Presentation
Transcription
Presentation
Modeling wheat yield gaps in European Russia using the SWAT model Schierhorn, Florian Faramarzi, Monireh Prishchepov, Alexander V. Koch, Friedrich Müller, Daniel SWAT conference 2013 | 17 – 19 July Rising demand for agricultural products Population o 2.5 billion more by 2070 o Growing affluence Diets guardian.co.uk o Meat o Processed food Bioenergy guardian.co.uk o Traditional (80%) o Modern (20%) guardian.co.uk 2 Two options to increase agricultural production 1. Expansion of agricultural land o Most fertile land already used o Further expansion associated with high environmental tradeoffs 2. Intensification on existing agricultural land o More inputs per unit of land o Better technology 3 Low yields due to yield gap? Objectives • Simulation of post-Soviet wheat yields using SWAT [->capturing of inter-anual yield variations] • Simulation of wheat yield potentials • Sensitivity analysis of growing period (& PHU) and crop parameters on yield Study area 30°E 40°E 50°E 60°E 70°E Vologda Perm Kirov Udmurtia European Russia MariEl Nizhny Chuvash # * Moscow Ryazan Tatarstan Bashkortostan Ulyanovsk Mordovia Samara Tula 50°N Penza Bryansk Oryol Lipetsk Tambov Saratov Kursk # * Belgorod Voronezh 50°N Volgograd Ukraine 546 subbasins -> 30 Kazakhstan selected for individual calibration Rostov Spring wheat Subbasin Krasnodar 40°E Stravropol Provinces (oblast) 50°E 60°E Model setup Calibration: 1996-2006 / 3yrs warm-up Validation: 1991-1994 / 3yrs warm-up Study area size: 4 million km² square kilometers Hargreaves method for ET-estimation Dominant soil and land use property Winter wheat & spring wheat dominant Assignment of ONE representative subbasin per province (oblast) -> 30 regions to be calibrated indi Data • Landuse: Binary cropland map (100 ha) • Soil: Harmonized World Soil Database (10 km) • Climate: Daily weather data from Schuol and Abbaspour (2007) • Wheat yield: ROSSTAT 2012 (provinces) • Management: • Growing period – USDA • N fertilizer – ROSSTAT 2012 Calibration, Validation, and scenarios analysis • Wheat yields were calibrated for each province • Simulated wheat yields were compared with anual wheat yield data reported at provincial level • After satisfactory calibration/validation, two scenarios: A) sufficient N fertilizer, B) sufficient N fertilizer + Water were constructed [to access yield potentials] Initial parameter ranges for calibration Parameter MIN MAX v__ESCO.hru 0.01 1 v__EPCO.hru 0.01 v__OV_N.hru MIN MAX v__USLE_K(1).sol 0 0.65 1 v__USLE_K(2).sol 0 0.65 0.01 0.8 v__SOL_EC(1).sol 0 100 v__LAT_TTIME.hru 0 180 v__SOL_EC(2).sol 0 100 v__LAT_SED.hru 0 5000 v__SHALLST.gw 0 1000 v__CANMX.hru 0 1 v__DEEPST.gw 0 1290 v__SOL_BD(1).sol 1.1 1.7 v__GW_DELAY.gw 0 500 v__SOL_BD(2).sol 1.1 1.7 v__ALPHA_BF.gw 0 1 v__SOL_CBN(1).sol 1 3 v__GWQMN.gw 0 5000 v__SOL_CBN(2).sol 0 2 v__GW_REVAP.gw 0.02 0.2 v__SOL_ALB(1).sol 0 0.25 v__RCHRG_DP.gw 0 1.1 v__SOL_ALB(2).sol 0 0.25 v__GWHT.gw 0 25 0.2 0.8 v__GW_SPYLD.gw 0 0.4 v__SOL_K(1).sol 0 2000 v__SHALLST_N.gw 0 10 v__SOL_K(2).sol 0 2000 v__GWSOLP.gw 0 1000 v__SOL_CRK.sol 0 1 v__HLIFE_NGW.gw 0 365 65 90 r__FRT_KG{x,x}.mgt -0.3 0.3 v__ANION_EXCL.sol v__CN2.mgt Parameter Crop related parameters were excluded for calibration! 