Antennas
Transcription
Antennas
Escuela Politécnica Universidad de Extremadura Contenidos Tema 1. Fundamentos de radiación electromagnética: Fundamentos de radiación. Distribuciones de corriente. Teorema de Poynting. Potenciales retardados. Radiación de una fuente elemental. Campos radiados por una antena. Propiedades del campo radiado: campo cercano, intermedio y lejano. Radiación y ondas guiadas – J. M. Taboada Escuela Politécnica Universidad de Extremadura 1 Contenidos Tema 2. Conceptos básicos de antenas. Tipos de antenas. La antena como elemento circuital: parámetros de impedancia. Coeficiente de reflexión y relación de onda estacionaria. Diagrama de radiación. Directividad. Ganancia y eficiencia. Polarización. Ancho de banda. La antena en recepción. Fórmula de Friis: propagación en espacio libre. Ecuación de alcance radar. Ruido captado por una antena. Radiación y ondas guiadas – J. M. Taboada 2 Escuela Politécnica Universidad de Extremadura Contenidos Tema 3. Antenas de hilo. Integral de radiación. Dipolos eléctricos. Monopolo sobre plano de tierra. Teoría de imágenes. Dipolos paralelos a plano conductor. Otras antenas de hilo. Acoplamientos mutuos entre antenas. Antenas Yagi. Radiación y ondas guiadas – J. M. Taboada 3 Escuela Politécnica Universidad de Extremadura UNIT 1 Fundamentals of electromagnetic radiation Radiación y ondas guiadas – J. M. Taboada 4 Escuela Politécnica Universidad de Extremadura Antennas An antenna is a usually metallic device for radiating or receiving radio waves. It is the transitional structure between free-space and the transmission line. The transmission line is used to transport the electromagnetic energy from the transmitting or to the receiver device. Properties of a good antenna: Radiation efficiency. Radiation pattern. Transmission line matching. Free-space spherical wavefronts Waveguide Incoming plane wavefronts Waveguide Rx Tx Transmitter Antenna Antenna Receiver Radiación y ondas guiadas – J. M. Taboada 5 Escuela Politécnica Universidad de Extremadura Current distribution on a thin wire antenna. Radiación y ondas guiadas – J. M. Taboada 6 Escuela Politécnica Universidad de Extremadura Electromagnetic radiation mechanism a) During the first quarter of wavelength the electric current accumulates positive charge in the upper arm and negative in the lower arm. The circuit is closed throughout the displacement currents (field lines of force). b) During the next quarter the current decreases, generating fields lines on the opposite direction, which pushes forward the previous lines. c) After the first half of period the net charge on the dipole is null, which forces the field lines to unite together to form closed loops Radiación y ondas guiadas – J. M. Taboada 7 Escuela Politécnica Universidad de Extremadura Electromagnetic radiation mechanism E Radiación y ondas guiadas – J. M. Taboada e(t ) Re Ee jZt 8 Escuela Politécnica Universidad de Extremadura Maxwell’s equations. Fields: Faraday law: E: Electric field intensity (V/m) Ampere law: H: Magnetic field intensity (A/m) Gauss law: D: Electric flux density (Coulombs/m2) Magnetic flux contin: B: Magnetic flux density (Weber/m2) Sources: Continuity equation: J: electric current density Constitutive relations: Ji : impressed current U: electric charge density Constitutive parameters: H: electric permittivity P: magnetic permeability dielectric permittivity in DC dielectric loss factor (usually it is function of Z) Radiación y ondas guiadas – J. M. Taboada 9 Escuela Politécnica Universidad de Extremadura Maxwell’s equations. The current J is composed of an impressed (excitation known current), a conduction current: and the total current is the latter : Displacement Conduction current current Conductivity Radiación y ondas guiadas – J. M. Taboada Impressed current Conduction and friction losses in dielectric Displacement reactive current Displacement dissipative current 10 Escuela Politécnica Universidad de Extremadura Maxwell’s equations Sometimes it is convenient to introduce a fictitious magnetic current density M. Magnetic currents are useful as equivalent sources that replace complicated electric fields in some problems. Radiación y ondas guiadas – J. M. Taboada 11 Escuela Politécnica Universidad de Extremadura Boundary conditions Perfect electric conducting (PEC) object General case: penetrable object Normally Js = 0; Us=0 Conductividad finita. Sin cargas ni corrientes inducidas en interfaz. Conductividad finita. Cargas y/o corrientes inducidas en interfaz. Conductividad infinita (PEC). nˆ u (E1 E2 ) 0 nˆ u (E1 E2 ) 0 nˆ u E1 0 E1,tan nˆ u (H1 H 2 ) 0 nˆ u (H1 H 2 ) nˆ D1 U s D1,nor nˆ (D1 D2 ) 0 nˆ (D1 D2 ) nˆ (B1 B 2 ) 0 nˆ (B1 B 2 ) 0 Radiación y ondas guiadas – J. M. Taboada Js Us nˆ u H1 nˆ B1 0 Us J s H1,tan 0 B1,nor nˆ u J s 0 12 Escuela Politécnica Universidad de Extremadura Poyinting vector. Conservation of power. The complex Poyinting vector represents the complex power