Measurements of jet rates with the anti
Transcription
Measurements of jet rates with the anti
Measurements of jet rates with the anti-kT and SISCone algorithms at LEP with the OPAL detector Andrii Verbytskyi Rencontres de Moriond, QCD and High Energy Interactions, La Thuile, Italy 19 - 26 March 2016 1 / 34 The LEP Accelerator OPAL The world most famous e + e − collider running 1989-1995(LEP-I), 1996-2000(LEP-II). Now tunnel hosts LHC. Energy ranges ≈ 91 GeV(LEP-I) and 91 − 208 GeV(LEP-II). Host of four big experiments: OPAL, ALEPH, DELPHI, L3. 2 / 34 The OPAL Collaboration and Detector Hadron calorimeters and return yoke Electromagnetic calorimeters Muon detectors Jet chamber Vertex chamber Microvertex detector Omni-Purpose Apparatus at LEP Advanced multipurpose detector with almost 4π solid angle coverage. Collaboration of more than 300 people. y θ z Z chambers ϕ x Presampler Forward detector Silicon tungsten luminometer Solenoid and pressure vessel Data available for re-analysis. Time of flight detector 3 / 34 Jets at OPAL: motivation e + e − → γ ∗ /Z 0 → hadrons is perfect for studying QCD. New algorithms, never used before at LEP, can produce valuable results: SISCone1 ; anti-kT 2 . Compare new algorithms for e + e − , validate them and their implementation. Expect to produce an input for αs determination with reduced uncertainties. Study hadronisation corrections. 1 2 G. P. Salam and G. Soyez, “A Practical Seedless Infrared-Safe Cone jet algorithm”, JHEP 0705 (2007) 086 M. Cacciari et al., “The Anti-k(t) jet clustering algorithm”, JHEP 0804 (2008) 063 4 / 34 Jet rates: OPAL Coll.,“Determination of αs using jet rates at LEP with the OPAL detector,” EPJC 45 (2006) 547 Jet Fraction Similar studies elsewhere 1 OPAL (91 GeV) Durham 0.8 2-jet 3-jet 4-jet 5-jet PYTHIA HERWIG 10 kT (x 100) 10 3 anti-kT (x 10) 10 2 SIScone 0.4 -1 jet dσ/dE T,B (pb/GeV) 0.6 4 ZEUS 82 pb 0.2 0 NLO ⊗ hadr ⊗ Z 0 10 -4 10 -3 10 -2 10 -1 ycut 10 1 10 2 -1 Q > 125 GeV -2 < ηjet B < 1.5 |cos γh| < 0.65 2 hadronisation correction jet energy scale uncertainty 1.1 hadronisation uncertainty kT (+0.05) 1 anti-kT 0.9 0.8 SIScone 5 10 15 20 25 30 35 40 45 50 55 Comparison of algorithms: ZEUS Coll., “Inclusive-jet cross sections in NC DIS at HERA and a comparison of the kT , anti-kT and SISCone jet algorithms,” PLB 691 (2010) 127 jet E T,B (GeV) 5 / 34 Data and MC samples √ Full LEP data sample with 12 energies: s = 91.2 − 207 GeV. MC samples with simulated detector level: e + e − → γ ∗ /Z 0 → hadrons KK2f 3 signal samples hadronised with Pythia6 and Herwig6. e + e − → leptons + hadrons grc4f 4 and KoralW5 background samples hadronised with JETSET7.4. For some plots the samples are merged: 91 → 91 GeV 161 − 189 → 177 GeV 130 − 136 → 133 GeV 192 − 207 → 197 GeV 3 S. Jadach et al., “The precision Monte Carlo event generator KK for two fermion final states in e + e − collisions”, CPC 130 (2000) 260, also PRD 88 (2013) 11, 114022. 4 J. Fujimoto et al., “Grc4f v1.1: a four fermion event generator for e + e − collisions”, CPC 100 (1997) 128. 5 M. Skrzypek et al., “Monte Carlo program KORALW-1.02 for W pair production at LEP-2/NLC energies with Yennie-Frautschi-Suura exponentiation”, CPC 94 (1996) 216. 