139 201 220 221 235 251 279 300 308 379 425 9 1 2 7 15 12 3 13 10 5 4 16 6 17 11 8 20 23 24 14 18 34 32 19 29 33 30 40 31 22 25 37 36 46 43 26 27 35 48 42 41 28 47 44 21 38 39 45 14 8 3 48 21 15 1 4 6 2 5 12 11 23 9 10 7 13 16 43 32 26 28 27 24 22 33 40 25 38 44 29 46 31 18 30 34 20 39 36 42 47 41 35 37 19 45 17 10 26 1 4 9 12 6 3 8 2 5 11 28 7 14 19 13 16 15 35 18 41 17 23 45 30 36 20 47 43 37 24 32 27 40 46 31 21 22 33 39 25 42 38 29 34 44 48 8 1 15 5 6 2 16 14 4 13 19 7 12 3 21 10 11 9 17 18 47 29 27 37 30 31 28 25 24 40 20 33 46 42 43 34 41 45 26 22 35 38 23 39 44 48 36 32 7 8 15 11 9 1 14 4 34 6 12 3 10 18 25 5 2 21 13 40 16 28 23 24 20 42 37 19 38 26 32 30 17 33 36 22 46 31 48 47 29 27 35 39 45 41 43 44 5 6 19 1 2 10 3 16 8 14 4 15 12 7 9 13 18 11 29 17 47 23 24 31 38 26 20 22 39 27 42 44 46 25 40 35 21 32 45 41 43 30 33 34 48 37 28 36 11 12 1 3 8 2 5 41 7 10 4 6 13 14 37 25 15 9 46 28 23 27 32 18 30 16 20 39 42 22 19 17 38 24 40 21 26 45 29 35 47 43 48 31 36 33 34 44 18 1 20 11 27 23 31 2 10 5 24 35 3 47 28 8 25 9 19 6 4 7 12 30 16 41 17 43 26 36 32 46 14 48 15 33 40 38 13 21 45 34 29 39 44 42 22 37 1 6 2 4 3 12 16 23 13 14 43 5 9 8 10 15 7 36 17 21 32 11 22 44 18 19 47 46 20 48 45 29 26 24 38 37 27 30 35 40 28 34 31 42 39 33 25 41 5 12 1 6 13 11 2 3 25 9 8 10 23 7 4 29 17 14 16 21 30 18 19 24 33 40 42 41 31 26 15 45 32 37 43 47 38 35 44 28 22 36 34 20 27 39 48 46 1 9 3 15 11 20 4 2 5 8 6 16 13 17 12 18 19 7 44 36 14 10 43 23 34 27 22 24 26 25 30 21 46 45 29 37 31 38 28 40 35 41 39 33 42 48 47 32 + Parameter sensitivity Parameter 129 FRT_KG{12,3}.mgt 8 SOL_CBN(2).sol 7 FRT_KG{9,3}.mgt 20 FRT_KG{6,3}.mgt 9 FRT_KG{11,3}.mgt 5 FRT_KG{14,3}.mgt 10 FRT_KG{8,3}.mgt 29 ESCO.hru 6 FRT_KG{10,3}.mgt 3 CN2.mgt 48 FRT_KG{7,3}.mgt 2 FRT_KG{13,3}.mgt 11 SOL_CBN(1).sol 12 FRT_KG{15,3}.mgt 1 FRT_KG{4,3}.mgt 4 ANION_EXCL.sol 26 EPCO.hru 35 FRT_KG{5,3}.mgt 44 CANMX.hru 15 SOL_BD(1).sol 16 SOL_BD(2).sol 14 SOL_K(1).sol 42 GWSOLP.gw 23 FRT_KG{3,3}.mgt 25 GWQMN.gw 18 SOL_K(2).sol 39 LAT_SED.hru 37 SHALLST_N.gw 13 FRT_KG{1,3}.mgt 28 SOL_EC(1).sol 24 DEEPST.gw 40 GWHT.gw 30 LAT_TTIME.hru 22 FRT_KG{2,3}.mgt 21 SOL_ALB(1).sol 19 SOL_EC(2).sol 36 GW_REVAP.gw 46 HLIFE_NGW.gw 45 OV_N.hru 41 GW_SPYLD.gw 38 SOL_ALB(2).sol 17 USLE_K(1).sol 47 RCHRG_DP.gw 31 ALPHA_BF.gw 43 USLE_K(2).sol 27 SHALLST.gw 32 SOL_CRK.sol 34 GW_DELAY.gw 33 - Calibration and Validation results Calibration Validation 2 10 kg N No irrigation Rainfed 1.5 3500 4 3000 3.5 2500 3 2000 1 1500 1000 0.5 500 0 0 1 10 19 28 37 46 55 PHU: 2009 64 73 82 91 100 109 2.5 2.5 1.5 3000 1 2000 0.5 1000 0 0 1 16000 4 14000 3.5 12000 3 10000 2.5 2 1.5 6000 1.5 1 4000 1 0.5 2000 0.5 0 0 21 31 PHU: 2009 41 51 61 71 81 91 YLD = 4.7 t/ha 5000 4000 8000 11 6000 2 2 1 7000 11 21 31 41 51 61 PHU: 2009 300 kg N Irrigation 3 300 kg N No irrigation Rainfed YLD = 0.7 t/ha 4 3.5 8000 101 111 71 81 91 101 111 YLD = 1.2 t/ha 12000 300 kg N Irrigation 10000 8000 6000 4000 2000 0 0 1 11 21 PHU: 1409 31 41 51 61 71 YLD = 3.4 t/ha Yield gap for sufficient N & Water supply Bashkortostan Belgorod Bryansk Chuvash Kirov Krasnodar Kursk Lipetsk MariEl Mordovia Moscow Nizhny Oryol Penza Perm Rostov Ryazan Samara Saratov Stravropol Tambov Tatarstan Tula Udmurtia 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 1995 Ulyanovsk Volgograd Vologda 8 6 4 2 0 Voronezh 2000 2005 1995 2000 2005 7 1995 2000 2005 1995 2000 2005 1995 2000 Wheat yield (t/ha) 6 2005 5 1995 2000 2005 4 