density in W/m2 at a point Complex power flowing out from a closed surface S surrounding the antenna: with because P’source = Pradiated + Pstored magn. + Pstored elect. + Pdissipated Radiación y ondas guiadas – J. M. Taboada Escuela Politécnica Universidad de Extremadura 13 Poyinting vector. Conservation of power. We are particularly interested in the real power (the part of the source power that can be radiated) Psource Radiación y ondas guiadas – J. M. Taboada = Pradiated + Pdissipated 14 Escuela Politécnica Universidad de Extremadura Current distribution Obtaining the current distribution on antennas or scatterers (in magnitude and phase) is one of the most complex problems in electromagnetics It is given by the boundary conditions and the excitation (incident field or voltage source) of the problem. Depends on geometry, material, feed point, etc. Nowadays it is addressed using numerical techniques such as the method of moments (MoM). Depending on the electric size of the problem it could imply solving matrix systems with millions or hundreds of millions of unknowns. We are going to suppose that the induced currents J are known. The goal here is to develop procedures for finding the radiated fields by an antenna or scatterer based on Maxwell’s equations Radiación y ondas guiadas – J. M. Taboada 15 Escuela Politécnica Universidad de Extremadura Potentials The radiation problem consists of solving for the fields that are created by a source current distribution (in the further denoted by J instead of Ji). The source currents may represent either actual or equivalent currents. How to obtain these currents will be discussed in later courses (it constitutes a hot research topic in computational electromagnetics). For the moment, suppose we have the source current distribution J and we wish to determine the fields E and H. It is possible to obtain directly from the source currents by integration. However it is much simpler to do it in two steps: 1. Find the auxiliary functions (vector potentials, or potenciales retardados) by integration. Magnetic vector potential A Scalar potential ) 2. Find the radiated fields by differentiation. Radiación y ondas guiadas – J. M. Taboada 16 Escuela Politécnica Universidad de Extremadura Potentials Magnetic vector potential A. From the continuity of the magnetic flux law: because Scalar potential ). From the Faraday law: because So the fields can be obtained in terms of the potential functions. We now discuss the solution for the potential functions A and ). Radiación ad y ondas guiadas – J. M. Taboada Escuela Politécnica Universidad de Extremadura 17 Potentials The Ampere law can be written in terms of the potential vectors because because Lorentz condition (fixing the divergence of A): By the uniqueness theorem, if we reach a solution that fulfills Maxwell’s equations, this is the real only solution to the problem. H and P can be replaced by the equivalent ones in the case of lossy dielectrics We lead to the magnetic vector potential wave equation (or Helmholtz equation for A) Radiación y ondas guiadas – J. M. Taboada 18 Escuela Politécnica Universidad de Extremadura Potentials The same procedure can be applied to the Gauss law: because (Lorentz condition) This is the wave equation or Helmholtz equation for the scalar potential ) Radiación y ondas guiadas – J. M. Taboada 19 Escuela Politécnica Universidad de Extremadura Calculation of fields from potentials Once we have the potentials we can calculate the fields: The electric field can be also obtained using only the vector potential because (Lorentz condition) This is important because in this way we can only work in terms of electric current J, without explicitly considering the electric charge U Relation between fields in absence of fonts. From Ampere law with J=0: Radiación y ondas guiadas – J. M. Taboada 20 Escuela Politécnica Universidad de Extremadura Radiation from an elemental source The simplest radiation element is an infinitesimal lineal current density element Jz with length dl in an isotropic medium. z ds dv dlds dl Jz x y because the source is a point I J zds The problem has spherical symmetry, so we shall use the spherical coordinate system. Bessel spherical differential equation Solution Radiación y ondas guiadas – J. M. Taboada Escuela Politécnica Universidad de Extremadura 21 Radiation from an elemental source Derivation of constants: z C 2 0 because it represents an incoming wave ds dl x Jz y I J zds From the vector potential we obtain the fields: Medium intrinsic impedance Radiación y ondas guiadas – J. M. Taboada 22 Escuela Politécnica Universidad de Extremadura Radiation from antennas A real current distribution is composed of infinite current elements J defined inside of infinitesimal volumes dV placed at points r’. r r' dv ' J(r ') r r' The total potential is given by superposition: Volume Surface Wire antenna Radiación y ondas guiadas – J. M. Taboada Escuela