KARAKTERISTIK DEFORMASI Strain dan Stress
Transcription
KARAKTERISTIK DEFORMASI Strain dan Stress
KARAKTERISTIK DEFORMASI Strain dan Stress HERI ANDREAS Mahasiswa Program Doktor Prodi Geodesi dan Geomatika ITB E-mail : [email protected] September 2007 1. Pengertian Deformasi Deformasi adalah perubahan bentuk, dimensi dan posisi dari suatu materi baik merupakan bagian dari alam ataupun buatan manusia dalam skala waktu dan ruang 2. Penyebab Deformasi Bila dikenai Gaya (Force) maka benda/ materi akan terdeformasi 3. Objek dari Deformasi rotasi bumi Fenomena lain abrasi proses geologi lokal longsoran Alam ocean loading Manusia pelapukan erosi subsidence tsunami tektonik lempeng pasut atmosferik proses hidrologi D. Sarsito, 2006 3. Objek dari Deformasi S A MP N o r t h 15 He ight (m ) 36.560 36.520 36.480 36.440 36.400 36.360 36.320 36.280 36.240 36.200 36.160 36.120 36.080 36.040 36.000 35.960 35.920 35.880 35.840 35.800 35.760 35.720 35.680 35.640 35.600 35.560 35.520 35.480 35.440 35.400 35.360 35.320 35.280 35.240 35.200 35.160 35.120 35.080 35.040 35.000 10 5 0 -5 -10 -15 -20 -25 6 6 6 9 3006 -12/1 0 /3060 -15/1 0 3/ 06 0 3/06 1 6/ 061 -48/1 1 /6061 -416 16 6 4 1 6 7 1 6 0 1 6 3 1 6 22 /9/ 0 /0 -18/1 6 -1 63-160 1536/16 0 /0061-7 8 9 0 /0062-4 1 026/00 6 4 6/105 6/00 6 7 6/108 6/00 6 06/11 0 /006 -4 2/113/1 /606 1 /-45/1 240/9/-12 06 /9/ -12370/9/-1206 /9/ -13 /9/ 06 -13/1 / 06 -16/1 9/10 1 /-11 06/11 -1023/1 /00 06 -16/1 /06 -19/1 1/ 0 /11-12 /1 /011-4 /01 1-4 /01 2/0 -46/1 /01 2/0 -46/12-1 /01 -4 5 6/1 86/1 1 6/1 46/1 1 /0/1 -1/0 1-19/1 /06/1 1-16/1 /06/12-1 /1 2-4 /0 2-1 /1 2-4 /0 2-1 /1 3-4 /0 3-16/1 /06 -1 /06/11-1 /06/1 1-1 2-1 /06 -16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Tgl/Bln/Thn-Jam 4. Jenis dari Deformasi Deformasi dapat dibagi menjadi 2 jenis yaitu Deformasi Statik dan Deformasi sesaat Deformasi statik bersifat permanen Deformasi sesaat bersifat sementara / dinamis 5. Parameter Deformasi Deformasi dari suatu benda/ materi dapat digambarkan secara penuh dalam bentuk tiga dimensi apabila diketahui 6 parameter regangan (normal-shear) dan 3 parameter komponen rotasi Parameter deformasi ini dapat dihitung apabila diketahui fungsi pergeseran dari benda tersebut persatuan waktu Normal strain Shear strain 6. Model dan pengamatan Deformasi Secara praktis survey deformasi akan terpaut pada titik-titik yang bersifat diskrit, dengan demikian deformasi dari benda harus didekati dengan model. Fungsi dari deformasi dinyatakan oleh persamaan dalam bentuk matrik : d=Bc Dimana : B, adalah matrik deformasi yang elemennya merupakan fungsi dari posisi dari titik yang diamati, serta waktu C, vektor yang koefisiennya akan diketahui 6. Model dan pengamatan Deformasi Survey deformasi: penentuan perubahan posisi, jarak, sudut, regangan : teknik geodetik, geofisika, dan lain-lain 7. Analisis Deformasi Analisis Geometrik : Bila kita hanya tertarik pada status geometrik (ukuran dan dimensi) dari benda yang terdeformasi Analisis Fisis : Bila kita bermaksud untuk menentukan status fisis dari benda yang terdeformasi, regangan, dan hubungan antara gaya dengan deformasi yang terjadi 8. Analisis Deformasi aspek fisis Dalam analisis fisis deformasi, hubungan antara gaya dan deformasi dapat dimodelkan dengan menggunakan metoda