) = : ρg(δ − y) u = uB u(y) = uB + ρg 2 (y − δy) for |τ | > |τ0 | 2η from problem formulation c) Assumption: m2 with [V̇ ] = s V̇ = 0 with u Z δ 2 Z δ V̇ = ! = uB − δ 2 0 Z δ 2 u(y)dy = Z ! 0 δ 2 V̇ =0 B oder: u(y)dy + Z δ δ 2 ! δ dy = 0 u 2 ρg 2 δ 8η ! ρg δ ρg 1 1 u(y)dy = uB + (y 2 − δy) dy = uB + δ 3 ( − ) 2η 2 2η 24 8 0 0 ! Z δ Z δ ρg δ ρg 1 δ u( )dy = δ uB − δ 2 dy = uB − δ 3 δ 2 8η 2 η 16 2 2 ρg 3 5 ρg 5 =⇒ V̇ = uB δ − δ = 0 =⇒ uB,min = δ 2 η 48 η 48 120 9.10 a) dp 1 d(τ r) + =0 dx r dr Momentum in x−direction : τ = −η =⇒ Boundary conditions : =⇒ du dr ! du 1 dp 1 d r − =0 r dr dr η dx r=a : u=0 r=R : u=0 " 1 dp 2 ln(r/R) R2 − r 2 u(r) = − (R − a2 ) − 2 2 4η dx R −a ln(a/R) b) a 2 2 2 R 2a ln R + R − a τ (r = a) = τ (r = R) a 2R2 ln a + R2 − a2 R # 121 c) um Z R V̇ 1 = u(r)2πrdr = = π(R2 − a2 ) π(R2 − a2 ) a " 1 dp 2 a = − R 1+ 8η dx R 2 1 − (a/R)2 + ln(a/R) 9.11 a) " # d 1 d (r · v) = 0 dr r dr 1 d (rv) = c1 r dr 1. Integration: =⇒ d(rv) = c1 rdr 1 rv = c1 r 2 + c2 2 2. Integration: Boundary conditions: 1) r = Ri : v=0 2) r = Ra : v = ωRa 1. BC: 2. BC: 1 c1 0 = c1 Ri2 + c2 =⇒ c2 = − Ri2 2 2 1 ωRa2 = c1 Ra2 + c2 2 =⇒ 1 c1 c1 Ra2 − Ri2 2 2 2ωRa2 = Ra2 − Ri2 ωR2 R2 = − 2 a i2 Ra − Ri ωRa2 = =⇒ c1 =⇒ c2 # 122 1 2 2ωRa2 ωRa2 Ri2 r 2 − 2 Ra − Ri2 Ra2 − Ri2 ω(r 2 − Ri2 )Ra2 =⇒ rv = Ra2 − Ri2 ωRa2 r 2 − Ri2 =⇒ v = r Ra2 − Ri2 =⇒ rv = b) =⇒ d v τ = −ηr dr r τ η = d v −r dr r Mz = −τ (r = Ri )2πRi2 L " # Ns Ri 2 Mz 1− = 10−2 2 =⇒ η = 2 4πωRi L Ra m 123 10 Turbulent pipe flows 10.1 The first is trivial and no proof is necessary. The time average of a quantity m in the time intervall [0, T ] is defined as 1 m̄ = · T ZT m · dt . 0 Using this for the averaging of f + g results in: b) 1 · f + g = T ZT 0 ZT 1 (f + g) · dt = · T 0 1 f · dt + · T 0 g · dt = f¯ + ḡ . T T 1 Z 1 Z ¯ ¯ g · dt = f¯ · ḡ . f · g · dt = f · · · f ·g = T T c) 0 d) e) ZT Z s ∂f 1 = · ∂s T ZT 1 · f · ds = T ZT Z s 0 ∂f ∂ 1 · dt = · ∂s ∂s T 0 0 1 · T ZT 0 Z s f 1 · f · ds·dt = T · dt · ds = Z s f · dt = 0 ZT Z s ZT 0 ∂f . ∂s f · dt· ds = f · ds 10.2 The ratio between the average and the maximum velocity is Z1 1 v̄m 2n2 ξ(1 − ξ) n dξ = = 2 v̄max (n + 1)(2n + 1) 0 mit ξ = r . R The integral is solved using partial integration. The average velocity is at a distance 124 rm = 1 − R v̄m v̄max n see table. Re n v̄m /v̄max rm /R 1 · 105 6 · 105 1.2 · 106 2 · 106 7 8 9 10 0.8166 0.8366 0.8526 0.8658 0.7577 0.76 0.762 0.7633 Measuring v̄(r) at a distance R − rm from the wall, and with the known v̄max the average velocity can be determined, and the volume flux V̇ = vm π R2 can be computed. 10.3 a) r = R−y V̇ ūm = = 2 2 ūmax π R ūmax b) RR I˙ = ρ ū2m π R2 ρ ū2 2π r dr 0 ρ ū2m π R2 Z1 0 r 1 − R 1/7 ūmax = 2 ū 2 Z1 λ = 0, 316 4√Re r d R 1 − 0 r R r R 2/7 = r d R 10.4 a) 2300 ≤ Re ≤ 105 : ūm = λ = b) 8 τw ρ ū2m η Re ρD =⇒ τw = λ ρ ū2m = 2, 22 N/m2 8 ūmax ūm = − 4, 07 u∗ u∗ λ = u∗ 8 τw = 8 ρ ū2m ūm 2 49 60 r R = 50 49 125 =⇒ ūm 1 q = 0, 84 = ūmax 1 + 4, 07 λ/8 yu∗ ū = 5 = ν u∗ c) with ū = 5 s u∗ = s τw ρ (viscous sublayer) =⇒ ū = 5 u∗ and τw = λ ρ ū2m 8 follows λ ūm = 0, 236 m/s (for y = 0, 11 mm , λ from diagram) 8 yu∗ = 50 (log. velocity distribution) ν ū yu∗ + 5, 5 = 2, 5 ln u∗ ν =⇒ d) ū = 0, 720 m/s l = 0, 4 y = 0, 4 (for y = 1, 1 mm) ν yu∗ q = 0, 85 mm ν λ/8 ūm 10.5 a) b) Bernoulli with losses: pa + ρ g h1 = p1 + L 1 + λ 2D ρ 2 ū 2 m 126 V̇ = ūm Re = λ = 0, 024 π D2 4 ūm D = 8 · 105 ν ks = 0, 002 D (from Moody − diagram) p1 = 1, 22 · 105 N/m2 =⇒ c) Bernoulli with losses: p2 = pa + ρ g h2 + λ d) L ρ 2 ūm = 3, 77·105 N/m2 2D 2 P = V̇ (p2 − p1 ) = 160, 5 kW 10.6 a) ∆p = λ L ρ 2 ū D 2 m V̇ = ūm =⇒ b) λ = Re = π D2 4 π 2 ∆p D 5 = 0, 0356 8 ρ L V̇ 2 ρ ūm D = 1, 8 · 105 η 127 ks = 0, 0083 (from Moody diagram) D =⇒ ks = 4, 2 mm c) momentum equation for the inner control surface: ∆p π D2 − τW π D L = 0 4 =⇒ τW = ∆p D = 16 N/m2 4L momentum equation for the outer control surface: F = − ∆p d) π D2 = − 2517 N 4 λ = 0, 016 =⇒ 10.7 P1 P2 (from diagram) ∆p = 5, 8 · 103 N/m2 L 1 + λ1 D1 = L 1 + λ2 D2 V̇ = ūm π D2 4 D 1 √ = 2, 0 log ks λ =⇒ P1 P2 ρ 2 ū 2 m1 ρ 2 ū 2 m2 + 1, 14 L 4 D1 D 2 = = 39, 2 L D1 1 + λ2 D2 1 + λ1 128 10.8 P B: pipe bundle ; C: Channel λP B L ρ 2 LK ρ 2 ūmP B = λC ū D 2 dh 2 mC dh = a ReC = ReP B = ρ a V̇ = 105 η a2 ρD η V̇ = 1, 27 · 104 π D2 100 4 LK = 13, 57 m λC = 0, 018 λP B = 0, 030 129 11 Similarity theory 11.1 The frequency f depends on the following quantities: incoming velocity u∞ [u∞ ] = ˙ density ρ [ρ] = ˙ kin. viscosity ν [ν] = ˙ diameter of the cylinder D [D] = ˙ =⇒ f = F (u∞ , ρ, ν, D) = ˙ [f ] m s kg m3 m2 s m 1 s 5 variables exist with 3 