3 Yield potential for sufficient N & WATER supply 2 Yield potential for sufficient N supply 1 Reported 0 YGN&Water YGN Average wheat yields, 2001-2006 30°E 40°E 50°E 60°E 70°E Vologda Spring wheat Perm Kirov Udmurtia European Russia MariEl Nizhny Chuvash # * Moscow Ryazan Tatarstan Bashkortostan Ulyanovsk Mordovia Samara Tula 50°N Penza Bryansk Oryol Lipetsk Tambov Saratov Kursk # * Belgorod Average wheat yields reported 2001-2006 Voronezh 50°N Volgograd t/ha Ukraine Rostov Krasnodar 40°E 2.17 - 2.43 1.10 - 1.18 2.44 - 2.53 1.19 - 1.35 2.54 - 2.94 1.36 - 1.48 2.95 - 3.15 1.49 - 1.87 3.16 - 4.31 1.88 - 2.16 Stravropol 50°E 60°E Yield gap for sufficent N supply 30°E 40°E 50°E 60°E 70°E Vologda Spring wheat Perm Kirov Udmurtia European Russia MariEl Nizhny Chuvash # * Moscow Ryazan Tatarstan Bashkortostan Ulyanovsk Mordovia Samara Tula 50°N Penza Bryansk Oryol Lipetsk Tambov Saratov Kursk # * Belgorod Average yield gap for sufficient N supply, 2001-2006 Voronezh 50°N Volgograd t/ha Ukraine Rostov Krasnodar 40°E 2.18 - 2.31 1.16 - 1.43 2.32 - 2.37 1.44 - 1.75 2.38 - 2.52 1.76 - 1.80 2.53 - 2.82 1.81 - 1.97 2.83 - 3.03 1.98 - 2.17 Stravropol 50°E 60°E Yield gap for sufficent N supply & water supply 30°E 40°E 50°E 60°E 70°E Vologda Spring wheat Perm Kirov Udmurtia European Russia MariEl Nizhny Chuvash # * Moscow Ryazan Tatarstan Bashkortostan Ulyanovsk Mordovia Samara Tula 50°N Penza Bryansk Oryol Lipetsk Tambov Saratov Kursk # * Belgorod Average yield gap for sufficient N & Water supply, 2001-2006 Voronezh 50°N Volgograd t/ha Ukraine Rostov Krasnodar 40°E 3.21 - 3.38 1.79 - 2.57 3.39 - 3.44 2.58 - 2.74 3.45 - 3.72 2.75 - 2.89 3.73 - 3.80 2.90 - 3.11 3.81 - 4.56 3.12 - 3.20 Stravropol 50°E 60°E Yield gap for entire European Russia: 2.1 t/ha -> under sufficient N supply 3.2 t/ha -> under sufficient N & Water supply Yield sensitivity to growing period Bashkortostan Chuvash Kirov MariEl Mordovia Nizhny Penza Perm Samara Saratov Tatarstan Udmurtia 7 6 5 4 3 7 6 5 4 3 7 6 5 4 3 1995 Vologda Volgograd Ulyanovsk 7 6 5 4 3 1995 2000 2005 1995 2000 2005 1995 2000 2005 95PPU of simulated yield, average growing period 95PPU of simulated yield, short growing period 95PPU of simulated yield, long growing period 2000 2005 Yield sensitivity to crop parameter Mordovia Nizhny Penza Samara Saratov Tatarstan 8 6 4 2 0 8 6 4 2 0 1995 Ulyanovsk 2000 2005 Volgograd 8 6 4 2 0 1995 2000 2005 1995 2000 2005 95PPU of simulated yield for sufficient N & Water supply, Variation of crop parameters 95PPU of simulated yield for sufficient N & Water supply, SWAT default crop parameters Reported Conclusion • Russia has large potential to increase crop yields • SWAT crop growth module reproduces accurate yields despite the large scale & data scarcity • Yield gaps are heterogeneously distributed • Information on crop characteristics (PHU in particular) are essential for accurate yield gap estimations 20 Thank you very much. Contact: Florian Schierhorn ([email protected]) www.iamo.de Foto: J. Stahl Calibration and Validation results Bashkortostan Chuvash Kirov MariEl Mordovia Nizhny Penza Perm Samara Saratov Tatarstan Udmurtia Calibration Validation Calibration Validation Calibration Validation -.5 Volgograd Vologda .5 1 1.5 2 P factor R factor Calibration Validation -.5 0 R2 0 .5 1 1.5 2 -.5 0 .5 1 1.5 2 Nash Sutclif -.5 0 .5 1 1.5 2