empiris (statistik), yaitu melalui korelasi antara pengamatan deformasi dan pengamatan gaya Metoda lain dalam analisis fisis yaitu metoda deterministik, yang memanfaatkan informasi dari gaya, jenis material dari benda, dan hubungan fisis antara regangan (strain) dan tegangan (stress) pada benda 9. Normal strain :perubahan panjang - Change of length proportional to length - xx, yy, zz are normal component of strain nb : If deformation is small, change of volume is xx + yy + zz (neglecting quadratic terms) SEAMERGES GPS COURSE, 2005 10. Shear Strain : perubahan sudut xy = -1/2 (1 + 2) = 1/2 (d dx + d dy ) xy = yx (obvious) y x SEAMERGES GPS COURSE, 2005 11. Stress dalam 2 Dimensi - Force = x surface - no rotation => xy = yx - only 3 independent ….components : …..xx , yy , xy SEAMERGES GPS COURSE, 2005 12. Applied Forces Normal forces on x axis xx(x). y xx(x+x). y y xx(x). xx(x+x) y dxx/dx . x (1) Shear forces on x axis yx(y). x yx(y+y). x x dyx/dy . y (2) Total on x axis d xx/ dx + dyx/ dy x y SEAMERGES GPS COURSE, 2005 13. Forces Equilibrium d d Total on y axis = Total on x axis = Equilibrium => xx/ dx + yy/ dy + d d / xy x d dyx/ dy x y dyx yy/ dy + xx/ dx + / y d dyx/ dyx dx SEAMERGES GPS COURSE, 2005 14. Solid elastic deformation • Stresses are proportional to strains • No preferred orientations xx = (G) xx + yy + zz yy = xx + (G) yy + zz zz = xx + yy + (G) zz • and G are Lamé parameters The material properties are such that a principal strain component produces a stress (G) and stresses in the same direction in mutually perpendicular directions SEAMERGES GPS COURSE, 2005 14. Solid elastic deformation Inversing stresses and strains give : xx = 1/E xx - /E yy - /E zz yy = -/E xx + 1/E yy -/E zz zz = -/E xx -/E yy + 1/E zz • E and are Young’s modulus and Poisson’s ratio a principal stress component a strain 1/E strains produces in the same direction and /E in mutually perpendicular directions SEAMERGES GPS COURSE, 2005 15. Elastic deformation across a locked fault What is the shape of the accumulated deformation ? SEAMERGES GPS COURSE, 2005 Formula matematis SEAMERGES GPS COURSE, 2005 Formula matematis •Symetry => all derivative with y = 0 •No gravity => yy = 0 zz = 0 •What is the displacement field U in the elastic layer ? SEAMERGES GPS COURSE, 2005 Formula matematis •Elastic equations : (2) (3) (3) xx = (G) xx + zz xy = G xy xz = G xz yy = xx + zz zz = _________________________ xx + (G) zz yz = G yz + zz = 0 => xx + zz = -2G zz and (2) => yy = xx + zz = -2 G zz => xx = - (2G + zz and (1) => 2 ( 2G) xx = / + [ ] zz SEAMERGES GPS COURSE, 2005 Formula matematis • Force equilibrium along the 3 axis (x) (y) (z) x x x dxx / dx + dyx / dy + dxz / dz dxy / dx + dyy / dy + dyz / dz dxz / d_________________________ x + dyz / dy + dzz / dz x = 0 = 0 = 0 2xx / dx2 d • Derivation of eq. 1 with x and eq. 3 give : dxy / dx + dyz / dz • equation 2 becomes : = 0 = 0 SEAMERGES GPS COURSE, 2005 Formula matematis relations between stress () and displacement vector (U) xy = 2G xy = 2G [dUx / dy + dUy / dx] .1/2 yz = 2G yz = 2G [dUz / dy + dUy / dz] .1/2 _________________________ dxy / dx + dyz / dz = 0 we obtain : d/dx[dUx/dy + dUy/dx] + d/dz[dUz/dy + dUy/dz] = 0 Using x d2Uy / dx2 + d2Uy / dz2 x = 0 SEAMERGES GPS COURSE, 2005 Formula matematis