different dimension (s, m, kg) =⇒ from Π-theorem the problem has 5 − 3 = 2 dimensionless parameters. The quantities D, ρ, u∞ are chosen as reference quantities. They include all basic dimensions and are linearly independent Determining the dimensionless parameters: π1 = f · D α · uβ∞ · ργ L [m] : 0 = 0 + 1 · α + 1 · β + (−3) · γ 3γ = α + β t [s] : 0 = −1 + 0 · α + (−1) · β + 0 · γ β = −1 M [kg] : 0 = 0 + 0 · α + 0 · β + 1 · γ γ=0 =⇒ α = 1; β = −1; =⇒ π1 = f · D u∞ π2 = ν · D α · uβ∞ · ργ γ=0 130 [m] : 0 = 2 + 1 · α + 1 · β + (−3) · γ 3γ = 2 + α + β [s] : 0 = −1 + 0 · α + (−1) · β + 0 · γ β = −1 [kg] : 0 = 0 + 0 · α + 0 · β + 1 · γ γ=0 =⇒ α = −1; =⇒ β = −1; π2 = ν · γ=0 1 D · u∞ The dimensionless parametersusually can be expressed in terms of wellknown parameters or combination of them. π1 = f ·D = Sr u∞ Strouhalnumber π2 = ν 1 = D · u∞ Re Reynoldsnumber. The functional relationship for this problem is Sr = F (Re) Only one variation of parametyers is necessary. Hint: It is possible to choose the dynamic viscosity ν instead of the kinematic viscosity η. It is η not necessary to use the density ρ, since ν = is the relevant quantity. In this case 4 variables ρ and 2 basic dimensions are existing. In both cases the result is the same. 11.2 a) L3 t−1 = (M L−2 t−2 )α (M L−1 t−1 )β Lγ α=1 =⇒ β = −1 V̇ ∼ ∆p D Lη γ=4 4 131 b) D ∆p L ρ u2 2 m λ= V̇ η um η ∆p D ∼ 3 ∼ L D D (with V̇ ∼ um · D 2 ) λ∼ 11.3 µ = f( y x1/4 1 Re , g, η, ρ); [g] = Ansatz : µ= m kg kg ; [η] = ; [ρ] = 3 2 s ms m y x1/4 · g α · η β · ργ =⇒ M : 0 = 0 + β + γ 3 L : 0 = + α − β − 3γ 4 t : 0 = 0 − 2α − β 1 1 1 =⇒ α = ; β=− ; γ= 4 2 2 !1/4 y g x3 ρ2 y 1/4 −1/2 1/2 ·ρ = =⇒ µ = 1/4 · g · η x x η2 !1/4 y g x3 ρ2 T − T∞ = F̃ =⇒ TW − T∞ x η2 11.4 π cwL DL2 FwL 4 = π 2 FwW D cwW 4 W ρL 2 ρW u∞L Re2L cwL ηL2 2 2 = ρW 2 2 ρL u∞W Re2W cwW ηW 2 2 ReL = ReW : cwL = cwW FwL = 0, 281 FwW 132 11.5 a) Re = Re : v = ′ ′ s A v as small as possible in order to use incompressible equations: A′ A′ = Am : v ′ = 77, 46 m/s ρ cw v 2 A Fw ′ ′ P = ′ Fw v = ′ ρ2 ′ Fw v 2 Fw cw v Am 2 b) ′ ′ Re = Re : cw = cw ′ P = Fw v = 24, 3 kW 11.6 ′ a) Re = Re : with ′ ′ D2 π 4 V̇ = v ′ D v ρ Dvρ = η η′ ′ ′ V̇ ρ 4 V̇ ρ 4 = ′ ′ Dηπ D η π =⇒ ′ =⇒ ′ n D nD = v v′ ′ Sr = Sr : ′ η ρD V̇ = V̇ · = 0, 5 m3 /s η ρ′ D ′ ′ ′ ′ v D v D 2 D3 =⇒ n = n · · ′ = n · · v D v D2 D′3 ′ ′ V̇ D =n· · D′ V̇ 3 = 13, 3 ′ b) c) ′ Eu = Eu : ρ V̇ 2 D ρ v2 ′ ∆p0 = ′ ′ 2 ·∆p0 = ′ ′ 2 · ρ v D ρ V̇ P = V̇ ∆p0 = 15, 82 kW ′ ′ ′ P = V̇ ∆p0 = 15 kW !4 1 s ′ ·∆p0 = 527, 34 N m2 133 M= P = 201 Nm 2πn ′ P = 179 Nm M = 2 π n′ ′ 11.7 ′ a) ′ F rL = F rL : v = v· s ′ L = 0, 75 m/s L ′ b) cW = cW (Drag coefficient with respect to the cross section perpendicular to the incoming velocity) FW ρ 2 v BH ′ FW = 1, 64·104 N = ρ2 ′ ′ ′ v2 B H 2 c) cW = 1, 12 ′ v v ′ √ = q ′ : h = 16 h = 0, 4 m gh gh d) 11.8 a) The reference values are chosen in such a way that the dimensionless quantities are of the order of magnitude O(1). ū = u uref p̄ = p ∆p x̄ = x L ȳ = Introducing into PDE: ∂ 2 (uref · ū) ∂(∆p · p̄) = η̄ · ηref ∂(L · x̄) ∂(ȳ · h)2 y h η̄ = η ηref 134 with η̄ = 1: ∆p ∂ p̄ ηref · uref · = L ∂ x̄ h =⇒ ∂ ū ηref · uref ∂ 2 ū ∂(ȳ h) · = · 2 ∂ ȳ h2 ∂ ȳ ∂ L · ηref · uref ∂ 2 ū ∂ p̄ · 2 = ∂ x̄ h2 · ∆p ∂ ȳ | {z } 1stparameter 2 terms =⇒ 1 parameter b) f (L, ηref , uref , h, ∆p) = 0 5 variables and 3 basic dimensions =⇒ 2 parameters The Π-theorem says something about the maximum number of dimensionless parameters. The method of differential equations gives more informations about the actual problem and the terms can be neglected. The resulting number of parameters can be smaller. 11.9 ū = u v1 v̄ = v v1 p̄ = p ∆p1 ρ̄ = ∂ ū ∂ ū ∂ ū ρ̄ Sr + ū + v̄ ∂ t̄ ∂ x̄ ∂ ȳ Sr = L1 v1 t1 ! ρ ρ1 η̄ = η η1 x̄ = ∂ p̄ η̄ = − Eu + ∂ x̄ Re Eu = ∆p1 ρ1 v12 Re = x L1 ȳ = ∂ 2 ū ∂ 2 ū + ∂ x̄2 ∂ ȳ 2 y L1 ! ρ1 v1 L1 η1 Comment: usually, the election of the refernce values depends on the actual problem. 11.10 a) u2R λ TR ∂ 2 T̄ + η l2 ∂ ȳ 2 l2 ∂ ū ∂ ȳ K∗ = b) !2 = 0 η u2R λ TR : K ∗ = λα η β TRγ uδR lε choose β = 1 λ TR l2 t̄ = t t1 135 kg m s K : : : : 0=α+1 0=α−1+δ+ε 0 = −3α − 1 − δ 0 = −α + γ α = γ = −1 δ = 2 ε = 0 K∗ = K∗ = c) η u2R λp TR η cp u2R η cp u2R = (γ − 1) λ cp TR λ γRT cp = γR γ − 1 K ∗ = P r · Ma2 (γ − 1)) 11.11 η d ∂p + ρg + − ∂x r dr du r dr ! = 0 ∆p d p̄ d ū η η̄ d − r̄ + ρ g ρ̄ ḡ + 2 u∞ L d x̄ R r̄ d r̄ d r̄ ! η̄ d d ū ρ g R2 ∆p R2 d p̄ ρ̄ ḡ + r̄ + − L η u∞ d x̄ η u∞ r̄ d r̄ d r̄ | {z K1∗ } | {z } K2∗ Einflußgrößen: ∆p, ρ, um , η, l, R, g = 0 ! = 0 136 K = " ∆p1 # " ρ β # uγm D δ kg kg m [m] 2 3 s m m s kg m 1 -1 +β −3β s 2 kg m η [kg/s m] 1 -1 s -1 +γ +δ −γ +β −3β +γ +δ −γ β = −1 γ = − 2, δ = 1 − 3 + 2 = 0 ∆p = Eu K1 = ρ u2m β = − 1, γ = δ = 1−3+1 = η = K2 = ρ um D −1 −1 1 Re l [m] kg m +β −3β 1 s 1 s -2 +β −3β +γ +δ −γ K1∗ = Eu · Re · K2∗ = +δ −γ g [m/s2 ] kg m +γ β = 0, γ = 0 δ = 1 l K3 = D β = 0, γ = δ = −1+2 gD K4 = 2 = um −2 = 1 1 Fr2 R L Re Fr2 11.12 a) ρ dw ∂p = − − ρ g + η∇2 w dt ∂z Reference values: l, u∞ , constants: η, ρ, g =⇒ ρu2∞ ∂ p̄ u∞ ρ u2∞ dw̄ = − − ρ g + η 2 ∇2 w̄ l dt̄ l ∂ z̄ l =⇒ ∂ p̄ 1 1 dw̄ = − − + ∇2 w̄ 2 dt̄ ∂ z̄ Fr Re with F r 2 = u2∞ u∞ l and Re = gl η/ρ · 1 ρ u2∞ l 137 ′ b) u2∞ u∞2 ′ F r = F r −→ = ′ =⇒ u∞ = u∞ gl gl ′ ′ l′ u∞ = √ l 10 ′ ′ ′ s u l ν u l u∞ l ′ √ = ∞′ =⇒ ν = ν ∞ = Re = Re −→ ν ν u∞ l 10 10 ′ FW cW = ρ u2 A 2 ∞ c) with A = l·H F ′ F ′ cW = cW =⇒ ρ = ′ ρ ′2 ′ u2∞ A u A 2 2 ∞ 2 2 ′ ρ u∞ A ′ ρ u∞ =⇒ F = F ′ ′2 ′ = 100 F ′ ′ 2 ρ u∞ A ρ u∞ P = F · u∞ = 100 F ′ ρ u3∞ ρ′ u′∞2 11.13 a) cp ρ u ∂T ∂T + ρv ∂x ∂y ! u2 u2 ∂ ∂ + ρ u 2 + ρ v 2 ∂x ∂y ∂u ∂2 u + η = ηu ∂ y2 ∂y !2 + λ ∂2 T ∂ y2 reference values: ρ∞ , u∞ , T∞ , L, η∞ , cp =⇒ ū = ∞, λ∞ u v T ρ x ; v̄ = ; T̄ = ; ρ̄ = ; x̄ = ; u∞ u∞ T∞ ρ∞ L ȳ = y cp λ η ; c¯p = ; λ̄ = ; η̄ = L η∞ cp∞ λ∞ introduce: =⇒ a1 c¯p ρ̄ ū ∂ T̄ ∂ T̄ + ρ̄ v̄ ∂ x̄ ∂ ȳ ! ū2 ū2 ∂ ∂ + a2 ρ̄ ū 2 + ρ̄ v̄ 2 ∂ x̄ ∂ ȳ ∂ ū ∂ 2 ū + a4 η̄ = a3 η̄ ū 2 ∂ ȳ ∂ ȳ !2 + a5 λ̄ ∂ 2 T̄ ∂ ȳ 2 138 with a1 = cp∞ ρ∞ u∞ T∞ ; L a2 = ρ∞ u3∞ ; L a3 = a4 = η∞ u2∞ ; L2 a5 = λ∞ T∞ L2 dimensionsless form via division of the equation with e. g. a1 : b) =⇒ dimensionless parameters (i) K1 = ρ∞ u3∞ u2 γ R a2 L 2 = = ∞ 2 (γ−1) = (γ−1) M∞ a1 L cp∞ ρ∞ u∞ T∞ γ R c∞ (ii) K2 = 1 a4 η∞ u2∞ η∞ u2∞ L a3 2 = = = = (γ−1) (γ−1) M∞ 2 2 a1 a1 L cp∞ ρ∞ u∞ T∞ u∞ ρ∞ L c∞ Re (iii) K3 = λ∞ T∞ η∞ 1 1 λ∞ L a5 = = = 2 a1 L cp∞ ρ∞ u∞ T∞ u∞ ρ∞ L η∞ cp∞ Re P r c) K1 = K2 = 0 =⇒ (γ−1) = 0 =⇒ γ = 1 11.14 ρref = ρw ; uref = s p0 − pa ρw ηref = ηw ; m s ∆pref = p0 − pa ; from Bernoulli √ D ρw D [s] = = √ p0 − pa uref tref Dimensionless parameters: ρ̄ = lref = D ρ η x y p ; η̄ = ; x̄ = ; ; ȳ = ; p̄ = ρw ηw D D p0 − pa ū = s u v t √ ; v̄ = s ; t̄ = D ρw p0 − pa p0 − pa √ p0 − pa ρw ρw introduced in PDE: ∂ ū p0 − pa · + ∂ t̄ ρw D ! p0 − pa ∂ ū ∂ ū · ū + v̄ ∂ x̄ ∂ ȳ ρw D 139 1 ∂ p̄ p0 − pa ηw = − · + · ρ̄ ∂ x̄ ρw D ρw s ∂ 2 ū ∂ 2 ū + ∂ x̄2 ∂ ȳ 2 p0 − pa 1 η̄ · ρw D 2 ρ̄ ∂ 2 ū ∂ 2 ū + ∂ x̄2 ∂ ȳ 2 ∂ ū ∂ ū 1 ∂ p̄ η̄ ∂ ū + ū + v̄ = − + K· =⇒ ∂ t̄ ∂ x̄ ∂ ȳ ρ̄ ∂ x̄ ρ̄ ηw · with K = ρw b) uref = s s p0 − pa ρw ! 1 · p − p 0 a ρw D ! ρw 1 p0 − pa D =⇒ K = 1 1 ηw = ρw uref D Re Friction forces Inertia forces K = 11.15 a) conti: ∂u ∂v + = 0 ∂x ∂y ∂u ∂u + v momentum: ρ u ∂x ∂y qnergy: ρ cp ! ∂T ∂T u + v ∂x ∂y = η ! ∂2u ∂y 2 = λ ∂2T ∂y 2 dimensionsless parameters: ū = u v ρ x y ; v̄ = ; ρ̄ = ; x̄ = ; ȳ = ; u∞ u∞ ρ∞ L L η̄ = b) η cp λ T ; c¯p = ; λ̄ = ; T̄ = η∞ cp ∞ T∞ λ∞ u∞ conti: L momentum: ρ∞ ∂ ū ∂v̄ + ∂ x̄ ∂ ȳ ! = 0 =⇒ no parameter ∂ ū ∂ ū u∞2 ρ̄ ū + v̄ L ∂ x̄ ∂ ȳ ∂ ū ∂ ū + v̄ ρ̄ ū ∂ x̄ ∂ ȳ ! ∂ 2 ū = η̄ ¯2 ∂y | K1 = ! = η∞ η̄ η∞ u∞ L L2 ρ∞ u2∞ ! {z } η∞ 1 = L ρ∞ u∞ Re K1 u∞ ∂ 2 ū L2 ∂ y¯2 140 ρ∞ cp∞ u∞ T∞ ∂ T̄ ∂ T̄ energy: ρ̄ c¯p ū + v̄ L ∂ x̄ ∂ ȳ ∂ T̄ ∂ T̄ ρ̄ c¯p ū + v̄ ∂ x̄ ∂ ȳ ! = λ∞ T∞ ∂ 2 T̄ λ̄ L2 ∂ ȳ 2 ∂ 2 T̄ λ∞ T∞ L λ̄ = L2 ρ∞ cp∞ u∞ T∞ ∂ ȳ 2 {z | K2 = ! K2 ! } η∞ λ∞ 1 1 = · L ρ∞ cp∞ u∞ η∞ P r Re c) dimensionsless PDE.: conti: ∂v̄ ∂ ū + = 0 ∂ x̄ ∂ ȳ ∂ ū ∂ ū momentum: ρ̄ ū + v̄ ∂ x̄ ∂ ȳ ∂ T̄ ∂ T̄ energy: ρ̄ c¯p ū + v̄ ∂ x̄ ∂ ȳ ! ! 1 = η̄ Re ! 1 1 ∂ 2 T̄ = · λ̄ P r Re ∂ ȳ 2 konstante fluid properties: ρ̄ = c¯p = λ̄ = η̄ = 1 Comparison between momentum and energy equation: By replacing T with u and proposing Pr = 1 the energy and the momentum equation are the same i.e. ∂ 2 ū ∂ y¯2 η∞ cp∞ = 1 λ∞ ! 141 14 Potential flows 14.1 a) Parallel flow x-direction: F1 (z) = u∞ z Source in x = −a: F2 (z) = Sink in x = +a : F3 (z) = E ln((x + a) + iy) 2π −E ln((x − a) + iy) 2π Superposition: F (z) = u∞ z + E ln((z + a) − ln(z − a)) 2π E dF = u∞ + u − iv = dz 2π w̄ = E 2π = u∞ + = −2a 2 z − a2 u∞ − 1 1 − z+a z−a with b = x2 − y 2 − a2 Ea b − 2ixy π (b − 2ixy)(b + 2ixy) = u∞ − Ea x2 − y 2 − a2 − 2ixy π (x2 − y 2 − a2 )2 + 4(xy)2 u= u∞ − x2 − y 2 − a2 Ea π (x2 − y 2 − a2 )2 + 4(xy)2 v= − s for u = 0, v = 0 : y = 0, xs = ± 2xy Ea π (x2 − y 2 − a2 )2 + 4(xy)2 Ea + a2 πu∞ b) The contour is a streamline ψ = const crossing the stagnation points. ψ = u∞ y + for y = 0, x = ±xs E y E y arctan − arctan 2π x + a 2π x−a (from table) follows ψ = 0 =⇒ Equation for the contour u∞ y + y E y E arctan − arctan =0 2π x + a 2π x−a 142 Comment: This equation additionally describes the stagnation streamlines on the x-axis. 14.2 a) b) c) d) ▽ · ~v 4xy 2 0 0 | ▽ ×~v | y 2 − x2 0 -2 0 The streamfunction exists for c) and