ACTAUNIVERSITATISLODZ IENSIS FOLIA OECONOMICA 90, 1989
Transcription
ACTAUNIVERSITATISLODZ IENSIS FOLIA OECONOMICA 90, 1989
A C T A U N I V E R S I T A T I S FOLIA OECONOMICA L O D Z I E N S I S 90, 1989 Zbigniew Wasilewski REMARKS ON BLUS RESIDUALS 1. INTRODUCTION The BLUS r e s i d u a l s t h e o r y ( B e s t L i n e a r U n b ia s e d w ith S c a la r c o v a r ia n c e m a t r i x ) [ü ] in is g en er a ly r e la t e d c o r r e la tio n stru ctu re be t o p r o b le m s l i n e a r r e q r e s s i o n m od els* im p ortan t stru ctu re for r e sid u a ls d e v e l o p e d by T h e i l [ 7 ] and K o e r t s o f e s t i m a t i n g t h e error t e r m T h is e s t im a t o r p o s s e s s e s a s t h e unknown d i s t u r b a n c e s . sta tistica l in fe re n c e about the same T h i s se e m s t o the sto c h a stic o f t h e r e g r e s s i o n m o d e l. We h a v e a r e g r e s s i o n m od e l o f t h e fo r m у * X0 + u , (1) w h e r e u n d er common a s s u m p t i o n s : ( a ) X i s an t a in s the v a lu e s n:k n o n s t o c h a s t ic m a trix ta k e n by th e p erio d s: (b ) lim n” 1f X'X) П - аз is E(uu') к w h ic h c o n - in d epend en t v a r i a b le s in n a f i n i t e n o n s in g u la r m a trix ; ( c ) t h e v e c t o r o f random m en ts w i t h z e r o к o f rank d is tu r b a n c e s , has u n c o rre la ted e l e - mean and c o n s t a n t v a ria n ce, i.e. E(u) = 0, *= a 2 1; ( d) in a d d itio n i t is o f t e n assum ed, th at the d istu r b a n c e s are n orm ally d i s t r i b u t e d . * Lecturer at the ty od Łódź. I n s t i t u t e of Econometrics and S t a t i s t i c s , U niversi- Due t o l a c k o f k n o w le d g e a b o u t in f e r e n c e s about b a s e d on some stra ig h tfo r w a r d u h a v in g r e l a t e d p r o p e r t ie s * t o t r e a t as such a p p rox im a tion errors a p p r o x im a tio n c r i t e r i o n , is Ц | У1 - x ^ so fa r to it s th is of b|. у - Xb an e s t i m a t e t h e o f th e chosen or w h e re b' The m i n i m i z a t i o n a ttr a c tiv e a n a ly tic a l is m ust be I t se em s vector o f tho g i v e n by m in im iz a tio n for in sta n c e ZKy^- x'^ b )2 o f the error t h e m o st p o p u l a r c r i t e r i o n cr ite r io n o f d istu r b a n ce s, a s s u m p t i o n s ( c ) and ( d ) the s t o c h a s t ic estim a te o f r e a l v a lu es sum o f s q u a r e s of estim a tio n , in p a r t due and n u m e r i c a l p r o p e r t i e s . we o b t a i n t h e w e l l - k n o w n U s in g le a s t squares estim a to r ß b * ( X ' X ) " 1X' y (2) and t h e c o r r e s p o n d i n g v e c t o r o f le a st-sq u a r e s r e sid u a ls e = у - Xb = My =* Mu w here, (3) M = ( I - X ( X' X) 1 X' ) X m a t r i x o f rank is th e id em poten t n :n p r o j e c t io n n - k. The e s t i m a t o r o f u (a) i t is in th e dependent v a r ia b le ; (b) i t i s u n b ia sed ; lin ea r has th e fo llo w in g d e s ir a b le p r o p e r t ie s : ( c ) i t has the s m a lle s t tim a tio n e r r o r s , e x p e c t e d sum w ith in th e s e t o f squares of