d2Uy / dx2+ d2Uy / dz2 = 0 What is Uy, function of x and z, solution of this equation ? Guess : Uy = K arctang (x/z) works fine ! datan()/ Nb. dUy/dx= 1/ d (1+2 ) / => dU /dz=-Kx/z (1+x /z ) => y K z(1+x2/z2) 2 2 2 d2Uy/dx2= -2Kxz/(z2+x2) d2Uy/dz2= 2Kxz/(x2+z2) SEAMERGES GPS COURSE, 2005 Formula matematis Uy = K arctang (x/z) Boundary condition at the base of the crust (z=0) Uy = K . /2 if x > 0 = K . – /2 if x < 0 And also : Uy = +V0 if x > 0 => = –V0 if x < 0 K = 2.V0 / SEAMERGES GPS COURSE, 2005 Formula matematis Uy = K arctang (x/z) at the surface (z=h) Uy = 2.V0 / arctang (x/h) SEAMERGES GPS COURSE, 2005 16. Arctang Profiles Uy = 2.V0 / arctang (x/h) SEAMERGES GPS COURSE, 2005 17. Deeping Fault SEAMERGES GPS COURSE, 2005 18. Elastic Dislocation (Okada, 1985) Surface deformation due to shear and tensile faults in a half space, BSSA vol75, n°4, 1135-1154, 1985. The displacement field ui(x1,x2,x3) due to a dislocation uj (1,2,3) across a surface in an isotropic medium is given by : Where jk is the Kronecker delta, and are Lamé’s parameters, k is the direction cosine of the normal to the surface element d. uij is the ith component of the displacement at (x1,x2,x3) due to the jth direction point force of magnitude F at (1,2,3) SEAMERGES GPS COURSE, 2005 18. Elastic Dislocation (Okada, 1985) (1) displacements For strike-slip For dip-slip For tensile fault SEAMERGES GPS COURSE, 2005 18. Elastic Dislocation (Okada, 1985) Where : SEAMERGES GPS COURSE, 2005 19. Case : Sagaing Fault Nyanmar SEAMERGES GPS COURSE, 2005 20. Case : Palu Koro Fault SEAMERGES GPS COURSE, 2005 20. Case : Palu Koro Fault (more complex) SEAMERGES GPS COURSE, 2005 21. Case : Sumatra subduction zone Natawijaya, 2007 Segmen Mentawai-Pagai belum sepenuhnya terpatahkan ??? !!! Triyoso, 2005 22. Strain rate and rotation rate tensors To asses plate deformation : 1. Look at station velocity residuals 2. Compute strain rate and rotation rate tensors Strain = Velocity _______ = Distance mm/yr _____ km = % / yr d(Vx) / d(x) d(Vx) / d(y) d(Vy) / d(x) d(Vy) / d(y) Matrix tensor notation : Sij = d(Vi) / d(xj) = Theory says : [S] = [E] + [W] Symetrical Antisymetrical Strain rate rotation rate SEAMERGES GPS COURSE, 2005 22. Strain rate and rotation rate tensors E11 [E] = ½ ([S] + [S]T) E12 = [W] = ½ ([S] - [S]T) E12 E22 0 W -W 0 = [E] has 2 Eigen values : 1, 2 1 and 2 are extension/compression along principal direction defined by angle defined as angle between 2 direction and north 1 = E11 cos2 + E22 sin2 – 2 E12 sin cos 2 = E11 sin2 + E22 cos2 – 2 E12 sin cos SEAMERGES GPS COURSE, 2005 22. Strain rate and rotation rate tensors Minimum requirement to compute strain and rotation rates is : 3 velocities (to allow to determine 3 values 1, 2, and W) Therefore we can compute strain rate and rotation rate within any polygon, the minimum polygon being a triangle No deformation compression rotation Strain and rotations are unsensitive to reference frame SEAMERGES GPS COURSE, 2005 23. Case : Strain & Rotation on GEODYSSEA network Strains : Rotations : extension/compression/strike-slip Anti-clockwise/clockwise SEAMERGES GPS COURSE, 2005 24. Case : intensity of strain in GEODYSSEA network SEAMERGES GPS COURSE, 2005 25. Case : Strain & Rotation in Nyanmar SEAMERGES GPS COURSE, 2005