d), the potential exists for b) and d). Determination of the stramfunction: c) y2 udy + f (x) = + f (x) 2 ∂ψ = −f ′ (x) = −x v= − ∂x 1 2 ψ= (x + y 2 ) + c 2 ψ= R d) 1 ψ = (y 2 − x2 ) + c 2 Determination of the potential: b) x2 + f (y) udx + f (y) = 2 ∂φ v= = f ′ (y) = y ∂y 1 2 (x + y 2) + c φ= 2 φ= R d) φ = xy + c 143 14.3 a) Condition for the stagnation point: u = 0, v = 0 ∂ψ Γ u= =− ∂y 2π y 2y + 2 2 (x − a) + y (x + a)2 + y 2 2 1 Γ + u=− y 2 2 2π (x − a) + y (x + a)2 + y 2 Γ ∂ψ = v=− ∂x 2π for y = 0 : Γ v= 2π stagnation point: a xs = , 3 alternatively: vθ = Γ 2Γ Γ : vθ1 = vθ2 → = → r2 = 2r1 2πr 2πr1 2πr2 2 a 2a = r1 + r2 → 2a = 3r1 → r1 = a → xs = 3 3 b) u2 + v 2 cp (x, y = 0) = 1 − 2 2 u(0,0) + v(0,0) =⇒ cp (x, y = 0) = 1 − v(0,0) = v2 2 v(0,0) mit u = 0 for y = 0. , Γ 1 (see ⋆) d.h. cp(0,0) = 0 2π a = 0 wenn y = 0 x−a 2(x + a) + (x − a)2 + y 2 (x + a)2 + y 2 Γ 3x − a 2 1 = + x−a x+a 2π x2 − a2 v = 0, if 3x − a = 0 → ! ! ⋆) ys = 0 ! 144 3x − a 2 x2 − a2 with ⋆) cp (x, y = 0) = 1 − 1 a 3xa − a2 =⇒ cp (x, y = 0) = 1 − x2 − a2 !2 for x 6= a, −a 14.4 a) F (z) = = E 2 u∞ 3 √ z2 + ln z 3 L 2π 2 u∞ 3 i 3 θ E √ r2e 2 + (ln r + ln eiθ ) 3 L 2π = Re(r, θ) + iIm(r, θ) = φ(r, θ) + iψ(r, θ) =⇒ φ(r, θ) = E 2 u∞ 3 3 √ r 2 cos θ + ln r 3 L 2 2π =⇒ ψ(r, θ) = b) 3 2 u∞ 3 E √ r 2 sin θ + θ 3 L 2 2π r ∂φ r 3 E vr = = u∞ cos θ + ∂r L 2 2πr r r 3 1 ∂φ = −u∞ sin θ vθ = r ∂θ L 2 c) stagnation point at (x = −L, y = 0) → 2 r = L, θ = π 3 =⇒ vθ = 0 = −u∞ s L sin π L | {z } =0 145 =⇒ vr = 0 = u∞ =⇒ u∞ = s L E cos π} + | {z L 2πL = −1 E → E = 2πu∞L 2πL d) 3 2 2 L2 E E 2 π} + ψ r = L, θ = π = u∞ √ sin π= | {z 3 3 2π 3 3 L =0 2 2 ! =⇒ ψ r = L, θ = π = πu∞ L = ψk (r, θ) 3 3 3 3 2 2 r2 =⇒ πu∞ L = u∞ 1 sin θ + u∞ Lθ 3 3 2 L2 π − 23 θ =⇒ rk (θ) = L sin 32 θ !2 3 14.5 a) | ▽ ×~v | = 0 : Potential exists. b) u= U x, L U v=− y L stagnation points: u=v=0: x=y=0 pressure coefficient: x2 + y 2 p − pref u2 + v 2 = 1 − cp = ρ =1− 2 2 2 2 uref + vref x2ref + yref ~vref 2 Isotach: ~v 2 = u2 + v 2 = 2 2 x +y = 2 (x2 + y 2 ) ~vL U !2 U L 146 Circles around the origin with radius |~v |L U c) u1 = 4 m/s, v1 = −4 m/s, |~v1 | = 5.66 m/s ρ 2 = 0.86 · 105 N/m2 p1 = pref + cp1 ~vref 2 d) t= ψ = const : e) f) Z L x2 dx = ln U x1 x1 u x2 = 5.44 m x2 x1 y1 = x2 y2 , y2 = 0.74 m ρ 2 p1 − p2 = (cp1 − cp2 ) ~vref = 0.442 · 105 N/m2 2 147 14.6 a) # " E h y ψ = u∞ y + θ + c = u∞ y + arctan 2π π x u = u∞ " h x 1+ π x2 + y 2 v = u∞ stagnation point: u = v = 0 : +c # h y π x2 + y 2 h xs = − , ys = 0 π u(xs , h) = u∞ π2 1 + π2 v(xs , h) = u∞ π 1 + π2 b) Contour: Streamline crossing the stagnation point rk = h π−θ h θ′ = π sin θ π sin θ with θ′ = π − θ 148 c) u2 + v 2 h 2x + πh cp = 1 − =− 2 u2∞ π x + y2 cpk sin (2θ′ ) sin θ′ = − θ′ θ′ !2 d) " cp = const : h x+ πcp #2 h + y = (1 − cp ) πcp 2 ! √ h 1 − cp h , 0 with radius Circles around − πcp πcp e) 1 cp = : 2 f) 2h x+ π √ !2 h +y =2 π 2 !2 u2 + v 2 =k u∞ h 2 kh 2 π x − + y2 = π k2 − 1 k2 − 1 Circles around ! h kh , 0 with radius 2 π(k − 1) π(k 2 − 1) g) v = u∞ u∞ h y > 2 2 πx +y 2 !2 149 h x + y− π 2 h) tan α = h x+ 2π !2 !2 < h π !2 v =1 u h + y− 2π !2 1 = 2 h π !2 i) Acceleration on the x-axis: ∂u h du =u = −u∞ b= dt ∂x π 1 h 1 + 2 x π x3 ! 150 db =0: dx xmax = − bmax = − 4 π 2 u 27 h ∞ ψ=0: y=0 3h 2π 14.7 a) x2 + y 2 = R2 r= √ 2 x + y2 → ∞ : ψ → u∞ y(Parallel flow) Streamfunction describes the flow around a cylinder. b) cp = 1 − vr = u∞ " vθ = −u∞ vr2 + vθ2 u2∞ R 1− r " 2 # R 1+ r cos θ 2 # sin θ r = R : cp = 1 − 4 sin2 θ 151 c) △t = Z −2R −3R u(x, 0) = u∞ △t = 14.8 a) R x−R 1 x + ln u∞ 2 x+R dx u(x, 0) R2 1− 2 x −2R = −3R ! R (1 + 0.5 ln 1.5) u∞ ρ ρ ρgh∞ + u2∞ = ρgh(θ) + ~v 2 2 2 r = R : ~v 2 = vθ2 = 4u2∞ sin2 θ h(θ) − h∞ = b) Stagnation points: u2∞ (1 − 4 sin2 θ) 2g θ = 0 and θ = π h = h∞ + u2∞ = 6.05 m 2g c) θmin = hmin = h∞ − π 3π , 2 2 3u2∞ = 5.85 m 2g 14.9 a) u∞ H 2 u∞ H 2 = u∞ (x + iy) + 0.8 2 (x − iy) F (z) = u∞ z + 0.8 z x + y2 152 =⇒ ψ = u∞ y − 0.8 u∞ H 2 y x2 + y 2 ψk = ψ(x = 0, y = H) = u∞ H − 0.8 u∞ H 2 H = 0.2Hu∞ H2 Contour equation: 0.2Hu∞ = u∞ y − 0.8 =⇒ u∞ H 2 y x2 + y 2 y H2 y − 0.8 2 = 0.2 H x + y2 H b) ρ P = ~v 2 2 V̇ u= =⇒ ρ V̇ P = (u2 + v 2 ) 2 B (based on the width) ∂ψ (x2 + y 2 ) − 2y 2 x2 − y 2 2 = u∞ − 0, 8H 2u∞ = u − 0.8H u ∞ ∞ ∂y (x2 + y 2 )2 (x2 + y 2 )2 v=− −2x xy ∂ψ = −0.8H 2 u∞ y 2 = 1.6u∞ H 2 2 2 2 ∂x (x + y ) (x + y 2 )2 I. far before the mountain (x → −∞) u = u∞ , v = 0 mit V̇ ρ = Hu∞ → PI = Hu3∞ B 2 II. on the top (x = 0, y) H2 u = u∞ + 0.8u∞ 2 ; y ρ P = 2 Z 2H ρ P = u3∞ 2 Z 2H H H ρ u (y)dy = 2 3 Z 2H H v=0 (u∞ + 0.8u∞ H2 3 ) dy y2 4 6 H2 2H 3H (1 + 3 · 0.8 2 + 3 · 0.8 4 + 0.8 6 )dy