a l l lin e a r o f the es- and u n b i a s e d es- tim a to rs. On t h e o t h e r h a n d , estim a to r, E (ee ') however, a s s u m in g t h a t = e Thus t h e l e a s t t e s t in g purposes. squares r e s id u a ls are d e p e n d s on t h e C lea rly e fe r en t c o r r e la tio n str u c tu r e , m a trix M sin g u lá ry is sid u a ls th a t n o t u n iq u e t i m a t e d can of n - к ) c o r re la ted p a rticu la r b u t due t o th e fa c t th a t of n - к the a for dif- 1 - s rep ro je c tio n tran sform ed re- M or eove r t h e o b t a i n e d s o l u t i o n i s o f the be v er y Im portan t. th e ir u seful can be tran sform ed t o have we can o b t a i n o n l y are u n c o r r e la t e d . and X m a t r i x . T h i s mak- o f d istu rb a n ces l e s s d i s t r i b u t e d ( t h e rank and t h e c h o i c e th is (4) squares estim a to r s id u a ls are th e co v a r ia n ce m a trix o = a I, i s g iv e n by ( m u u 'M) = a 2M c o v a r ia n c e m a tr ix e s the l e a s t E(ee') к re sid u a ls th a t In t h e p a p e r we t r y are n o t e s t o make some ev id en ce, a b o u t t h e .m u tu al t r a n s f o r n a t i o n and t h e r e l a t i o n s betw een th e accuracy o f the mean s q u a r e e r r o r ( MSE) , in the c a se o f o u tlie r s p r o p o s e t o u s e r e s i d u a l s m i n i m i z i n g t h e sum t o o b t a in n on -b iiased r e s i d u a l s such a c a s e . b a sis e s iir .a tio n , of the neasured by among d a t a . We o f a b s o l u t e d e v ia t io n s w ith s c a l a r c o v a r ia n c e m a tr ix , in 2. NOTES ON THE CONSTRUCTION OF THE BLUS RESIDUALS S u p p o se t h a t an t r a n s fo rn a tio n (n - k ) ô = C'y. b ia s e d r e s i d u a l s w itli (i) E( é ) = 0 The c o n d i t i o n s s n m a trix We w i l l c a l l С é d e fin e s S c a la r c o v a r ia n ce m a trix and (ii) (i), (ii) E(éé') a lin ea r a v e c to r o f L inear ( LUS) Un- if, = o2I re q u ir e o n ly t h a t C'X = 0 and C'C = - I. T h er e e x i s t w h ic h f u l f i l l of n - к m ethods o f th ese c o n d itio n s. d eriv a tio n more o r l e s s a rb itra r y , o f the A l l o f them r e s i d u a l s t o be e s t i m a t e d . d u a ls i s LUS a few m a trix req u ire the The c h o i c e o f С ch o ic e th ese so th a t the d e f in it io n r e siof the r e s i d u a l s i s n o t u n iq u e. S u p p o se we p a r t i t i o n - ( С'oC ) such t h a t th e co m p o n e n ts o f u su b scrip t 0 X' = resp ond s t o th e re m a in in g n - к o f t h e rows We a d d i t i o n a l y a s s u m e , The c o n d i t i o n s cases. C'X » 0 w r it t e n u sin g th e p a r t i t i o n o f th e T h is i s к : к and to and s u b s c r i p t o f th e m a trix th a t the (x' X ^ ) and corresponds w h ic h a r e n o t e s t i m a t e d by s im p le r e o r d e r in g sin g u la r. u' = ( u ' Q u'.,), a lw a y s m a tr ix С к cor- p o ssib le X. C'C = I n_j, m a tr ice s the 1 C' = and X can X is now as n o ilbe fo l- lo w s , (5) CQ is t h u s d e t e r m i n e d u n i q u a l y from ( 5 ) and e q u a l s , C' o = - C' l X1Xo ' 1 (5a) w here t h e a s s u m p t io n o f n o n s i n g u l a r i t y o f S u b stitu tin g C'C - is used. ( 5a ) in ( 6 ) o b ta in , C ' l X l X0 - 1X ' 0 - 1X ' l Cl + C ' l Cl - I n _k S u b stitu tin g X ' QXo c '^ C x 'x - XQ - x; ( x ' X ) ~ 1X ’ 1 ( I = C' , by X'X - X ' ^ we o b t a i n ' , x l ) “ l x ' 1c 1 + C ' 1C1 = c ^ x , [ ( x ' x ) - 1 L e t us p u t now + - X1 ( x ' x ) " 1x ' 1 ) “ 1 x 1 ( x ' x ) “ 1 ] X ' 1C1 + C ' 1 C 1 [ Х ^ Х ' Х Г ’ Х'., + X ^ X ' X ) “ ^ ' , • х ^ х ' х Г ’х ' , (7) (8) (I - Xl(X'X)- 1 X ' t ) “ 1 . + I ] С, * I n_ k A - X^X'X)- ^',, th e n (8 ) can b e w r i t t e n as C ', ( A + A ( I - A ) ~ 1A + I ) C 1 = = C ' , ( A ( I + ( I - A ) ” 1A ) + I ) C r = c',1 A ( ( I - A ) " 1 ( I - A) + ( I - A0) _ 1 A A)) + (8a) + (I - A )(I - A )“ 1]C , = C ^ C A ( I - A) “ 1( I - A + A) + ( I - A ) ( i - A ) “ IJC1 = c '^ i - a ) " 1c 1 = C ^ ' I - X ^ X 'X ) - ^ ' , ) “ ^ , I n th e d e r i v a t i o n the i n v e r s i o n of th e p ro d u c t X’X - XjX. was obt a i n e d u s i n g th e f o l lo w in g u p d a ti n g form ulae due t o Gauss. Lema 1. L e t A be p : p rank p symmetrix m a t r i x , and suppose t h a t X and V a r e q : p rank q m a t r i c e s . Then, p ro v id ed t h a t th e i n v e r s e s e x i s t , (A + X’Y ) " 1 - a " ' - а Л ’ ( I + YA " ' х ’ Г ' у а " 1. It f o l l o w s from c ',( i - Thus C1 trix (i from 8a th at C1 m ust s a t i s f y , х , ( х ' х Г 1 x ' 1) - 1 c 1 = i n _k must b e c h o s e n - X^( X' X) 1x ' , ) 1 (9) t o b e any and CQ is fa c to riz a tio n then o f t h e ma- d eterm in ed u n iq u e ly C '0 = T h e i 1 [ 7 J , Г8J showed t h a t t h e use o f s p e c t r a l p o s i t i o n o f th e m a tr ix (I - X^X'X) LUS r e s i d u a l s w i t h t h e sm a lle st exp ected re sid u a l Dug t o t h i s a d d itio n a l p rop erty th e se b e s t L i n e a r U n b ia s e d It 1Х ^ ) f o l l o w s fro m in v e r s e o f the 1 to find decom- Ct l e a d s t o sum o f s q u a r e s . r e s id u a l s are ca lle d the S c a l a r c o v a r i a n c e m a t r i x ( BLUS) r e s i d u a l s . d ir e c t m u ltip lic a tio n m a tr ix (T h eil ( i - X1 ( X ' X ) - 1 X ' 1 ) [7]), ex ists that and i s the o f the form , (.1 - х ^ х ' х Г ’ х ' , Г 1 = i + x 1 ( x ' o x o ) ~ 1 x ' 1 = w h e re (10) ZZ' Z = X.X - 1 . I о The m a t r i x I - x 1 ( X ' X )” 1X ^ o f the p o s it iv e tiv e + I d e fin ite . is, s e m i - d e f i n i t e m a trix Thus, th e r e e x i s t s as a n o n s in g u la r su b m a tr ix M = I - X( X' X) ' X' , p o si- a sq uare o r th o g o n a l m a trix P, such t h a t P'(I - X ^ 'X ^ x ^ P = D P'(I - Xt ( X ' X ) “ 1X1 ) ' ' 1P = D~1 ( 11 ) _1 w h e re P 'P = I ent roots of and D,D are d ia g o n a l I - X1( X ' X ) _1 X1 and (i m a trices w ith th e - X1( X ' X ) " 1X1 ) ~ 1 la t- on the eq u a tio n in (11) main d i a g o n a l 2 . by On p r e m u l t i p l y i n g b o t h S i d e s o f t h e s e c o n d P and p o s t m u l t i p l y i n g by P ' we o b t a i n , (I 2 - Х ^ Х ' Х Г ^ Г 1 = I + ZZ' = PD- 1 P' Given Che p o s i t i v e r o o t