6 / 34 OPAL √s=183-209 GeV Event selection 1500 a) Events Events 1000 Preselected 750 b) 1000 500 500 250 High energy multihadron event: 0 0 -3 -2 -1 0 750 -4 -3 -2 420 -1 10 0 CC03 Events Events 10 c) 1000 1 5+7log “good” tracks+clusters; (W ) log (W ) significant 1500 energy deposit in the central region of calorimeter. d) + W − background probability. Low e + e − → W 1000 500 500 250 0 -4 -3 -2 0 -1 0 0.2 0.4 0.6 log10(y45) Events 1500 0.8 1 Sphericity e) 1000 Selected 500 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Likelihood Output Selection of W + W − → qqqq events as in OPAL Coll., “Measurement of the e + e − → W + W − cross section and W decay branching fractions at LEP”, EPJC 52 (2007) 767. 7 / 34 Event reconstruction Low energy or poorly reconstructed tracks and calorimeter clusters removed; Calorimeter clusters and tracks combined with energy flow algorithm to prevent double counting; Running jet algorithms on the resulted list of objects. SiScone in spherical coordinates with = 0.75 and Etilde merging scheme, R = 0.3, 0.4, 0.5, 0.7, 0.9, 1.1. e + e − version of anti-kT , R = 0.3, 0.4, 0.5, 0.7, 0.9, 1.1. PxCone (ee) and Durham for comparison. 8 / 34 Check of the MC samples OPAL DP(prel.) ee-anti-k R=0.7, s=91GeV OPAL DP(prel.) ee-anti-k R=1.1, s=161GeV Njets=3 Njets=4 0.8 Njets=2 1 Njets=3 Njets=4 0.8 Njets=2 KK2f Njets=3 Njets=4 Njets=4 KK2f Njets=3 KK2f Njets=4 KK2f 0.6 0.4 0.2 0.2 0.2 0 0 20 30 40 50 Ecut,GeV 0 Njets=4 KK2f 0.6 0.4 10 Njets=2 KK2f Njets=3 KK2f 0.4 0 Njets=2 1 0.8 Njets=2 KK2f Njets=3 KK2f 0.6 Fraction Fraction Fraction Njets=2 1 OPAL DP(prel.) SISCone R=0.7, s=207GeV T T 0 10 20 30 40 50 0 10 20 Ecut,GeV 30 40 50 Ecut,GeV KK2f MC with Pythia6 hadronisation. Good description of the data for various jet algorithms. 9 / 34 Check of the reconstruction Comparison to previous analyses with Durham and PxCone. Njets=3, Durham 0.6 0.5 OPAL DP(prel.) SISCone R=0.7, s=91GeV Fraction Fraction OPAL DP(prel.) Durham, s=91GeV Njets=3, SISCone 0.6 Njets=3, PxCone 0.5 Njets=3, Durham, OPAL Njets=3, PxCone, M.A.D. 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 −4 10 −3 10 −2 10 −1 10 1 10 2 10 y cut Data from: JADE and OPAL Colls., “QCD analyses and determinations of αs in e + e − annihilation at energies between 35 GeVand 189 GeV”, EPJC 17 (2000) 19 0 10 20 30 40 50 Ecut,GeV Data from: "Determination of αs using jet rates at LEP", M.A. Donkers, PhD thesis. 10 / 34 Anti-kT with R = 0.7 OPAL DP(prel.) ee-anti-k R=0.7, s=91GeV OPAL DP(prel.) ee-anti-k R=0.7, s=133GeV Njets=3 Njets=4 Njets=3 Njets=4 0.8 Njets=2 KK2f 0.6 Njets=2 1 Njets=3 KK2f Njets=4 KK2f Njets=4 KK2f 0.6 Njets=3 Njets=4 Njets=3 KK2f 0.4 0.4 0.2 0.2 0.2 0 0 10 20 30 40 50 Njets=4 KK2f 0 0 Ecut,GeV Njets=2 KK2f 0.6 0.4 0 Njets=2 1 0.8 Njets=2 KK2f Njets=3 KK2f T Fraction Fraction Fraction Njets=2 0.8 OPAL DP(prel.) ee-anti-k R=0.7, s=177GeV T T 1 10 20 30 40 50 0 Ecut,GeV 10 20 30 40 50 Ecut,GeV OPAL DP(prel.) ee-anti-k R=0.7, s=197GeV Fraction T Njets=2 1 KK2f +Pythia6 describes the data well. Njets=3 Njets=4 0.8 Njets=2 KK2f KK2f +Herwig6(not shown) describes the data well. Njets=3 KK2f Njets=4 KK2f 0.6 0.4 Both tuned by OPAL. 0.2 0 0 10 20 30 40 50 The uncertainties are statistical only. Full uncertainties are in the backup. Ecut,GeV 11 / 34 SISCone with R = 0.7 Fraction Fraction Njets=2 1 Njets=3 Njets=4 0.8 Njets=3 Njets=4 0.8 Njets=2 KK2f 0.6 Njets=2 1 Njets=3 KK2f Njets=4 KK2f Njets=4 KK2f 0.6 Njets=3 Njets=4 Njets=3 KK2f 0.4 0.4 0.2 0.2 0.2 0 0 10 20 30 40 50 Njets=4 KK2f 0 0 Ecut,GeV Njets=2 KK2f 0.6 0.4 0 Njets=2 1 0.8 Njets=2 KK2f Njets=3 KK2f OPAL DP(prel.) SISCone R=0.7, s=177GeV Fraction OPAL DP(prel.) SISCone R=0.7, s=133GeV OPAL DP(prel.) SISCone R=0.7, s=91GeV 10 20 30 40 50 0 Ecut,GeV 10 20 30 40 50 Ecut,GeV