y y y 153 ρ H2 H4 H6 = u3∞ y − 3 · 0.8 − 3 · 0.82 3 − 0.83 5 2 y 3y 5y ρ P = 2.86 Hu3∞ 2 c) Parallel flow + dipole = ˆ cylinder flow 14.10 a) " 2 # − " 2 # cos θ R ψ = u∞ r sin θ 1 − r vr = u∞ vθ = −u∞ r=R: R 1− r Γ ln r 2π R Γ 1 + ( )2 sin θ + r 2πr vθ |Wirbel = vt = Γ 2πR Γ = 2πRvt b) Flow field vt = u∞ : ψ = u∞ " R2 r sin θ 1 − 2 r ! − R ln r # !2H H 154 vr = u∞ vθ = u∞ " " # R2 1 − 2 cos θ r ! R2 R − 1 + 2 sin θ r r # contour: ψ = ψK = ψ(r = R, θ = 0) = u∞ (−R ln R) ⇒ u∞ " R2 r sin 1 − 2 r ! r − R ln R 2 stagnation points on the contour (r = R): π 5π θs = , ; no free stagnation points 6 6 c) dFx = −pLR cos θdθ dFy = −pLR sin θdθ # = 0 () 155 ρ p = p ∞ + cp u ∞ 2 2 r=R: Fx = −LR Z " 2π ( Z 2π 0 Fy = −LR 0 cp = 1 − vt − 2 sin θ u∞ vt ρ 2 u∞ 1 − − 2 sin θ 2 u∞ ( " 2 # ρ 2 vt u∞ 1 − − 2 sin θ 2 u∞ 2 ) + p∞ cos θdθ = 0 2 # ) + p∞ sin θdθ = −2πρLRvt u∞ = −ρu∞ ΓL 14.11 a) 2 3 iθ F = Az = A re 2 3 = Ar 2 3 2 2 cos θ + i sin θ = φ + iψ 3 3 2 2 ψ = Ar 3 sin θ 3 vr = 1 2 2 1 ∂ψ = Ar − 3 cos θ r ∂θ 3 3 vθ = − 1 2 ∂ψ 2 = − Ar − 3 sin θ ∂r 3 3 1 2 3 1 θ = 0, r = l : vr = Al− 3 = u1 −→ A = u1 l 3 3 2 b) − 2 r ~v 2 cp = 1 − 2 = 1 − u1 l 3 156 c) Lines p = const.: r = const. → cp = const. → p = const. Circles around the origin d) Streamlines: 2 2 ψ = Ar 3 sin θ = const. 3 =⇒ 2 3 rs = ψ 2 A sin θ 3 =⇒ rs (θ) = 3 2 ψ 2 A sin θ 3 157 e) y Symmetrieachse Q | v |= u1 x l 14.12 a) Condition: ω=0→ ∂2ψ ∂2ψ + 2 =0 ∂x2 ∂y ∂ 2 ψ(x, y) ∂ ∂2ψ ∂ yu∞L = 0 → = 2 2 ∂y ∂x ∂x ∂x ∂ h′ (x) −yu∞ L 2 ∂x h (x) integrate 2 times: − ! d =0→ dx 1 h(x) h′ (x) h2 (x) ! !! =0 =0 1 = C1 x + C2 h(x) B.C.: x = L, h = L x = 3L, =⇒ =⇒ 1 h= L 3 C2 = 0, − =⇒ 1 = C1 L + C2 L − 3 = 3C1 L + C2 L 1 L2 =⇒ ∂ψ ; ∂x ψ= C1 = − h(x) = b) u= ∂ψ ; ∂y v=− u∞ xy L L2 x 158 x u = u∞ ; L v = −u∞ y L c) V̇ = ψ(y=h) − ψ(y=−h) |x=L V̇ = (h1 + h1 )Bu∞ V̇ = 2U∞ LB 159 15 Laminar boundary layers 15.1 −ρu2∞ δ + ρ Z 0 δ △ṁ = ρ Z 0 δ Z u2 dy + △ṁu∞ = Z 0 δ 0 τ (x′ , y = 0)dx′ (u∞ − u)dy u u 1− dy = δ2 = − u∞ u∞ Z x 0 15.2 a) ReL = 3.33 · 105 : laminar boundary layer b) y=0:u=v=0 y → ∞ : u → u∞ c) from boundary layer equation : x τ (x′ , y = 0) ′ dx ρu2∞ 160 ∂τ = 0 for y = 0 and y = δ ∂y d) from Blasius solution: 5L δ(x = L) = √ ReL 0.664 cf = √ Rex δ(x = L) = 4.33 mm Fw = 2 Z 0 L Bτw dx = ρu2∞ B Z 0 L cf dx = 0.144 N 15.3 Determination of the coefficients a0 , a1 , a2 by using the boundary conditions: B.C.1: no slip u(x, y = 0) = 0 B.C.2: boundary layer edge u(x, y = δ) = u∞ ∂p ∂ 2 u(x, y = 0) = =0 R.B 3: at the wall (from x-momentum) η 2 ∂y ∂x y If additional boundary conditions are necessary, a steady transition at = 1 ac be assumed, δ i.e. ∂ n u = 0 with n ≥ 1 ∂y n y=δ 161 =⇒ from B.C.1 follows a0 = 0 from B.C.2 follows a1 + a2 = 1 from B.C.3 follows ∂2u 1 ∂ 2 (u/u∞) 1 = u = 2u∞ 2 a2 = 0 ∞ 2 2 2 ∂y δ ∂(y/δ) δ =⇒ a2 = 0, =⇒ y u(x, y) = u∞ δ a1 = 1 linear distribution. Permutation of the order of boundary conditions, e,g,: B.C.1 u(x, y = 0) = 0 B.C.2 u(x, y = δ) = u∞ ∂u B.C.3 =0 ∂y y=δ =⇒ a0 = 0; a1 = 2; a2 = −1 parabolic distribution Since the approximation of the velocity profiles is not an exact solution of the boundary layer equations, the boundary conditions are not satisfiable in all cases. Hence, it has to be paid attention, that the physical boundary conditionsa re satisfied first. Computation of the boundary layer thickness δ(x): u∞ ∂u/u∞ u∞ ∂u =η =η τw = η ∂y y=0 δ ∂y/δ y=0 δ y y u∞ − u∞ u(u∞ − u) = u∞ δ δ with the equation B =⇒ Z Z x 0 x 0 Z τw (x)dx = Bρ u∞ η dx = ρu2∞ δ(x) 0 Z 0 1 δ(x) = u2∞ 2 ! y y − δ δ u(u∞ − u)dy 2 ! y y − δ δ δ d y δ 162 ηu∞ Z x 0 dx = ρu2∞ δ(x) δ(x) 2 1 y 2 δ = ρu2∞ δ(x) 3 !1 1 y − 3 δ 0 1 6 Differentiating gives 1ρ dδ(x) 1 = u∞ δ(x) 6η dx =⇒ dx = Integration: x= 1ρ u∞ δ(x)dδ(x) 6η 1 ρ u∞ δ 2 (x) 12 η =⇒ δ(x) = =⇒ δ(x) = √ Compare with Blasius solution: δ(x) = 5.2 s s 12νx u∞ s νx νx 12 ≈ 3, 5 u∞ u∞ s νx u∞ 15.4 a) ∂p in the flow: ∂x frictionless outer flow: ρua =⇒ ∂p ∂ua =− ∂x ∂x ∂p ∂ua = −ρua = −ρ(ua1 − C(x − x1 )2 ) · (−2C(x − x1 )) ∂x ∂x ∂p = +2ρC(x − x1 )(ua1 − C(x − x1 )2 ) ∂x ∂p =0 ∂x x 1 ∂p ∂x x2 = 2ρC(x2 − x1 )(ua1 − C(x2 − x1 )2 ) 163 b) 4 B.C: I y =0 δ II u=0 y =1 δ H.B. =⇒ a0 = 0 u = ua III y =0 δ ∂p ∂2u =η 2 ∂x ∂y IV y =1 δ ∂u =0 ∂y at the wall u = a1 y δ II: 1 = a1 + a2 + a3 IV: 0 = a1 + 2a2 + 3a3 III: 2a2 ∂p = η ua 2 ∂x δ =⇒ =⇒ a3 = − a1 = + a3 3 ! y δ ! 