s are p o s i t i v e . d e fin itn e ss of I - X,(X*X) (12) -1 Xj a ll these laten t The c o n d i t i o n ( 9 ) can b e t h u s w ritten in th e form , C ^ P D ľ ’ p ' C, » I w h ic h i s fulfilled fo r the m a tr ix C, g iv e n b y , C, = PD1 / 2 P' L e t us now c o n s i d e r tr ix Mn th e c h a r a c t e r i s t i c eq u a tio n fo r the ma- = ( I + Z Z ' ) -1 , [ (X + Z Z ' ) " 1 - d i l ] (15) PjL On p r e m u l t i p l y i n g ( 1 5 ) by I + ZZ' we h a v e , \ [ I - d i I - ZZ' di ] p 1 = 0 and a f t e r d i v i d i n g by (-d ^ <1 6 ) and s u b s t i t u t i n g X1XQ-1 for Z we f in a l ly o b ta in , CX1X0 "1( X 1X0 ' 1 ) ' - ( 1 / d i - l)]pi - 0 From ( 1 7 ) we f i n d t h a t t h e - X ^ X ' X V ’X, lu es" o f ch a ra cteristic are th e p r in c ip a l T h i s m a t r i x can be t r e a t e d (17) as a m a tr ix o f ex p la n a to r y v a r ia b le s vectors co m p o n e n ts o f t h e of I + m a t r i x X., XQ • " in d ex tran sform ed v a - w ith m a tr ix XQ as a b a sis of t h i s tra n sfo r m a tio n . S in c e th e p o s i t i v e ord er (n - k) n - 2k : (n - k ) and o f rank zero la te n t ro o ts H ence, a t l e a s t к se m i d e f i n i t e m a t r i x n - 2k and a t m o st o f the d 's к X1XQ or l e s s к ( ^ i x0 i t has p o sitiv e are e q u a l t o / i s at of le a st la te n t ro o ts. 1 and a t m o st o f them eure l e s s t h a n 1 . T a k in g t h i s С 1 = i n t o a c c o u n t we ca n * 1 /9 £. d P i 15/ i=l = и„ now r e w r i t e i n t h e fo rm , n"k + Z 1 d i 1/ 2 О 1-1 pi p , i * - di 1 /2 ) P i P ' i (18) Thus t h e t r a n s f o r m a t i o n m a t r i x t a i n e d , from s u b m a t r i x by a d d in g к M11 3. o f the Р^Р'*. m a tr ice s a2 , tr a n s fo r m a t io n m a tr ix BLUS r e s i d u a l s i s , (T h e i 1 d e p e n d s on t h e c h o i c e [4] re sid u a ls w here e) ( e - e= (O', t h e sum o f t h e O - d 1/ 2 ) 1 (19) XQ. c o v a r ia n c e m a trix o f co v a r ia n ce m a tr ice s o f and t h e 1 - s - BLUS d i f f e r e n c e s , E [( é - u ) ( é - u ) ' ] + E[( é - o f the b a sis showed t h a t t h e r e s id u a ls eq u a ls 1 - s appart - 2 ( n - k) - 2 trC 1 = N e u d e c k e r the M factor ([7]) Jc - 2 ( n - k ) - 2 ( n - 2k + V d 1/2) = 2 £ f=*1 1 i=1 % t h e BLUS by t h e OF THE TRANSFORMATION squares o f th e equal to E [(é - u , ) ' ( ž - u ^ ] Thus i t i s ob- THE PRICE OF THE SCALAR COVARIANCE CONDITION The e x p e c t e d sum o f factor 1-s f o r BLUS r e s i d u a l s o f u n i t rank s c a l e d AND THE CHOICE OF THE BASIS from t h e C1 * E [(e - u )(e - u)' ] + e)' ] é')', (20) e ■ ( e ' 0 » e>i ^ f t h e v e c t o r s o f BLUS, and 1 - s r e s i d u a l s and u = ^и ' о ' u’i^ ’ are th e e r r o r term , r e s p e c t i - v ely . The p r o b le m o f t h e e v e r , m a in ly r e l a t e d best t o .th e pow er e d on BLUS r e s i d u a l s . b a s i s by ch o ic e T h e i 1 th e s e le c t io n o f , of th e b a sis proposed t o ch oose a so c a l l e d , g iv e n t e s t i n g p e c t e d r e s i d u a l sum o f squares c r it e r io n . t io n s ought t