Fraction OPAL DP(prel.) SISCone R=0.7, s=197GeV Njets=2 1 KK2f +Pythia6 describes the data well. Njets=3 Njets=4 0.8 Njets=2 KK2f KK2f +Herwig6(not shown) describes the data well. Njets=3 KK2f Njets=4 KK2f 0.6 0.4 Both tuned by OPAL. 0.2 0 0 10 20 30 40 50 The uncertainties are statistical only. Full uncertainties are in the backup. Ecut,GeV 12 / 34 Scaling of the jet rates with the visible energy, R = 0.7 OPAL DP(prel.) Scaling with E , N =3 jets 133GeV anti-k T R=0.7 0.8 177GeV anti-k T R=0.7 197GeV anti-k T R=0.7 0.6 OPAL DP(prel.) Scaling with E , N =4 jets 1 vis 91GeV anti-k T R=0.7 133GeV anti-k T R=0.7 0.8 177GeV anti-k T R=0.7 197GeV anti-k T R=0.7 0.6 133GeV anti-k T R=0.7 0.4 0.2 0.2 0 0 0.4 0.5 OPAL DP(prel.) Scaling with E , N =2 vis 0.1 0.15 vis 91GeV SISC. R=0.7 133GeV SISC. R=0.7 0.8 0.05 0.2 0.25 0.3 0.35 177GeV SISC. R=0.7 133GeV SISC. R=0.7 177GeV SISC. R=0.7 197GeV SISC. R=0.7 0.4 0.4 0.2 0.2 0 0 0.5 Ecut/Evis 177GeV SISC. R=0.7 197GeV SISC. R=0.7 0.2 0.4 91GeV SISC. R=0.7 197GeV SISC. R=0.7 0.4 0.3 0.25 Ecut/Evis 133GeV SISC. R=0.7 0.6 0.2 0.2 jets 0.8 0.6 0.1 0.15 1 0.6 0 0.1 vis 91GeV SISC. R=0.7 0.8 0.05 OPAL DP(prel.) Scaling with E , N =4 jets 1 0 Ecut/Evis OPAL DP(prel.) Scaling with E , N =3 jets 1 197GeV anti-k T R=0.7 0 0 Ecut/Evis Fraction 0.3 177GeV anti-k T R=0.7 0.6 0.4 0.2 91GeV anti-k T R=0.7 0.8 0.2 0.1 jets 1 0.4 0 Fraction Fraction vis 91GeV anti-k T R=0.7 Fraction Fraction vis 1 Fraction OPAL DP(prel.) Scaling with E , N =2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Ecut/Evis 0 0.05 0.1 0.15 0.2 0.25 Ecut/Evis Evis is a sum of energies of all objects in the event. 13 / 34 Scaling of the jet rates with the visible energy, R = 0.3 OPAL DP(prel.) Scaling with E , N =3 jets 133GeV anti-k T R=0.3 0.8 177GeV anti-k T R=0.3 197GeV anti-k T R=0.3 0.6 OPAL DP(prel.) Scaling with E , N =4 jets 1 vis 91GeV anti-k T R=0.3 133GeV anti-k T R=0.3 0.8 177GeV anti-k T R=0.3 197GeV anti-k T R=0.3 0.6 133GeV anti-k T R=0.3 0.4 0.2 0.2 0 0 0.4 0.5 OPAL DP(prel.) Scaling with E , N =2 vis 0.1 0.15 vis 91GeV SISC. R=0.3 133GeV SISC. R=0.3 0.8 0.05 0.2 0.25 0.3 0.35 177GeV SISC. R=0.3 133GeV SISC. R=0.3 177GeV SISC. R=0.3 197GeV SISC. R=0.3 0.4 0.4 0.2 0.2 0 0 0.5 Ecut/Evis 177GeV SISC. R=0.3 197GeV SISC. R=0.3 0.2 0.4 91GeV SISC. R=0.3 197GeV SISC. R=0.3 0.4 0.3 0.25 Ecut/Evis 133GeV SISC. R=0.3 0.6 0.2 0.2 jets 0.8 0.6 0.1 0.15 1 0.6 0 0.1 vis 91GeV SISC. R=0.3 0.8 0.05 OPAL DP(prel.) Scaling with E , N =4 jets 1 0 Ecut/Evis OPAL DP(prel.) Scaling with E , N =3 jets 1 197GeV anti-k T R=0.3 0 0 Ecut/Evis Fraction 0.3 177GeV anti-k T R=0.3 0.6 0.4 0.2 91GeV anti-k T R=0.3 0.8 0.2 0.1 jets 1 0.4 0 Fraction Fraction vis 91GeV anti-k T R=0.3 Fraction Fraction vis 1 Fraction OPAL DP(prel.) Scaling with E , N =2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Ecut/Evis 0 0.05 0.1 0.15 0.2 0.25 Ecut/Evis Evis is a sum of energies of all objects in the event. 14 / 34 SISCone jet rates with different R parameter 0.6 Njets=3 PxCone R=0.7 Njets=3 SIScone R=0.3 Njets=3 SIScone R=0.5 Njets=3 SIScone R=0.7 Njets=3 SIScone R=0.9 Njets=3 SIScone R=1.1 1 0.8 0.6 OPAL DP(prel.) Running of SiSCone alg. with R, s=207GeV Fraction 0.8 Fraction OPAL DP(prel.) Running of SiSCone alg. with R, s=91GeV Njets=2 PxCone R=0.7 Njets=2 SIScone R=0.3 Njets=2 SIScone R=0.5 Njets=2 SIScone R=0.7 Njets=2 SIScone R=0.9 Njets=2 SIScone R=1.1 1 0.8 0.6 0.4 0.4 0.2 0.2 0.2 0 0 0 10 20 30 40 50 Ecut,GeV 0 Njets=2 PxCone R=0.7 Njets=2 SIScone R=0.3 Njets=2 SIScone R=0.5 Njets=2 SIScone R=0.7 Njets=2 SIScone R=0.9 Njets=2 SIScone R=1.1 1 0.4 0 10 20 30 40 50 Ecut,GeV 0 10 20 30 40 50 Ecut,GeV OPAL DP(prel.) Running of SiSCone alg. with R, s=207GeV Fraction Fraction OPAL DP(prel.) Running of SiSCone alg. with R, s=91GeV Njets=3 PxCone R=0.7 Njets=3 SIScone R=0.3 Njets=3 SIScone R=0.5 Njets=3 SIScone R=0.7 Njets=3 SIScone R=0.9 Njets=3 SIScone R=1.1 1 0.8 0.6 Stable results for 2- and 3- jet rates. 