1 y + 2a2 2 + 6a3 3 δ δ a2 = ua ua ua 1 δ 2 ∂p 2 η ua ∂x δ 2 2 ρ C (x − x1 )(ua1 − C (x − x1 )2 ) a2 (x) = 2η (ua1 − C · (x − x1 )2 ) a2 (x) = II / IV: y δ 1 y y2 a1 + 2a2 2 + 3a3 3 δ δ δ ∂u = ∂y ∂2u = ∂y 2 + a2 2 1 1 − a2 2 2 1 3 − a2 2 2 δ2 ρ C (x − x1 ) η 164 therefore: 3 1 δ2 ρ C − (x − x1 ) 2 2 η a1 (x) = 1 1 δ2 ρ C a3 (x) = − − (x − x1 ) 2 2 η 15.5 a) 1 dua τ (y = 0) dδ2 =0 + (2δ2 + δ1 ) + dx ua dx ρu2a • δ1 = δ0 Z 0 1 u y 1− d ua δ = Z y 1− δ0 1 0 =⇒ δ1 = • • δ2 Z 1 u u y 1− d = δ0 ua δ 0 ua = Z 1/2 1 ! ! y − δ =⇒ δ2 = 1 δ0 6 0 y d δ y d δ dδ2 = 0, since δ0 = const. dx into the above equation: ρ ua dua (2δ2 + δ1 ) = τw dx from the x-momentum equation for y = δ0 : ρua dp dua =− dx dx dp (2δ2 + δ1 ) dx 2 ! dp 2x d x 1−k = −p0 k 2 = p0 dx dx l l =⇒ τw = − with =⇒ τw = p0 k 15.6 conti.: ∂u ∂v = 0 → v = va = konst + ∂x ∂y |{z} =0 = 3 !1 y 2 y − δ 3 δ 2 0 1 δ0 3 y δ 1 2 4 δ0 x 2x 2 δ0 = p0 k 2 2 l 3 3 l = 3/2 2 y 3 δ 2 !1 1 y − 2 δ 0 165 momentum equation: dI~ = dt momentum balance x-direction: Z ρ ~u (~u · ~n) dA = X F~KV = F~R −ρ va ua dx B − ρ u2(y) dy B + ρ u2 (y) dy B + ρ va 0 dx B = τy=0 dx B −ρ va ua dx B = τy=0 dx B with τy=0 = −η du ua = −η dy δ =⇒ ρva = va η ρ =⇒ va = ua u( y ) y t x va dx 15.7 a) boundary conditions: y u v =0: = 0, =0 δ ua ua u y =1: =1 δ ua from boundary layer equation ∂u ∂u +v ρ u ∂x ∂y y =0: δ y =1: δ ! =η u=v=0: ∂u ∂u = =0: ∂x ∂y ∂2u : ∂y 2 ∂ 2 (u/ua) =0 ∂(y/δ)2 ∂ 2 (u/ua) =0 ∂(y/δ)2 η ρδ 166 frictionless outer flow: y =1: δ ∂(u/ua ) =0 ∂(y/δ) τ∼ 3 u y d ua δ u y y −2 =2 ua δ δ + 4 y δ b) δ1 = δ Z Z 1 δ2 = δ 0 1 0 1− = u u y 1− d ua ua δ 3 10 = 37 315 von Kármán integral equation dδ2 τ (y = 0) =0 + dx ρu2a Integration: δ 5.84 =√ x Rex ηua ηua d(u/ua) = −2 τ (y = 0) = − δ d(y/δ) y/δ = 0 δ 2 cw = L Z 0 L 2 τw dx = − 2 ρua L Z 0 L 1.371 τ (y = 0) dx = √ 2 ρua ReL 15.8 a) y u(x, y) = a0 + a1 ua (x) δ0 B.C. y = 0 =⇒ u = 0 =⇒ a0 = 0 y = δ0 =⇒ u = ua (x) =⇒ a1 = 1 =⇒ y u(x, y) = ua (x) δ0 b) 1 dua τw dδ2 + (2δ2 + δ1 ) = 2 dx ua dx ρua 167 displacement thickness δ1 = δ0 Z 1 Z 1 δ2 momentum thickness = δ0 1− 0 0 τw = η von Kármán integral equation u 1− ua ∂u ∂y u y d ua δ0 u y d ua δ0 = 1/2 = 1 6= f (x) =⇒ 6 u ∂ ua ua =η δ ∂ y y=0 δ dua dx =⇒ =η y=0 6 η 1 dua = dx 5 ρ δ02 =⇒ ua (x) = 6 η x +C 5 ρ δ02 B.C.: x = 0 =⇒ ua (x) = 0 =⇒ C = 0 =⇒ ua (x) = 6 η x 5 ρ δ02 c) F = Z L 0 =⇒ F = τw (x)Bdx, 6 η2 B 5 ρ δ03 Z 0 L τw = η xdx = 15.9 a) Solution see 15.7 A) δ1 3 = δ 8 39 δ2 = δ 280 4.641 δ =√ x Rex 1.293 cw = √ ReL ua (x) δ0 3 η 2 BL2 5 ρ δ03 ua δ dδ2 =0 dx 168 B) δ1 2 = 1 − = 0.363 δ π 2 1 δ2 = − = 0.137 δ π 2 s 2π 2 δ 4.795 4−π = √ =√ x Rex Rex q 2 2 − π/2 1.310 cw = √ =√ ReL ReL b) A) δ(x = L) = 3.28 mm ρ Fw = cw u2a 2LB = 0.91 N 2 B) δ(x = L) = 3.39 mm Fw = 0.93 N 169 16 Turbulent boundary layers 16.1 a) xkrit = νRecrit = 0, 167 m u∞ b) yq Rex = 1, 095 ξ = x u = 0, 36 : u = 16, 2 m/s u∞ (see Diagram ξ = f (u/u∞), script chapter 15.4) x = 0, 15 m : Rex = 1, 095 : yq x c) d) Rex = 4, 5 · 105 y = 2, 45 · 10−4 m 170 16.2 a) with the product rule ∂u ∂u2 ∂(uv) ρ + + ∂t ∂x ∂y ! ∂u ∂u ∂v ∂u =ρ + 2u +u +v ∂t ∂x ∂y ∂y ! ∂u ∂u ∂v ∂u ∂u ρ + ρu +u +v + ∂t ∂x ∂y ∂x ∂y ! ! with ∂u/∂x + ∂v/∂y = 0 (conti.) follows ∂u ∂u2 ∂(uv) ρ + + ∂t ∂x ∂y ! ! ∂u ∂u ∂u =ρ . +u +v ∂t ∂x ∂y b) ′ u=u+u, ′ v =v+v , p=p+p ′ ∂(ū + u′ ) ∂(ū + u′ )2 ∂((ū + u′ )(v̄ + v ′ )) ρ + + ∂t ∂x ∂y ∂ 2 (ū + u′ ) ∂ 2 (ū + u′ ) ∂(p̄ + p′ ) +η + fx − ∂x ∂x2 ∂y 2 ! = ! The computational rules 2 and 4 result with f x = fx (u + u′ ) ∂(u + u′ )2 ∂((u + u′ )(v + v ′ )) ρ + + ∂t ∂x ∂y ! = ∂(p + p′ ) ∂ 2 (u + u′ ) ∂ 2 (u + u′ ) fx − +η + ∂x ∂x2 ∂y 2 ! ∂u ∂u′ ∂(u + u′ )2 ∂((u + u′ )(v + v ′ )) + + + ρ ∂t ∂t ∂x ∂y ! = = 171 ∂p ∂p′ ∂ 2 u ∂ 2 u′ ∂ 2 u ∂ 2 u′ fx − − +η + + 2+ ∂x ∂x ∂x2 ∂x2 ∂y ∂y 2 ! with u′ = 0 and p′ = 0 follows ∂u ∂(u + u′ )2 ∂((u + u′ )(v + v ′ )) ρ + + ∂t ∂x ∂y ! = fx − ∂p ∂2u ∂2u + η 2 + 2. ∂x ∂x ∂y Regard ∂(u + u′ )2 ∂x und ∂(u + u′ )(v + v ′ ) ∂y follows ∂(ū + u′ )2 ∂(u¯2 + 2ūu′ + u′ 2 ) ∂u2 ∂(2ūu′ ) ∂u′ 2 ∂u2 ∂u′ 2 = = + + = + ∂x ∂x ∂x ∂x ∂x ∂x ∂x and ∂(u + u′ )(v + v ′ ) ∂(uv + uv ′ + u′ v + u′ v ′ ) = = ∂y ∂y ∂ ūv̄ ∂u′ v ′ ∂(ūv̄) ∂(uv ′ ) ∂(u′ v) ∂(u′ v ′ ) + + + = + . ∂y ∂y ∂y ∂y ∂y ∂y put into the Reynolds averaged x-momentum equation ∂u ∂ ū2 ∂u′ 2 ∂(ūv̄) ∂(u′ v ′ ) ρ + + + + ∂t ∂x ∂x ∂y ∂y ! ∂p ∂2u ∂2u = fx − +η + ∂x ∂x2 ∂y 2 ! algebraic transformation ∂u ∂ ū2 ∂(ūv̄) ρ + + ∂t ∂x ∂y 16.3 a) ! ! ∂p ∂u′ 2 ∂(u′ v ′ ) ∂2u ∂2u = fx − +η + + ρ − − ∂x ∂x2 ∂y 2 ∂x ∂y cw1 Fw1 = Fw2 cw2 ! 