o a lte r n a tiv e case o f te s t in g how- bases mińimum The " p e r m i t t e d s e t in such a w ay, t h a t t h e exof b a sis observa- w ith r e s p e c t t o th e than th e rem a in in g o b s e r v a t io n s . for s e r i a l c o r r e la t io n , such a p e rm itted s e t o f p rob lem , u s in g a have " l e s s in fo r m a tio n va lu e" h y p o th e sis, is , o f th e co r re sp o n d in g t e s t b a s [8] w ith r e s p e c t to th e bases" ou ght t o be ch osen Xq for in s ta n c e , In t h e such a s e t o f "p erm itted b ases" fir st and ш and l a s t H a r v e y i s t u n ifo rm ely p o ssib le c o n sists к - m [5] o f the b ases cases, w h e re i n d i c a t e , how ever, b est bases c o r r e la tio n a c o m p a r is o n are a n o th er b e o b t a i n e d by u s i n g t h e 1 ( I -'X^(X'X) 1X ^ ) t o be s p e c i a l l y to fin d th e r e c u r s iv e com p u tation s The t e s t s a b it re sid u a ls is in (8a). a ttr a c tiv e of T h is The that the type and c o r r e la t io n based le ss made. can m a tr ix of r e si- due t o t h e s i m p l i c i t y o f ( P h i l i p s for s e r ia l a re o n l y a- for s e r ia l t y p e o f LUS r e s i d u a l s C1 It is in lo w p o w e r s . C holesk y d eco m p o sitio n d u a l s se e m s sid u a ls, t o succeed o f th e ex a ct t e s t s b a s e d on BLUS and r e c u r s i v e re cu rsiv e r e s id u a ls the P h i l i p s h ypotheses. o n l y , by p r o p e r c h o i c e o f t h e b a s i s , In t h e same work co n ta in t h a t t h e r e do n o t e x - for a ll a lte r n a tiv e v o i d i n g t e s t s w h ic h h a v e r e l a t i v e l y Q5]!). that 0 < m < k. H a r v e y on r e c u r s i v e re- p o w e r f u l t h a n t h e BLUS t e s t s . A. CHOICE OF THE BASIS IN THE PRESENCE OF OUTLIERS The f a c t t h a t t h e LUS r e s i d u a l s ponents o f th e v e c to r and c a s e s d u a ls. u much more t h a n it In c e r t a i n c a s e s , mong s a m p le d a t a , is In t h e c a s e is s p r e a d , by d u a ls. t h i s can h a v e of 1 - s by In s u c h h^j com- 1 - s a- on t h e i n - e f f e c t o f the elem en t o f th e i - th r e si- ca ses a ls o the c h o ic e p r o j e c t io n m a trix - th the o f the th e r e are o u t l i e r s of im p o rta n t. estim a tio n the means o f t h e ij n - к se rio u s im p lic a tio n s se em s t o b e more D en oting th e = X( X' X) _ 1 X' in th e ca s e e s p e c i a l l y when f e r e n c e b a s e d on LUS r e s i d u a l s . th e proper b a s is e stim a te d o n ly b l u r s t h e r e l a t i o n s h i p betw een r e s i d u a l s 1 - s M, to o u tlier s a ll m a trix r e siH = r e s i d u a l can b e w r i t t e n i n t h e form , •j - о - i^ iy , - E hl j y j (го n w here due t o t h e £ 1 /n in d e m p o t e n c y o f p ro v id ed th e H ence i f h^ H, h^ = 2 h i and h^ > m odel c o n t a i n s a c o n s t a n t t e r m . is clo se to 1a g ro ss e r ro r in y^ w ill not n e c e s s a r i l y show say in e^, r e sid u a ls. it is tr ix h^^ b u t i t m ig h t h a p p e n s t o be l a r g e The same e f