0.4 SISCone results close to PxCone. 0.2 0 0 10 20 30 40 50 Ecut,GeV 15 / 34 Anti-kT jet rates with different R parameter OPAL DP(prel.) Running of ee-anti-k alg. with R, s=91GeV T 0.6 Njets=2 anti-kT R=0.3 1 Njets=2 anti-kT R=0.5 Njets=2 anti-kT R=0.7 0.8 Njets=2 anti-kT R=0.9 Njets=2 anti-kT R=0.9 Njets=2 anti-kT R=1.1 Njets=2 anti-kT R=1.1 0.6 T Fraction Njets=2 anti-kT R=0.7 Fraction Njets=2 anti-kT R=0.5 Njets=3 anti-kT R=0.5 Njets=3 anti-kT R=0.9 0.4 0.2 0.2 0 0 20 30 40 50 Ecut,GeV 0 Njets=3 anti-kT R=1.1 0.6 0.4 10 Njets=3 anti-kT R=0.7 0.8 0.2 0 Njets=3 anti-kT R=0.3 1 0.4 0 10 20 30 40 50 Ecut,GeV 0 10 20 30 40 50 Ecut,GeV OPAL DP(prel.) Running of ee-anti-k alg. with R, s=207GeV T Fraction Fraction Njets=2 anti-kT R=0.3 0.8 OPAL DP(prel.) Running of ee-anti-k alg. with R, s=91GeV OPAL DP(prel.) Running of ee-anti-k alg. with R, s=207GeV T 1 Njets=2 anti-kT R=0.3 1 Njets=2 anti-kT R=0.5 Njets=2 anti-kT R=0.7 0.8 Njets=2 anti-kT R=0.9 Njets=2 anti-kT R=1.1 0.6 Similar patterns to SiSCone. 0.4 0.2 0 0 10 20 30 40 50 Ecut,GeV 16 / 34 SISCone jet rates dependence on R with Ecut = 6 GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV OPAL DP(prel.) N-jet events E>6GeV with SiSCone alg., s=177GeV 1.4 Njets=2 E>6.0GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV Fraction Njets=2 E>6.0GeV Fraction OPAL DP(prel.) N-jet events E>6GeV with SiSCone alg., s=133GeV 1.4 1.4 Njets=2 E>6.0GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 R 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 R 1 1.2 R OPAL DP(prel.) N-jet events E>6GeV with SiSCone alg., s=197GeV Fraction Fraction OPAL DP(prel.) N-jet events E>6GeV with SiSCone alg., s=91GeV 1.4 Njets=2 E>6.0GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV Monotonic dependence on R. 0.8 The choice can be done in a wide range. 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 R 17 / 34 Anti-kT jet rates dependence on R with Ecut = 6 GeV OPAL DP(prel.) N-jet events E>6GeV with ee-anti-k alg., s=91GeV OPAL DP(prel.) N-jet events E>6GeV with ee-anti-k alg., s=133GeV OPAL DP(prel.) N-jet events E>6GeV with ee-anti-k alg., s=177GeV Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV T 1.4 Njets=2 E>6.0GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV Fraction 1.2 Fraction T Njets=2 E>6.0GeV 1.4 Njets=2 E>6.0GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 R 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 R 1 1.2 R OPAL DP(prel.) N-jet events E>6GeV with ee-anti-k alg., s=197GeV T Fraction Fraction T 1.4 1.4 Njets=2 E>6.0GeV 1.2 Njets=3 E>6.0GeV 1 Njets=4 E>6.0GeV Monotonic dependence on R. 0.8 The choice can be done in a wide range. 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 R 18 / 34 Predictions with Pythia8, Herwig++2.7 and Sherpa2.2, SISCone with R = 0.7 Many generators were tuned to LEP data. How do these describe the data? We consider: Pythia8 with LEP-I tuning; Default Herwig++2.7; Default SHERPA2.2 (AHADIC++). 