172 u∞ Re1 103 cw1 Re2 103 cw2 2, 10 2, 76 3, 19 2 · 105 4 · 105 8 · 105 2, 97 2, 10 2, 76 0, 4m/s 4 · 105 0, 8m/s 8 · 105 1, 6m/s 1, 6 · 106 b) Re1 = 1, 96 · 105 cw1 = cw2 = 3, 0 · 10−3 1) Re2 = Re1 : u∞2 = 0, 392 m/s 2) Re2 ≈ 1, 3 · 106 : u∞2 = 2, 6 m/s 3) Re3 ≈ 9 · 106 : u∞2 = 18 m/s (see diagram, chapter 16.2) Fw1 Fw2 0, 707 1, 313 1, 156 173 17 Boundary layer separation 17.1 The coefficients a0 (x), a1 (x), a2 · x, a3 (x) of the polynomial are determined first. At dp least 4 boundary conditions are necessary. Since is unknown the momentum equation at dx the wall gives no further information. The condition for separation gives an additional boundary condition ∂u/ua = 0. Separation occurs at ∂y/δ y = 0 Boundary conditions: for x = xa y = 0 =⇒ u = 0 =⇒ a0 (x) = 0 y = δ =⇒ u = ua (x) =⇒ 1 = a1 (x) + a2 x + a3 (x) ∂u/ua y = δ =⇒ = 0 =⇒ 0 = a1 (x) + 2a2 x + 3a3 (x) ∂y/δ y = δ y = 0 =⇒ ∂u/ua = 0 =⇒ 0 = a1 (xa ) ∂y/δ y = 0 At x = xa a2 xa + a3 (xa ) = 1 ; =⇒ a2 = 3 xa 2a2 xa + 3a3 (xa ) = 0 a3 (xa ) = −2 y u(xa , y/δ(xa)) =3 =⇒ ua (xa ) δ(xa ) !2 y −2 δ(xa ) !3 174 17.2 cw = 2 Rπ 0 dFw (α) ρ 2 u DL 2 ∞ dFw (α) = dF (α) cos(α) = p(α)L D cos(α)dα 2 ρ p(α) = cp (α) u2∞ + p∞ 2 2 ρ 0 ≤ α ≤ π : p(α) = (1 − 4 sin2 α) u2∞ + p∞ 3 2 2 2 π ≤ α ≤ π : p(α) = 1 − 4 sin2 π 3 3 cw = √ ρ ρ 2 u∞ + p∞ = −2 u2∞ + p∞ 2 2 3 17.3 a) Determination of the coefficients ai with the following boundary conditions: (I) (II) (III) (IV) u(y = 0) = 0 u(y = δ) = ua ∂ 2 u dp =η momentum at the wall: y → 0 : u → 0, v → 0, dx ∂y 2 y = 0 τ (y = δ) = 0 dpa dua (x) u2 2x dp = = −ρua (x) = −2ρ ∞ sin dx dx dx R R 175 Using the ansatz: u ∂ dp ηua ua ρu2a u2∞ x x ua = =η 2 2a = 2a = −4ρ sin cos 2 2 2 2 y dx δ δ 25x R R R ∂ y δ =0 δ 2 =⇒ a2 = − 25 x x cot 2 R R Following the boundary conditions a0 = 0 a1 + a2 + a3 = 1 a1 + 2a2 + 3a3 = 0 1 a3 = − (1 + a2 ) 2 3 1 a1 = − a2 2 2 =⇒ b) Separation: τw = 0 τw = η ∂u ∂y u ! ua = 0 y ∂ y δ δ ∂ ! =0 y=0 =⇒ a1 = 0 x cos 25 x RA = 3 ; − 2 R sin x R A x assumption: R A π ≈ 2 =⇒ (≈ x R A π x − 2 R A 6 =− 25 π assumption is justifiabe) 2 ΘA = 98o =⇒ x R A = 1.71 , 176 17.4 a) equilibrium of forces: Fw = G (buoyancy can be neglected) sphere: cw 2 3 ρL 2 πDK πDK v =ρ g 2 4 6 v = Re DK = νL DK v u 2 3u t18Re ρL νL ρ g DKmax = 6, 81 · 10−2 mm Re = 0, 5 : cylinder (Lnge L): cw ρL 2 πDZ2 v DZ L = ρ Lg 2 4 DZ = v u 3u t 16 Re ρL νL2 2 − lnRe ρ g DZmax = 4, 71 · 10−2 mm Re = 0, 5 : b) vK = 0, 110 m/s vZ = 0, 159 m/s 17.5 a) ρL 2 πD 2 v (buoyancy neglected) 2 1 4 = 0, 4 (Re1 = 3, 03 · 105 ) G = Fw1 = cw1 cw1 177 b) Re2 = from diagram: v2 D = 4, 2 · 105 νL cw2 = 0, 1 Fw2 = cw2 ρL 2 πD 2 v = 1, 95N < G 2 2 4 acceleration onto v3 , so that G = Fw3 ist: G = cw3 from diagram: ρL 2 πD 2 v 2 3 4 cw3 = 0, 1 v3 = 26, 0 m/s 17.6 a) ρK ρL πD 2 πD 3 πD 3 dv = −cw v 2 − ρK g 6 dt 2 4 6 steady sink velocity: vs2 = − 1 g 1Z 0 H=− g v0 4 ρk Dg 3 ρL cw dv dz 2 = dt = v v 1+ vs " vs2 vdv v0 ln 1 + 2 = v 2g vs 1+ vs 2 # b) 1 TH = − g Z 0 v0 dv v0 vs arctan 2 = v g vs 1+ vs c) ρK ρL πD 2 πD 3 πD 3 dv = −cw v 2 + ρK g 6 dt 2 4 6 dv 1 dz 2 = dt = v g v 1− vS 178 1 H= g Z " VB vdv vB vs2 2 = − ln 1 − v 2g vS 1− vS vS vB = s 2 vS 1+ v0 Z dv vS vS + vB ln 2 = v 2g vS − vB 1− vS 0 2 # d) 1 TB = g vB 0 e) H[m] TH [s] vB [m/s] TB [s] cw = 0, 4 wooden sphere metal sphere 37, 2 44, 0 2, 64 2, 96 24, 9 29, 3 2, 81 2, 98 cw = 0 45 3 30 3 179 19 Compressible flows 19.1 a) M=√ v = 2.0 γRT b) L= H tan α 1 α = arcsin Ma L = 1001 m c) S a H cos α = S ∆t = 1.96 s before passing the observer ∆t = 19.2 ∆t = b (vB − vA ) tan α MB = 2; α = 30o ∆t = 1.73 s 180 19.3 a) momentum: ρe ve2 AD = (pa − pe )AD + Fs energy: ve2 = 2cp (T0 − Te ) cp = γR γ−1 !γ−1 p p0 Fs Te pa pe 2γ ρ 1− − = + p0 AD γ − 1 ρ0 T0 p0 p0 T = T0 ρ ρ0 2γ Fs = p0 AD γ−1 pe p0 !1 = γ − ! γ−1 γ γ + 1 pe pa − γ − 1 p0 p0 subcritical: pe = pa supercritical: pe = p∗ = 0.528 · p0 b) momentum: Fs = ρve2 AD Bernoulli: ve2 = 2(p0 − pa ) ρ Fs pa =2 1− p0 AD p0 ! 181 Fs p0 AD pa p0 a) compr. 0 0.66 1.07 1.27 1 0.6 0.2 0 19.4 Energy: b) incompr. 0 0.8 1.6 2 u2 u21 = cp T2 + 2 2 2 2 u1 (γ + 1)(M1 ) = u2 2 + (γ − 1)M12 cp T1 + cp = T2 − T1 = γR γ−1 (see script) (γ − 1)(u21 − u22 ) = 197.9 K 2γR 19.5 ṁ = ρ1 v1 A = s γ p1 M1 A RT1 momentum: ρ1 v12 A = (p0 − p1 )A M1 = energy: v u u1 t γ p0 −1 p1 cp T0 = cp T1 + ! v12 2 T0 γ−1 2 M1 1+ 2 ṁ = 1.41 kg/s T1 = 182 19.6 s q ρ1 p0 T1 u √ 1 γRT0 ṁ = ρ1 u1 A1 = A1 ρ0 RT0 γRT1 T0 M1 > 1, M2 < 1; p2 = pa 0 → 1 isentropic flow A∗ 1 = (fron diagram) → M1 = 2, A1 1.8 p2 p1 = = 2.22 · 104 N/m2 2γ 2 1+ (M − 1) γ+1 1 T0 T1 = γ −1 2 1+ M 2 γ 1 γ γ−1 γ − 1 2 γ−1 T0 = 1.74 · 105 N/m2 = p1 1 + M1 p0 = p1 T1 2 ṁ = 1 γ − 1 2 1+ M1 2 from hint: γ+1 2(γ−1) M1 √ p0 √ γA1 = 4.43 kg/s RT0 b) 19.7 A∗2 ME2 = ∗ A1 ME1 γ−1 2 2 1+ ME1 +1 2 2 γ−1 2 1+ ME2 γ+1 2 γ with ME1 = 2 Energy equation: u2 = cp T0 cp T + 2 with cp = γR γ−1 1γ+1 2γ −1 ∗) 183 =⇒ =⇒ T+ 1 u 2 c2 = T0 2 c2 cp 1 T0 = 1 − M 2 (γ − 1) T =⇒ T0 = (1 + 0.2M 2 )T 2 T0 = (1 + 0.2ME2 1 ) = 1.8 =⇒ TE1 ground : altitude H : pa TE1 = p0 T0 γ γ−1 1 γ pa 4 = TE2 γ−1 p0 T0 1 