Politécnica Universidad de Extremadura 23 Antenna radiated field regions An inspection of the radiated fields of the infinitesimal dipole reveals that the space surrounding the antenna can be subdivided into three regions: Near-field region (r < O): predomination of 1/r3 terms Intermediate region Far-field region (r >> O): predomination of 1/r terms Radiación y ondas guiadas – J. M. Taboada 24 Escuela Politécnica Universidad de Extremadura Near-field region (r < O) The 1/r3 terms predominates the field: The time-average power density reduces to zero because E and H are in quadrature: The fields are reactive and quasistatic Radiación y ondas guiadas – J. M. Taboada 25 Escuela Politécnica Universidad de Extremadura Intermediate-field (or Fresnel) region (kr > 1) The terms that were predominant for the near region become smaller As r increases, E and H approach time-phase, which is an indication of formation of time-average power flow in the outward (radial) direction (radiation phenomenon) The radiation fields predominate over the reactive fields. The angular field distribution is dependent on the distance from the antenna. E has some component in the radial direction (it is named a cross field) Radiación y ondas guiadas – J. M. Taboada E 26 Escuela Politécnica Universidad de Extremadura Far-field region (r >> O) Far field region, or Fraunhofer region Outgoing power density: r E Important notes: Fields E and H in the far field region are orthogonal each other and orthogonal to the radial propagating direction, thus locally behaving like a plane wave. The magnitude of the E and H fields are related by the medium intrinsic impedance. Even for an infinitesimal source we have a directional behavior of it is impossible to obtain a totally isotropic antenna! , implying that Complex power density is real indicating dissipated power and it is travelling away from the source and decreasing as 1/r2, typical for spherical progressive waves. This power is named radiated power, and the fields radiated fields. Radiación y ondas guiadas – J. M. Taboada 27 Escuela Politécnica Universidad de Extremadura Radiation of power The energy of an harmonically excited antenna dissipates due to: (i) a finite (Ohmic) resistance felt by the charge carriers in the metal wire and (ii) loss of energy due to radiation of e.m. waves. This so-called radiation loss occurs due to the fact that the oscillation eventually creates time-dependent electric fields at remote distances, which must then be accompanied by magnetic fields that vary according to Maxwell’s equations. At large enough distance these fields transform into plane waves which are free-space solutions of the wave equation. If the dipole oscillation would be suddenly switched off, those far-away fields, or simply far fields, would continue to propagate since they carry energy that is stored in the fields themselves and has been removed from the energy originally stored in the charge distribution we have been starting out with. On the contrary, the so-called near-field zone corresponds to the instantaneous electrostatic fields of the dipole, which do not contribute to radiation but return their energy to the source after each oscillation cycle or when the source is turned off (reactive power). Radiación y ondas guiadas – J. M. Taboada 28 Escuela Politécnica Universidad de Extremadura Antenna radiated field regions: summary Far field condition for an antenna: D: maximum antenna dimension Radiación y ondas guiadas – J. M. Taboada 29 Escuela Politécnica Universidad de Extremadura Far-field approximation We are in the far-field region when Approximations J(r ') for the amplitude term for the phase term Radiación y ondas guiadas – J. M. Taboada r r' 30 Escuela Politécnica Universidad de Extremadura Far-field approximation Approximated vector potential: r r' Magnetic field: negligible terms 1/r2 E and H far-field relation: Electric field: TEM wave Radiación y ondas guiadas – J. M. Taboada Escuela Politécnica Universidad de Extremadura 31 Far-field approximation Far-field electric and magnetic radiated fields. Vector expressions: z Far-field electric and magnetic radiated fields. Scalar expressions: rˆ x Radiación y ondas guiadas – J. M. Taboada y 32 Escuela Politécnica Universidad de Extremadura Antenna far-field radiation properties The far-field radiated fields of an antenna must fulfill the following aspects: The dependency of E and H with r is that of the spherical wave E and H depend on T and I because the spherical wave is non homogeneous The spherical radiated wave locally behaves like a plane wave The E and H fields do not have radial components The wave energy density decreases with 1/r2 z R Ĝ in a lossless medium: x G Radiación y ondas guiadas – J. M. Taboada R̂ rˆ y 33 Escuela Politécnica Universidad de Extremadura Antenna displacement Antenna in the coordinate origin: Antenna displaced to a point rc Radiación y ondas guiadas – J. M. Taboada 34