19 / 34 Predictions with Pythia8, Herwig++2.7 and Sherpa2.2, SISCone with R = 0.7 Fraction Fraction Njets=2 1 Njets=3 Njets=4 0.8 Njets=3 Njets=4 0.8 Njets=2 herwig++ 0.6 Njets=2 1 Njets=2 herwig++ Njets=3 herwig++ Njets=3 herwig++ Njets=4 herwig++ Njets=4 herwig++ 0.6 Njets=2 pythia8 Njets=2 pythia8 Njets=3 pythia8 0.2 Njets=2 sherpa Njets=2 sherpa Njets=3 sherpa Njets=3 sherpa 0.2 0 20 30 40 Njets=4 Njets=2 herwig++ Njets=3 herwig++ Njets=4 herwig++ 0.6 Njets=2 pythia8 50 Njets=2 sherpa Njets=3 sherpa 0.2 Njets=4 sherpa Njets=4 sherpa 0 0 Ecut,GeV Njets=4 pythia8 0.4 0 10 Njets=3 0.8 Njets=3 pythia8 Njets=4 pythia8 0.4 Njets=4 sherpa 0 Njets=2 1 Njets=3 pythia8 Njets=4 pythia8 0.4 OPAL DP(prel.) SISCone R=0.7, s=177GeV Fraction OPAL DP(prel.) SISCone R=0.7, s=133GeV OPAL DP(prel.) SISCone R=0.7, s=91GeV 10 20 30 40 50 0 10 20 30 Ecut,GeV 40 50 Ecut,GeV Fraction OPAL DP(prel.) SISCone R=0.7, s=197GeV Njets=2 1 Njets=3 Njets=4 0.8 Njets=2 herwig++ Njets=3 herwig++ Njets=4 herwig++ 0.6 Njets=2 pythia8 Good description of data. √ The best one is for s = 91 GeV. Njets=3 pythia8 Njets=4 pythia8 0.4 Njets=2 sherpa Njets=3 sherpa 0.2 The solid lines are data, the dashed and doted are MC. The uncertainties Njets=4 sherpa are statistical only. Full uncertainties are in the backup. 0 0 10 20 30 40 50 Ecut,GeV 20 / 34 Predictions with Pythia8, Herwig++2.7 and Sherpa2.2, anti-kT with R = 0.7 OPAL DP(prel.) ee-anti-k R=0.7, s=91GeV OPAL DP(prel.) ee-anti-k R=0.7, s=133GeV Njets=3 Njets=4 Njets=3 Njets=4 0.8 Njets=2 herwig++ 0.6 Njets=2 1 Njets=2 herwig++ Njets=3 herwig++ Njets=3 herwig++ Njets=4 herwig++ Njets=4 herwig++ 0.6 Njets=2 pythia8 Njets=2 pythia8 Njets=3 pythia8 0.2 Njets=2 sherpa Njets=2 sherpa Njets=3 sherpa Njets=3 sherpa 0.2 0 20 30 40 Njets=4 Njets=2 herwig++ Njets=3 herwig++ Njets=4 herwig++ 0.6 Njets=2 pythia8 50 Njets=2 sherpa Njets=3 sherpa 0.2 Njets=4 sherpa Njets=4 sherpa 0 0 Ecut,GeV Njets=4 pythia8 0.4 0 10 Njets=3 0.8 Njets=3 pythia8 Njets=4 pythia8 0.4 Njets=4 sherpa 0 Njets=2 1 Njets=3 pythia8 Njets=4 pythia8 0.4 T Fraction Fraction Fraction Njets=2 0.8 OPAL DP(prel.) ee-anti-k R=0.7, s=177GeV T T 1 10 20 30 40 50 0 10 20 30 Ecut,GeV 40 50 Ecut,GeV OPAL DP(prel.) ee-anti-k R=0.7, s=197GeV Fraction T Njets=2 1 Njets=3 Njets=4 0.8 Njets=2 herwig++ Njets=3 herwig++ Njets=4 herwig++ 0.6 Njets=2 pythia8 Good description of data. √ The best one is for s = 91 GeV. Njets=3 pythia8 Njets=4 pythia8 0.4 Njets=2 sherpa Njets=3 sherpa 0.2 The solid lines are data, the dashed and doted are MC. The uncertainties Njets=4 sherpa are statistical only. Full uncertainties are in the backup. 0 0 10 20 30 40 50 Ecut,GeV 21 / 34 Hadronization corrections with Pythia8, Herwig++2.7 and Sherpa2.2 How large and stable are the hadronisation corrections? We consider: Pythia8 with LEP-I tuning; Default Herwig++2.7; Default SHERPA2.2 (AHADIC++). 22 / 34 Hadronisation correction, anti-kT with R = 0.7 OPAL DP(prel.) ee-anti-k R=0.7, s=91GeV OPAL DP(prel.) ee-anti-k R=0.7, s=133GeV Njets=3 KK2f Njets=4 KK2f 1.8 Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Njets=2 KK2f 2 Njets=3 KK2f Njets=4 KK2f 1.8 Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Njets=2 pythia8 1.4 Njets=3 pythia8 Njets=2 sherpa 1.4 Njets=3 pythia8 Njets=4 sherpa 0.8 Njets=2 sherpa 1.2 0.1 0.2 0.3 0.4 0.5 Njets=4 KK2f Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Njets=2 pythia8 1.4 Njets=3 pythia8 Njets=4 pythia8 Njets=2 sherpa 1.2 Njets=3 sherpa Njets=4 sherpa 1 0.8 0 Njets=3 KK2f 1.8 Njets=4 pythia8 Njets=3 sherpa 1 Njets=2 KK2f 2 Njets=2 pythia8 