γ−1 =⇒ TE2 = ( ) γ TE1 = 0.673 4 with ∗∗) ME2 = into ∗): 1 γRT T + M2 (γ − 1) = T0 2 γR =⇒ v u u t5 γ γ TE1 = 0.673 T0 =⇒ 1.8 ! A∗2 = 0.44 A∗1 M2 = u2 . a2 h0 = const : T0 = T01 = T02 Energy: cp T0 = cp T2 + c2 = u22 2 q γRT2 γ R cp = γ−1 M2 = T0 = T2 s 2 T0 −1 γ − 1 T2 p0 2 p2 ! γ−1 γ = 1.14 p0 1′ p0 p0 pa = p2 p0 2 = p0 1′ = M2 < 1 : γ T γ−1 T γ−1 T0γ−1 = E1 = E2 1 p0 pa pa 4 T0 − 1 = 2.89 TE2 19.8 a) ∗ ∗) M2 = 0.837 T0 = 2.67 TE2 184 b) q u2 = M2 γRT2 T2 = T2 · T0 = 263.12 K T0 =⇒ u2 = 272.2 m/s c) ρ0 2 = p0 2 = 1.838 kg/m3 RT02 d) ṁ = ρ2 u2 A2 ρ2 = A2 = p2 = 1.324 kg/m3 R · T2 ṁ = 0.555 m2 ρ2 u2 19.9 a) T2 = 1.2 T1 T2 = f (M1 sin σ) T1 Diagram or formula: M1 sin δ = 1.31 un1 σ = arctan = 53.13o ut1 =⇒ M1 = 1.64 v u | ~v1 | u u2 + u2t1 M1 = = t n1 c1 γRT1 =⇒ T1 = u2n1 + u2t1 = 229 K γRM12 b) momentum equation tangential to the shock + continuity: ut2 = ut1 = 300 m/s un1 = f (M1 , sin σ) un2 diagram or formula: un1 = 1.55 un2 185 =⇒ un2 = un2 un1 = 2.58 m/s un1 q u2n2 + u2t2 M2 = s = 1.2 T2 γR T1 T1 tan(β + ε) = tan(ε) = ut un2 ut un1 ut ut − arctan = 12o un2 un1 or β from diagram β = f (M1 , σ) =⇒ β = arctan c) M1 = const = 1.64 M2 = 1 fro diagram β = f (M1 , σ): β = 15o; σ = 61o q un1 = M1 sin σ γRT1 = 440 m/s M1 = =⇒ ut1 = q u2n1 + u2t1 c1 q M12 c21 − u2n1 = 234 m/s 19.10 σ = 40o M1 = 2.2 Formula or diagramm β = f (M1 , σ) : M22 sin2 (σ12 − β12 ) = =⇒ M1 sin σ12 = 1.41 β12 = 14o (γ − 1)M12 sin2 σ12 + 2 =⇒ M2 = 1.65 2γM12 sin2 σ12 − (γ − 1) 186 Formula or diagram p1 = f (M1 , σ12 ) =⇒ p2 p2 = 2.17 p1 T2 = f (M1 , σ12 ) =⇒ T1 T2 = 1.26 T1 ∆β = 14o − 6o = 8o = β23 M2 = 1.65 from diagram σ = f (β23 , M2 ), schwacher Stoß: σ23 = 46o using formula M3 = f (M2 , σ23 , β23 ): from diagramm p3 = f (M2 , σ23 ) =⇒ p2 M3 = 1.37 p3 = 1.53 p2 T3 = f (M2 , σ23 ) =⇒ T2 T3 = 1.13 T2 19.11 The suction leads to an increasung pressure pk (t) in the boiler. The flow is undisturbed until a shock is located in the exit cross-section AE of the measuring chamber. ME = 2.3 p0 pE Ausl γ −1 2 ME = 1+ 2 with p0 = 1 bar, follows pE Ausl = 0.08 bar = pk (t = 0) γ γ−1 = 12.5 187 Determining of the boiler pressure pk (∆t) at the end of the measuring time: relations across the normal shock: pk (∆t) 2γ (M 2 − 1) = 6.0 =1+ pE Ausl γ+1 E =⇒ pk (∆t) = 0.48 bar s T∗q ρ∗ T0 ṁ = ρ A c = ρ0 A∗ γR ρ0 T0 ∗ = ∗ ∗ 2 γ+1 ! 1 γ−1 s p0 ∗ T∗q T0 A γR RT0 T0 A∗ = AH =⇒ ṁ = 24.2 kg/s pk (t = 0) = ρk (t = 0)RTK pk (∆t) = ρk (∆t)RTK ∆m = ṁ∆t = Vk [ρ(∆t) − ρ(t = 0)] =⇒ ∆t = Vk 1 [pk (∆t) − pk (t = 0) ] = 20.6 s ṁ RTK b) pk pE Ausl from diagram pk pE Ausl ME sin σ = 1.36 = f (ME sin σ): with ME = 2.3 follows σ = 36.2o β from diagram β = f (M, σ) : from diagram =2 β = 12o p01 = f (ME · sin σ) : p02 p01 = 1.03 p02 T2 = 1.22 T1 with p01 = 1 bar follows p02 = 0.97 bar T1 = 1 T = 136 K γ −1 2 0 1+ ME 2 =⇒ T2 = 166 K T1 T0 = T0 188 (γ − 1)M12 sin2 σ + 2 2γM12 sin2 σ − (γ − 1) M22 sin2 (σ − β) = =⇒ M2 = 1.83 T02 γ−1 2 =1+ M2 =⇒ T02 = 277.2 K T2 2 V2 = c2 M2 = q γRT2 M2 = 473 m/s c) βab = βk − ε = 20o − ε βu = βk + ε = 20o + ε βk + ε ≤ βmax (ME = 2.3) = 27.5o =⇒ ε ≤ 7.5o βob = 12.5o ME = 2.3 from diagram σ = f (β, M) : σob = 37o =⇒ ME sin σob = 1.384 βu = 27.5o , ME = 2.3 from diagram σ = f (β, M) : σu = 62o =⇒ pu − pob = pu pE Ausl and pob pE Ausl from diagram ME sin σu = 2.03 pu pE Ausl − pob pE Ausl ! p2 = f (M1 sin σ): p1 =⇒ pu − pob = 0.22 bar pE Ausl 189 using M22 sin2 (σ − β) = 19.12 a) M∞ = 3; (γ − 1)M12 sin2 σ + 2 follows Mob = 1.85 and Mu = 0.94 2γM12 sin2 σ − (γ − 1) β1 = 15o → with M12 sin2 (σ1 − β1 ) = β12 = β1 − β2 = 5o → σ1 = 33o diagram σ1 = f (β1 , M∞ ): 2 (γ − 1)M∞ sin2 σ1 + 2 follows M1 = 2.2 2 sin2 σ − (γ − 1) 2γM∞ 1 diagram σ2 = f (β12 , M1 ) follows σ2 = 31o using M2 = f (β12 , σ2 , M1 ) follows M2 = 2.02 b) ∗ c = s γR M2∗ = T ∗ T0 T∞ = 503.2 m/s T0 T∞ un = 1.29 c∗ v u u u u t (γ γ+1 2 − 1) + 2 M2 un M2 sin σ3 = c =⇒ M2∗ sin σ3 = =⇒ σ3 = 52o → = 1.64 un c∗ Diagramm β = f (σ3 , M2 ) : β = 20o β3 = β − β2 = 10o using M3 = f (β, δ3, M2 ) follows M3 = 1.27 M∞ sin σ1 = 1.63 =⇒ diagram p1 p1 = f (M∞ sin σ1 ) : = 2.9 p∞ p∞ M1 sin σ2 = 1.13 =⇒ diagram p2 p2 = f (M1 sin σ2 ) : = 1.4 p1 p1 M2 sin σ3 = 1.59 =⇒ diagram p3 p3 = f (M2 sin σ3 ) : = 2.7 p2 p2 p3 = p3 p2 p1 · · · p∞ = 10.96 bar p2 p1 p∞ 190 19.13 a) M1 = 1.6 p1 γ−1 2 = 1+ M1 p01 2 − γ γ−1 = 0.235 p2 = p1 p2 p01 p1 = = 0.282 p02 p02 p01 γ −1 2 p2 = 1+ M2 p02 2 − γ γ−1 =⇒ M2 = 1.48 b) M2 · c2 M2 |V~2 | = = ~ M1 · c1 M1 | V1 | s T2 M2 = T1 M1 s T2 T02 T01 T02 T01 T1 T01 = T02 γ−1 2 T2 = 1+ M2 T02 2 analogous =⇒ −1 = 0.69 T1 = 0.66 T01 ~2 | |V = 0.95 ~1 | |V p2 /(RT2 ) T1 ρ2 = = = 0.96 ρ1 p1 /(RT1 ) T2