f e c t stro n g ly X up i n if and c h a r a c t e r o f d u a ls. i s p r e s e n t i n LOS d ep e n d e n d n o t o f the b a s i s . n ife st it s e lf co n ta m in a tio n n. t io n in th e o b serv a tio n o f on e o f b a s i s On t h e o t h e r hand cedure w i l l in flu e n c e used a t th e sum p tions t h a t o u t l i e r s among ma- ch o ic e r e siw i l l ma- T h is i n f l u e n c e of de- co n ta m in a - recurrent From pro- th is p o in t a p p r o p r ia te f o r exam in in g a s - order o f th e c a s e s . there are e v i d e n t b u t a l s o se em s t h e norm al c a s e . e i s o f th e L U S -tra n sfo rm a tio n sh o u ld In t h e c a s e o f b a s i s when d ata i s n o t so more I m p o r t a n t t h a n i n the on t h e end o f t h e proper ch o ic e o f th e t h e sam ple of o b serv a tio n s o n ly th e l a s t r e s id u a l s . d e p e n d on t h e BLUS r e s i d u a l s t h e a l l the o f re cu rsiv e th e occurrence o f view th e r e c u r s iv e r e s i d u a l s are t o be but a lso i n tjhe c a s e elsew h er e, r e s i d u a l s , b u t now by I n c r e a s i n g r e s i d u a l e r r o r s . c r e s e s w ith up a ffects o n l y on t h e s t r u c t u r e T h is i s e v i d e n t The c o n t a m i n a t i o n show and i t not G e n e ra lly th e ba- co n ta in any o u tly in g o b ser v a tio n s. I n o r d e r t o g i v e some o f o u t l i e r s on BLUS b a s i s we make ev id en ce 1 5 - e l e m e n t s s a m p le from t h e "mean s h i f t Y ' XP + ♦ . w h e re 4^ СotfcS) con stant aa o f th e Each e x p e r i m e n t In e a c h r e p l i c a t i o n m a g n it u d e and c o n f i g u r a t i o n in flu e n c e r e s p e c t to th e ch o ic e some s i m p l e n u m e r i c a l e x p e r i m e n t s . c o n s i s t e d o f 500 r e p l i c a t i o n s . en about th e p o s s ib le r e s i d u a l s w ith we gen erated o u t l i e r model" w i t h g i v - of a sin g le o u tlie r , (ac) + u d e n o t e s t h e dummy in i - t h v a r ia b le p o s i t i o n and z e r o s w ith co n ta m in a tio n e l s e w h e r e and u ~ N(0, 5a and о ). The c o n t a m i n a t i o n c o n s t a n t added t o t h e f i r s t , sp e c tiv e ly . c e n t r a l and l a s t F or e a c h s a m p le four d i f f e r e n t b a se s square e s tim a t io n com p u tation s and w er e c a l c u l a t e d la st к (BLUSe) o b s e r v a t i o n s co r re sp o n d in g v i a t i o n r e s i d u a l s ( B L U S l) . ( BLUSb) , to zero v a lu es was s a m p le re sid u a ls and t h e v a l u e s e r r o r s ( MSE) w e r e c o m p a r e d . к 10a o b se r v a tio n in t h e v a l u e s o f BLUS c o n s is t o f the f i r s ( BLUSc) and t h e o b ser v a tio n s was e q u a l rew ith o f t h e mean The b a s e s f o r BLUS th e ce n tr a l as w e l l as к th e к o f le a s t a b so lu te de- The f i r s t t h r e e c r i t e r i o n s \ w er e o f t e n (see eg. used in l i t e r a t u r e proposed h ere The mean v a l u e s t y p e o f BLUS of its o f t h e MSE r e s i d u a l s are ta in s a ls o the resp o n d in g T h e i m a in ly b eca u se 1 [в]), o v e r 500 r e p l i c a t i o n s g i v e n i n T a b le fr a c tio n s o f the th e la s t one is rob u stn ess to o u t l i e r s . 