Njets=4 pythia8 1.2 T Hadr. correction 2 Hadr. correction Hadr. correction Njets=2 KK2f OPAL DP(prel.) ee-anti-k R=0.7, s=177GeV T T Njets=3 sherpa Njets=4 sherpa 1 0.8 0 0.1 0.2 0.3 Ecut/Evis 0.4 0.5 0 0.1 0.2 0.3 Ecut/Evis 0.4 0.5 Ecut/Evis OPAL DP(prel.) ee-anti-k R=0.7, s=197GeV Hadr. correction T Njets=2 KK2f 2 Njets=3 KK2f Njets=4 KK2f 1.8 Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Njets=2 pythia8 1.4 Njets=3 pythia8 Njets=4 pythia8 Njets=2 sherpa 1.2 Corrections: Larger for 3 and 4-jet events. Larger for lower energies. Smaller for tuned MC. Njets=3 sherpa Njets=4 sherpa 1 0.8 The solid lines are old MC, the dashed and doted are new MC. 0 0.1 0.2 0.3 0.4 0.5 Ecut/Evis 23 / 34 Hadronisation correction, SISCone with R = 0.7 2 Njets=3 KK2f Njets=4 KK2f 1.8 Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Hadr. correction Hadr. correction Njets=2 KK2f Njets=2 KK2f 2 Njets=3 KK2f Njets=4 KK2f 1.8 Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Njets=2 pythia8 1.4 Njets=3 pythia8 Njets=2 sherpa 1.4 Njets=3 pythia8 Njets=4 sherpa 0.8 Njets=2 sherpa 1.2 0.1 0.2 0.3 0.4 0.5 Njets=4 sherpa 1 Hadr. correction Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Njets=2 pythia8 1.4 Njets=3 pythia8 Njets=4 pythia8 Njets=2 sherpa 1.2 Njets=3 sherpa Njets=4 sherpa 1 0.8 0 0.1 0.2 0.3 Ecut/Evis OPAL DP(prel.) SISCone R=0.7, s=197GeV Njets=4 KK2f Njets=3 sherpa 0.8 0 Njets=3 KK2f 1.8 Njets=4 pythia8 Njets=3 sherpa 1 Njets=2 KK2f 2 Njets=2 pythia8 Njets=4 pythia8 1.2 OPAL DP(prel.) SISCone R=0.7, s=177GeV Hadr. correction OPAL DP(prel.) SISCone R=0.7, s=133GeV OPAL DP(prel.) SISCone R=0.7, s=91GeV 0.4 0.5 0 0.1 0.2 0.3 Ecut/Evis 0.4 0.5 Ecut/Evis Corrections: Njets=2 KK2f 2 Njets=3 KK2f Njets=4 KK2f 1.8 Larger for 3 and 4-jet events. Njets=2 herwig++ Njets=3 herwig++ 1.6 Njets=4 herwig++ Larger for lower energies. Njets=2 pythia8 1.4 Njets=3 pythia8 Njets=4 pythia8 Smaller for tuned MC. Njets=2 sherpa 1.2 Njets=3 sherpa Njets=4 sherpa 1 Smaller than for anti-kT . 0.8 0 0.1 0.2 0.3 0.4 0.5 Ecut/Evis The solid lines are old MC, the dashed and doted are new MC. 24 / 34 Conclusions Presented measurements of distributions of jet rate fractions with anti-kT and SISCone algorithms at LEP. The old and new (Pythia8, SHERPA2.2, Herwig++2.7) Monte Carlo describes the data well. Studied hadronisation corrections to the presented quantities with different hadronisation models. The mesurements can be used for the precise αs determination. 25 / 34 Backup slides 26 / 34 Access policy The OPAL data is analysed in “Data Preservation“ mode. It implies some specific features: Absence of regular collaboration structure: groups, spokesperson, administration. Absence of dedicated manpower, support and infrastructure. Still, if the data is available it can be used! 27 / 34 Systematics The systematic uncertainties are estimated with the strategy used in the previous analyses. In brief the following sources were considered: s reconstruction; Selection procedure; Hadronisation model; Background modelling. 28 / 34 data/MC 1.05 1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 data/MC 1.05 1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 data/MC Jet energy scale (a) OPAL Jet energy scale 1.3 (b) Jet energy resolution 1.25 1.2 1.15 1.1 1.05 1 0.95 0 0.2 0.4 0.6 0.8 1 cosθ (c) Jet energy scale linearity 20 30 40 50 0.9 0 0.2 0.4 0 0.6 0.8 Z 2-jet Corrected Z0 3-jet Corrected Z/γ high energy Corrected 60 70 80 90 1 cosθ OPAL Coll., “Measurement of the mass and width of the W boson,” EPJC 45 (2006) 307. 