Tzirtzilakis2013-07
Transcription
Tzirtzilakis2013-07
Biomagnetic Fluid Flow in a Driven Cavity E.E. Tzirtzilakis1 and M.A. Xenos2 1Department of Mechanical and Water Resources Engineering, Technological Educational Institute of Messolonghi, Messolonghi, 30200, Greece e-mail: [email protected] ; web page: www.tzirtzilakis.myp.teimes.gr 2Department of Mathematics, University of Ioannina Ioannina, 45110, Greece e-mail: [email protected] ; web page: http://www.math.upatras.gr/~maik/ 12th PCMA 18-19/05/2012 1 Introduction * Galinos (129-201 A.D) Magnet as purgative * Franz Anton Mesmer (1734-1815) Influence of biological magnetism (Mesmerism) * Durval (end 19th century ) Magnetic bracelet * Moscow 1976 Hypertension - Headache * Pauling, Coryell 1936 * 1940- Magnetic field – hemoglobin of red blood cells Synthesis of magnetic fluids * Neuringer, Rosensweig 1964 FerroHydroDynamics * Russians (Zaitsev, Shliomis, Cvetkov) * Rosensweig 1980 Book: “Ferrohydrodynamics” * 1983 - Magnetic field → hemoglobin of red blood cells * Y. Haik, C.J. Chen, V. Pai 1996 12th PCMA Biomagnetic Fluid Dynamics 18-19/05/2012 2 Introduction APPLICATIONS Drug targeting (nano-particles + drug) Medical devices Reduction of bleeding Isolation of organs Diagnosis Therapy 12th PCMA -cancer cells -clotted blood -Magnetaphaeresis -Blood pumps -Cell separation (red blood cells or ill natured) -Technical muscles -Addition of magnetic particles in the arteries -Increment of contrast, clearer imaging, addition of magnetic particles (hollow organs) -MRI (Magnetic Resonance imaging) -X-Rays -Hyperthermia (cancer cells, eye injuries without medication) 18-19/05/2012 3 Introduction APPLICATIONS 12th PCMA 18-19/05/2012 4 Mathematical Model Biomagnetic Fluid Dynamics (BFD) • Haik, Y., Chen J.C. and Pai, V.M., 1996. Development of biomagnetic fluid dynamics, In Proceedings of the IX International Symposium on Transport Properties in Thermal Fluids Engineering, Singapore, Pacific Center of Thermal Fluid Engineering, S.H. Winoto, Y.T. Chew, N.E. Wijeysundera, (Eds.), Hawaii, U.S.A., June 25-28, 121--126. • Haik, Y., Pai, V. and Chen, C.J., 1999. Biomagnetic Fluid Dynamics, In: Fluid Dynamics at Interfaces, W. Shyy and R. Narayanan (Eds.), Cambridge University Press, 439-452. • E.E. Tzirtzilakis, “A mathematical model for blood flow in magnetic field”, Physics of Fluids, Vol. 17, 077103, 2005. 12th PCMA 18-19/05/2012 5 Mathematical Model Mathematical Model (E. Tzirtzilakis, FHD, MHD) Continuity Momentum Magnetic Field MHD V 0 2 DV p F V J B oMH Dt FHD H J V B B H M 0 M DH J J DT Cp oT k2T Dt T Dt Energy u 2 v 2 w 2 v u 2 w v 2 u w 2 2 u v w 2 2 x y z x y y z z x 3 x y z Magnetization: M(ρ,Η,Τ) M K Tc T M H 12th PCMA Tc T M M1 T1 M KH Tc T T mH M mN coth o T mH o 18-19/05/2012 6 Mathematical Formulation u v =0 x y 1 2u 2 u u u p H 2 u v = Mn H N uH vH H F y x y 2 2 x y x x Re x y v v p H 1 2v 2v 2 N vH uH H u v Mn H F x x y 2 2 x y y y Re x y Dimensionless numbers : Boundary conditions : UpperWall ( y = 1,0 x 1) : u = 1, v = 0. LowerWall ( y = 0,0 x 1) : u = 0, v = 0. LeftWall ( x = 0,0 y 1) : u = 0, v = 0. RightWall ( x = 1,0 y 1) : u = 0, v = 0 H ( x, y ) = 12th PCMA Re = L ur (Reynolds number), o2 H o2 L Ha 2 N= = (Stuart number, MHD), Re ur | b | o H o2 . (FHD Magnetic number). Mn2F = 22 u ( x a ) ( y br) 18-19/05/2012 7 Stream Function-vorticity formulation? 1 2u 2 u u u p H 2 u v = Mn H N uH vH H F y x y 2 2 x y x x Re x y v v p H 1 2v 2v 2 N vH uH H u v Mn H F y x x y 2 2 x y y Re x y (1) Mn H H y F x (1) (2) H H 2H Mn H MnF F yx y x H H H 2H Mn Mn H (2) MnF H F x y F xy x y (3) (4) (4)-(3) = 0 ??? 12th PCMA 18-19/05/2012 8 Primitive variables approach Simple – staggered grid – upwind scheme – “differed correction” approach Difficulties with source term of FHD J.H. Ferziger, M. Peric, “Computational Methods for Fluid Dynamcs”, Springer Verlang, Berlin, 3rd ed, 2002. 12th PCMA 18-19/05/2012 9 MAGNETIC PARAMETERS Saturation Magnetization M0=40Am-1. Haik Y., PAi V Chen CJ, 1999. Biomagnetic fluid dymanics. In: Fluid Dynamics at Interfaces, Shyy W. and Narayanan R. (eds), Cambridge University Press, pp. 439-452. σ = 0.8sm-1 Jaspard F. and Nadi, M., 2002. Dielectric properties of blood: an investigation of temperature dependence, Physiological Measurement 23 547-554. Gabriel, S., Lau R.W. and Gabriel, C., 1996. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology 41 2271-2293. ρ=1050kgr/m3, μ=3.210-3 kgm-1s-1 Pedley, T. J., 1980. The fluid mechanics of large blood vessels, Cambridge University Press. L=5x10-2m b=2.5 10-3m 12th PCMA Re=400 18-19/05/2012 10 MAGNETIC PARAMETERS Bo and corresponding values of MnF Bo and corresponding values of N 12th PCMA 18-19/05/2012 11 Results 12th PCMA 18-19/05/2012 12 Results 12th PCMA 18-19/05/2012 13 Results 12th PCMA 18-19/05/2012 14 12th PCMA 18-19/05/2012 15