1. re p lica tio n s T h is for each ta b le con- i n w h ic h the c o r - BLUS r e s i d u a l had'1' t h e s m a l l e s t MSE v a l u e . T a b l e , I Mean v a l u e s of th e MSE Index o f c ontam inated o b s e r v a t i o n and the v a lu e of c o n ta m in atio n Type o f BLUS r e s i d u a l s BLUSb BLUSc BLUSe BLUS1 1 5a 1.0179 (0 .0 8 ) 0.5001 (0 .4 1 2 ) 0.5929 (0 .1 7 2 ) 0.5124 (0 .3 36 ) 8 5о — '3О"- <r O' Г о о 0 .9 55 7 (0 .0 54 ) 0.7 66 0 (0 .2 88 ) 0.7783 (0 .1 6 4 ) . 15 50 4. 1716 (0 .5 5 2 ) 5.0073 (0 .0 0 2 ) 18.1478 (0 . 0 0 0 ) 4.3454 (.0.446) 1 lOo 1.8990 (0 .0 3 6 ) 0.6486 (0 . 4 9 0 ) 0.7509 ( 0 . 180) 0.7217 (0 .2 9 4 ) 8 10c 1.1726 (0.518) 1,7468 (0.022) 1.2292 ( 0 .3 4 4 ) 1.3146 ( 0 . 116) No t e : Mean v a lu e s of th e MSE o ver 500 r e p l i c a t i o n s o f th e e x p erim en t f o r f o u r ty p e s of BLUS r e s i d u a l s and f i v e v a r i a n t s o f c o n t a m i n a t i o n . The v a lu e s in b r a c k e t s d e n o te s t h e f r a c t i o n of th e r e p l i c a t i o n s in which th e c o r re s p o n d in g MSE v a lu e was th e s m a l l e s t one. The r e s u l t s o f ex p er im en ts g a th e re d in T a b le 1 r e l a t i v e l y h ig h i n c r e a s e o u tlie r s. i n MSE i n t h e c a s e o f T h is I n c r e a s e depends o u t l i e r i n c o m p a r is o n w ith o th e r o b s e r v a tio n s . c h o i c e o f t h e b a s i s f o r LUS in th e d a ta on t h e r e l a t i v e c o u n t, th e c h o ic e b a s e - c h o ic e w ith j m a g n it u d e o f the Thus the c o m p u t a t i o n s when t h e r e i n some c a s e s . o f th e b a s is proper are o u tlie r s t y p e o f BLUS r e s i d u a l s r e c t l y o b t a i n e d from ( i n T a b le 1 n - к tra n sfo r m a tio n . T a k in g t h i s i n t o a c - co rresp o n d in g t o ze r o s o l u t e d e v i a t i o n s ( LAD) r e s i d u a l s seem s C 'i a se em s t o be o f s p e c i a l i m p o r t a n c e . The i d e n t i f i c a t i o n o f o u t l i e r s can be d i f f i c u l t the in d ic a te s n o t e d a s BLUS1) n o n z e r o LAD le a st ab- t o b e a good c h o i c e . T h i s r e sid u a ls can by be means d iof Thus t h e r e e x i s t s m u t u a l c o r r e s p o n d e n c e b e t w e e n LAD and BLUSl r e s i d u a l s assu m ing к n o n -estim a te d BLUS r e s id u a ls are equal zero. The s y s t e m o f e q u a t i o n s (22) e LAD l j and 0 w h e re t h e s u b s c r i p t s m z e r o and n o n z e r o 1 r e sid u a ls r e s p e c tiv e ly . T h is co r re sp o n d s t o r e o r d e r in g th e first к in g ly XQ tr ic e s. are th o se ly in g e T, _ LAD (2 4 ) so th a t h y p erp la n e. and (n - к ) n - к th e v e c to r у, the Accord: к nonzero r e sid u a ls. b o f estim a ted LAD and i s e q u a l t o , (23) X " 1y o Jo r e sid u a ls i s - X ,b 1 LAD G iv e n t h e o r d e r i n g tio n X0 can b e o b t a i n e d from ( 2 2 ) The v e c t o r o f LAD 'LAD к : к r e fe r s to the A ssu m in g n o n s i n g u l a r i t y o f b LAD T o b ser v a tio n s in th e r e g r e s s io n are r e s p e c t iv e ly and The v e c t o r param eters abso- bLAD 0 I х’ *’ I o f th e le a s t can be w r i t t e n a s , о X l u t e d e v i a t i o n p r o b le m fo r the s o lu t io n then g iv e n b y, -1 (24 ) У1 - x i x o f the c a s e s t h e r e s p e c t i v e BLUS co rresp o n d in g estim a to r to the of re sid u a ls can so lu be w ritten a s, = C 'y = C c ^ c ' , ) = C ' o y o + С ' , У1 (25) -c ' i x i x o ’ 4 + cv i Thus c h o o s i n g t h e b a s i s we can o b t a i n t h e к y i - x i x o ' 1v co rresp o n d in g v e c t o r o f BLUS n o n z e r o LAD r e s i d u a l s . c o n ta in e d in = cV = c , 1<e LAD t o z e r o LAD r e sid u a ls d ir e c tly N o te t h a t i n th is n o n -estim a te d r e s id u a ls re m a in in g n - к r e s i d u a l s , w h ic h i s o b t a i n e d from 1 - s re sid u a ls. case, th e i s n o t spread r e sid u a ls from n - к in fo r m a tio n in to the t h e c a e s f o r BLUS r e s i d u a l s f REFERENCES CO Co o k D. R. , [2] K o e r t s W e i s b e r g J. (1 9 6 7 ) , R e g re ssio n A n a ly s i s , Ľ3 ] K o e r t s J., and A p p lic a tio n [4] Some F u rth e r N o tes H. P h i l i p s (1 9 6 9 ) , R e s id u a ls and I n f lu e n c e on D istu rb a n c e E s tim a te s in J . Amer. S t a t i s t . A s s o c . , o f th e G eneral N e u d e č k e r (1982 ) , New York. A b r a h a m s e S t a t i s t . A sso c., [5] S ., Chapman and H a l l , in R e g r e s s io n , A. P. I. L in e a r M odel, 1067-1079. (1 9 6 9 ) , On th e Theory R otterdam U n i v e r s i t y P re s s. A N ote on BLUS E s tim a tio n , J, Amer. 949-952. G. D. A. , S e r i a l C o r r e la tio n H a r v e y i n R e g re ss io n A. C. A n a ly s i s , (1974), A S im p le T e s t f o r J . Amer. S t a t i s t . A s s o c ., 935-939. [6] T a y l o r L. [in :] E rrors, (1 9 7 4 ) , E s tim a tio n by F r o n tie r s i n M in im izin g th e E c o n o m e tric s , ed . Sum o f P. Zarembka, A b s o lu te New York 1974. [7] T h e i 1 n a ly s is , [8] H. (1 9 6 5 ) , The A n a ly s is o f D istu rb a n c e s in R e g re ss io n A- J . Amer. S t a t i s t . Assoc. T h e i 1 H. b lis h in g C o ., (1 9 7 1 ) , p r in c ip le s o f N orth E c o n o m e tric s, H o lland Pu- Amsterdam. Z b ig n iew W a silew ski UWAGI 0 RESZTACH BLUS W p rac y rozważa s i e problemy wadzącego do o trz y m a n ia e s t y m a t o r a w e k to ra r e s z t m .n .k . w aria n cji ko w ariancji, proponcwano w przypadku w ystępow ania w y k o rz y s ta n ie zerowych r e s z t n i m a l i z u j ą c e j sumę cji. d o ty c z ą c e wyboru bazy p r z e k s z t a ł c a n i a , estym acji o k r e ś l a n i a bazy t e j Umożliwia t o u n i k n i ę c i e wyboru o b s e r w a c j i , m ac ierzy n ietyp o w y ch. otrzymanych w wyniku o d ch y le ń bezwzględnych do c z n ie popraw ia j a k o ś ć e s t y m a c j i . o skalarnej obserw acji pro- Zami- transform a- nietypow ych d l a b a z y , co zna-