100 Ejet (GeV) 29 / 34 Generators reminder KK2f : Ultimate precision for e + e − → ff ; Used version 4.13, CPC 130 (2000) 260; Last version 4.22, PRD 88 (2013) no.11, 114022. grc4f : Background from e + e − → 4fermions; Takes into account all contributions. KoralW : Monte Carlo for e + e − → ff ; See also TAUOLA, PHOTOS and KoralZ. 30 / 34 Numerical results for some energies First uncertainty is statistic the second is systematic 31 / 34 Results for R = 0.7 √ s = 91 GeV, anti-kT first, SISCone second; Ecut , GeV Njets = 2 Njets = 3 Njets = 4 2.00 +0.0089 0.4288+0.0011 −0.0011 −0.0089 +0.0012 +0.0011 0.3370−0.0012 −0.0011 +0.0053 0.1681+0.0014 −0.0014 −0.0053 +0.0024 0.7929+0.0007 −0.0007 −0.0024 +0.0013 +0.0074 0.1914−0.0013 −0.0074 +0.0012 0.0167+0.0015 −0.0015 −0.0012 6.00 10.00 14.00 18.00 22.00 25.50 29.00 +0.0066 0.6909+0.0008 −0.0008 −0.0066 +0.0026 0.8653+0.0005 −0.0005 −0.0026 +0.0031 0.9224+0.0004 −0.0004 −0.0031 +0.0104 0.9631+0.0003 −0.0003 −0.0104 +0.0164 0.9548+0.0003 −0.0003 −0.0164 +0.0217 0.9018+0.0005 −0.0005 −0.0217 +0.0013 +0.0068 0.2599−0.0013 −0.0068 +0.0014 +0.0044 0.1313−0.0014 −0.0044 +0.0014 +0.0025 0.0756−0.0014 −0.0025 +0.0015 +0.0018 0.0265−0.0015 −0.0018 +0.0015 +0.0002 0.0032−0.0015 −0.0002 +0.0000 +0.0000 0.0000−0.0000 −0.0000 +0.0030 0.0466+0.0015 −0.0015 −0.0030 +0.0004 0.0044+0.0015 −0.0015 −0.0004 +0.0000 0.0004+0.0015 −0.0015 −0.0000 +0.0000 0.0000+0.0000 −0.0000 −0.0000 +0.0000 0.0000+0.0000 −0.0000 −0.0000 +0.0000 0.0000+0.0000 −0.0000 −0.0000 Ecut , GeV Njets = 2 Njets = 3 Njets = 4 2.00 +0.0105 0.5251+0.0010 −0.0010 −0.0105 +0.0012 +0.0035 0.3213−0.0012 −0.0035 +0.0005 0.1143+0.0014 −0.0014 −0.0005 +0.0024 0.8115+0.0006 −0.0006 −0.0024 +0.0014 +0.0061 0.1723−0.0014 −0.0061 +0.0011 0.0152+0.0015 −0.0015 −0.0011 6.00 10.00 14.00 18.00 22.00 25.50 29.00 +0.0062 0.7158+0.0008 −0.0008 −0.0062 +0.0030 0.8761+0.0005 −0.0005 −0.0030 +0.0026 0.9270+0.0004 −0.0004 −0.0026 +0.0095 0.9610+0.0003 −0.0003 −0.0095 +0.0159 0.9580+0.0003 −0.0003 −0.0159 +0.0208 0.9111+0.0004 −0.0004 −0.0208 +0.0013 +0.0063 0.2394−0.0013 −0.0063 +0.0014 +0.0035 0.1187−0.0014 −0.0035 +0.0014 +0.0027 0.0689−0.0014 −0.0027 +0.0015 +0.0021 0.0268−0.0015 −0.0021 +0.0015 +0.0002 0.0035−0.0015 −0.0002 +0.0000 +0.0000 0.0000−0.0000 −0.0000 +0.0015 0.0397+0.0015 −0.0015 −0.0015 +0.0004 0.0042+0.0015 −0.0015 −0.0004 +0.0001 0.0004+0.0015 −0.0015 −0.0001 +0.0000 0.0000+0.0000 −0.0000 −0.0000 +0.0000 0.0000+0.0000 −0.0000 −0.0000 +0.0000 0.0000+0.0000 −0.0000 −0.0000 32 / 34 Results for R = 0.7 √ s = 196 GeV, anti-kT first, SISCone second; Ecut , GeV Njets = 2 Njets = 3 Njets = 4 2.00 +0.0156 0.3368+0.0254 −0.0254 −0.0142 +0.0256 +0.0111 0.3302−0.0256 −0.0085 +0.0104 0.2285+0.0274 −0.0274 −0.0129 +0.0135 0.6569+0.0183 −0.0183 −0.0054 +0.0265 +0.0059 0.2818−0.0265 −0.0201 +0.0094 0.0517+0.0304 −0.0304 −0.0115 6.00 10.00 14.00 18.00 22.00 25.50 29.00 +0.0134 0.5626+0.0207 −0.0207 −0.0092 +0.0143 0.7256+0.0164 −0.0164 −0.0085 +0.0142 0.7675+0.0151 −0.0151 −0.0113 +0.0113 0.8136+0.0135 −0.0135 −0.0104 +0.0190 0.8285+0.0129 −0.0129 −0.0171 +0.0283 0.8382+0.0126 −0.0126 −0.0281 +0.0256 +0.0105 0.3298−0.0256 −0.0141 +0.0273 +0.0078 0.2357−0.0273 −0.0195 +0.0279 +0.0085 0.2040−0.0279 −0.0216 +0.0285 +0.0071 0.1690−0.0285 −0.0153 +0.0286 +0.0109 0.1598−0.0286 −0.0190 +0.0288 +0.0174 0.1497−0.0288 −0.0185 +0.0130 0.0978+0.0297 −0.0297 −0.0118 +0.0068 0.0276+0.0308 −0.0308 −0.0237 +0.0234 0.0038+0.0312 −0.0312 −0.0248 +0.0134 0.0108+0.0314 −0.0314 −0.0211 +0.0234 0.0246+0.0316 −0.0316 −0.0227 +0.0124 0.0148+0.0315 −0.0315 −0.0167 Ecut , GeV Njets = 2 Njets = 3 Njets = 4 2.00 +0.0087 0.4112+0.0240 −0.0240 −0.0038 +0.0250 +0.0134 0.3605−0.0250 −0.0118 +0.0139 0.1705+0.0285 −0.0285 −0.0168 +0.0151 0.6841+0.0176 −0.0176 −0.0087 +0.0268 +0.0183 0.2637−0.0268 −0.0199 +0.0181 0.0459+0.0305 −0.0305 −0.0194 6.00 10.00 14.00 18.00 22.00 25.50 29.00 +0.0175 0.5920+0.0200 −0.0200 −0.0137 +0.0177 0.7346+0.0161 −0.0161 −0.0125 +0.0137 0.7883+0.0144 −0.0144 −0.0110 +0.0157 0.8240+0.0131 −0.0131 −0.0120 +0.0179 0.8420+0.0124 −0.0124 −0.0141 +0.0277 0.8559+0.0119 −0.0119 −0.0264 +0.0260 +0.0162 0.3088−0.0260 −0.0163 +0.0274 +0.0120 0.2293−0.0274 −0.0168 +0.0282 +0.0086 0.1859−0.0282 −0.0138 +0.0285 +0.0091 0.1651−0.0285 −0.0191 +0.0287 +0.0100 0.1531−0.0287 −0.0193 +0.0291 +0.0128 0.1323−0.0291 −0.0205 +0.0086 0.0879+0.0298 −0.0298 −0.0092 +0.0320 0.0495+0.0305 −0.0305 −0.0364 +0.0356 0.0427+0.0306 −0.0306 −0.0565 +0.0082 0.0009+0.0312 −0.0312 −0.0165 +0.0367 0.0287+0.0317 −0.0317 −0.0295 +0.0181 0.0171+0.0315 −0.0315 −0.0233 33 / 34 Results for R = 0.7 √ s = 207 GeV, anti-kT first, SISCone second; Ecut , GeV Njets = 2 Njets = 3 Njets = 4 2.00 +0.0040 0.3252+0.0209 −0.0209 −0.0041 +0.0204 +0.0056 0.3578−0.0204 −0.0089 +0.0143 0.2089+0.0226 −0.0226 −0.0086 +0.0114 0.6478+0.0151 −0.0151 −0.0115 +0.0216 +0.0084 0.2777−0.0216 −0.0093 +0.0087 0.0650+0.0246 −0.0246 −0.0085 6.00 10.00 14.00 18.00 22.00 25.50 29.00 +0.0055 0.5643+0.0168 −0.0168 −0.0056 +0.0140 0.7065+0.0138 −0.0138 −0.0143 +0.0133 0.7490+0.0127 −0.0127 −0.0138 +0.0176 0.7843+0.0118 −0.0118 −0.0177 +0.0278 0.7999+0.0114 −0.0114 −0.0277 +0.0387 0.8137+0.0110 −0.0110 −0.0386 +0.0210 +0.0059 0.3158−0.0210 −0.0087 +0.0222 +0.0104 0.2391−0.0222 −0.0109 +0.0226 +0.0085 0.2097−0.0226 −0.0080 +0.0229 +0.0129 0.1886−0.0229 −0.0129 +0.0231 +0.0169 0.1721−0.0231 −0.0172 +0.0235 +0.0113 0.1493−0.0235 −0.0115 +0.0150 0.1071+0.0240 −0.0240 −0.0083 +0.0124 0.0477+0.0248 −0.0248 −0.0101 +0.0129 0.0254+0.0251 −0.0251 −0.0146 +0.0286 0.0075+0.0255 −0.0255 −0.0327 +0.0180 0.0240+0.0257 −0.0257 −0.0258 +0.0108 0.0134+0.0256 −0.0256 −0.0130 Ecut , GeV Njets = 2 Njets = 3 Njets = 4 2.00 +0.0060 0.4005+0.0197 −0.0197 −0.0062 +0.0202 +0.0164 0.3687−0.0202 −0.0178 +0.0102 0.1725+0.0231 −0.0231 −0.0036 +0.0068 0.6784+0.0144 −0.0144 −0.0069 +0.0217 +0.0090 0.2702−0.0217 −0.0101 +0.0171 0.0371+0.0250 −0.0250 −0.0168 6.00 10.00 14.00 18.00 22.00 25.50 29.00 +0.0050 0.5903+0.0163 −0.0163 −0.0054 +0.0078 0.7320+0.0132 −0.0132 −0.0080 +0.0156 0.7674+0.0123 −0.0123 −0.0159 +0.0145 0.8008+0.0114 −0.0114 −0.0145 +0.0242 0.8188+0.0108 −0.0108 −0.0242 +0.0321 0.8371+0.0103 −0.0103 −0.0321 +0.0211 +0.0089 0.3122−0.0211 −0.0103 +0.0223 +0.0089 0.2348−0.0223 −0.0089 +0.0227 +0.0111 0.2034−0.0227 −0.0099 +0.0231 +0.0078 0.1772−0.0231 −0.0066 +0.0233 +0.0151 0.1590−0.0233 −0.0150 +0.0237 +0.0107 0.1287−0.0237 −0.0094 +0.0120 0.0832+0.0244 −0.0244 −0.0119 +0.0238 0.0072+0.0253 −0.0253 −0.0188 +0.0221 0.0026+0.0255 −0.0255 −0.0267 +0.0177 0.0043+0.0255 −0.0255 −0.0389 +0.0218 0.0162+0.0256 −0.0256 −0.0234 +0.0137 0.0097+0.0256 −0.0256 −0.0138 34 / 34
Similar documents
difference between float and double
TH1D
*wChargedPtJacekTrigg[Ntrigg];
TH1D
*wChargedEtaTrigg[Ntrigg];
for(int
i=0;i
Šeštadienis
Progression System: 1 to Final A, 2-3 to Final A or Final B, Remaining Crews to Final B or Final C (1->FA, 2-3->FA or FB, 4..->FB or FC)
More information