slides
Transcription
slides
Paillier’s Cryptosystem Modulo p 2 q and Its Applications to Trapdoor Commitment Schemes Katja Schmidt-Samoa1 1 TU 2 Future Tsuyoshi Takagi2 Darmstadt, Germany University – Hakodate, Japan MyCrypt 2005 Trapdoor One-way Permutations Applications Outline 1 Trapdoor One-way Permutations Definition New Provably Secure Trapdoor OW Permutations 2 Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Definition New Provably Secure Trapdoor OW Permutations Informal Def. of Trapdoor OW Permutations Definition F = {fi |fi : Ai → Bi , fi is bijective} is a family of trapdoor one-way permutations if for all i: fi is easy to compute fi is hard to invert a trapdoor si exists s.t. inverting fi is easy knowing si and F is easy to sample easy x hard f (x) easy with trapdoor K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Definition New Provably Secure Trapdoor OW Permutations New Trapdoor OW Permutations p, q ∈ PRIMES(k), n = p 2 q Theorem x n = y n mod n ⇐⇒ x = y mod pq. ⇓⇓⇓⇓⇓ Theorem If factoring n = p 2 q is hard, then N-R(n) −→ N-R(n) x 7→ x n mod n and Z× pq −→ N-R(n) x 7→ x n mod n are trapdoor OW permutations (trapdoor: d = n −1 mod ϕ(pq)), where N-R(n) = {y n mod n | y ∈ Z× n } (set of n-th residues mod n). K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Semantically Secure Homomorphic Encryption General scheme R × M −→ Z× n r, m 7→ e m r g for “suitable” M, R, e, g . mod n Goldwasser/Micali 1984 Benaloh/Fischer 1986 Naccache/Stern 1998 always n = pq limited bandwidth and/or heavy decryption Breakthrough: Change of group structure! Okamoto/Uchiyama 1998 n = p 2 q o n2 for n = pq Paillier 1999 K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Paillier Modulo p 2 q Theorem × f : Z× n × Zn −→ Zn2 r , m 7→ r n (1 + mn) mod n2 = r n (1 + n)m mod n2 Paillier: if n = pq, then f is a permutation K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Paillier Modulo p 2 q Theorem × f : Z× n × Zn −→ Zn2 r , m 7→ r n (1 + mn) mod n2 = r n (1 + n)m mod n2 Paillier: if n = pq, then f is a permutation new: if n = p 2 q, then we have f (r , m) = f (r + ipq, m − ir −1 pq) for i ∈ Z back K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Paillier Modulo p 2 q Theorem × f : Z× n × Zn −→ Zn2 r , m 7→ r n (1 + mn) mod n2 = r n (1 + n)m mod n2 Paillier: if n = pq, then f is a permutation new: if n = p 2 q, then we have f (r , m) = f (r + ipq, m − ir −1 pq) for i ∈ Z We restrict message space to Zpq ,→ permutation. Scheme is: K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Paillier Modulo p 2 q Theorem × f : Z× n × Zn −→ Zn2 r , m 7→ r n (1 + mn) mod n2 = r n (1 + n)m mod n2 Paillier: if n = pq, then f is a permutation new: if n = p 2 q, then we have f (r , m) = f (r + ipq, m − ir −1 pq) for i ∈ Z We restrict message space to Zpq ,→ permutation. Scheme is: homomorphic same as semantically secure under decisional Paillier n-th residuosity assumption K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Paillier Modulo p 2 q Theorem × f : Z× n × Zn −→ Zn2 r , m 7→ r n (1 + mn) mod n2 = r n (1 + n)m mod n2 Paillier: if n = pq, then f is a permutation new: if n = p 2 q, then we have f (r , m) = f (r + ipq, m − ir −1 pq) for i ∈ Z We restrict message space to Zpq ,→ permutation. Scheme is: homomorphic same as semantically secure under decisional Paillier n-th residuosity assumption o same as and one-way under FACT Okamoto/Uchiyama K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Trapdoor Hashing − blinding: hash values of different messages are indistinguishable hash − binding: without secret key no one can find collisions Weak altering trapdoor collisions: trap−coll such that: hash uniformity: trapdoor hashes are indistinguishable from real hashes K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Trapdoor Hashing hash − blinding: hash values of different messages are indistinguishable − binding: without secret key no one can find collisions Strong altering trapdoor collisions: trap−coll such that: hash uniformity: trapdoor hashes are indistinguishable from real hashes K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures On-line/Off-line Signatures Ordinary signatures: sign K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures On-line/Off-line Signatures Ordinary signatures: sign On-line/off-line signatures: precomputation off−line phase sign on−line phase Invented 1996 by Even/Goldreich/Micali Improved construction 2001 by Shamir/Tauman K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Shamir-Tauman On-line Off-line Signatures Key generation: hash 1. generate sign keys 2. generate hash keys K. Schmidt-Samoa, T. Takagi hash 3. publish Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Shamir-Tauman On-line Off-line Signatures Key generation: hash 1. generate sign keys 2. generate hash keys hash 3. publish Off-line phase: hash dummy message dummy coins 1. create hash 2. sign hash K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Shamir-Tauman On-line Off-line Signatures Key generation: hash hash 1. generate sign keys 2. generate hash keys 3. publish Off-line phase: hash dummy message dummy coins 1. create hash 2. sign hash On-line phase: Signature: trap−coll message to be signed K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Shamir-Tauman On-line/Off-line Signatures, cont’d Efficiency overhead: weakly trapdoor altering (on-line) ,→ weakly trapdoor altering should be extremely fast K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Shamir-Tauman On-line/Off-line Signatures, cont’d Efficiency overhead: weakly trapdoor altering (on-line) ,→ weakly trapdoor altering should be extremely fast Security weakly secure signature scheme + weak trapdoor hash ⇒strongly secure on-line/off-line signature scheme even weaklier secure signature scheme + strong trapdoor hash ⇒strongly secure on-line/off-line signature scheme K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Shamir-Tauman On-line/Off-line Signatures, cont’d Efficiency overhead: weakly trapdoor altering (on-line) ,→ weakly trapdoor altering should be extremely fast Security weakly secure signature scheme + weak trapdoor hash ⇒strongly secure on-line/off-line signature scheme even weaklier secure signature scheme + strong trapdoor hash ⇒strongly secure on-line/off-line signature scheme Conclusion We need strong trapdoor hash with extremely fast weak trapdoor altering. K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures A New Trapdoor Hash for Shamir-Tauman On-Off Sigs Theorem {0, 1}l × Zpq −→ N-R(n) m, r 7→ (m||r )n mod n is a strong trapdoor hash with extremly fast weak altering (n = p 2 q, message-length l: |(m||r )|2 < |n|2 ) length-restrictions: 6= modn binding: (m0 ||r0 )n = (m1 ||r1 )n mod n ⇐⇒ m0 ||r0 =m1 ||r1 mod pq weakly trapdoor altering: given: m, r and mt (h = (m||r )n mod n) wanted: rt s.t. m||r = mt ||rt mod pq ,→ rt = 2l+1 (m − mt ) + r mod pq (fast!). strongly trapdoor altering: given: hash h and message mt wanted: rt s.t. (mt ||rt )n = h mod n ,→ rt = h1/n − 2l+1 mt mod pq K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Comparison Scheme [BK90] [KR00] [ST01] proposed Assumption DL FACT FACT FACT strong NO YES NO YES hash ≈ 1 exp. ≈ |m|2 mult. 1 exp. 1 exp. weak alt. ≈ 1 mult. ≈ 5 mult. 1 add. + bit shift 1 add. + bit shift Table: Comparison of trapdoor hash families suitable for [ST01] K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Chameleon Signatures Problem in ordinary dig sig schemes sig can be verified by everyone ,→ recipient can show sig around K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Chameleon Signatures Problem in ordinary dig sig schemes sig can be verified by everyone ,→ recipient can show sig around Solutions Chaum 1990: Undeniable sigs, using complex ZK proofs Krawczyk, Rabin 1998: use hash-than-sign paradigm with trapdoor hash (recipient = trapdoor holder) recipient can forge sigs of messages of his choice ,→ no third party will be convinced of authenticity signer can deny forged sigs by presenting hash collision on-line/off-line trapdoor hash enhances signing efficiency K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures A New On-line/Off-line Trapdoor Hash Theorem Let n = p 2 q. Then k {0, 1}l × Z× n × {0, 1} m, r , s −→ N-R(n) 7→ (1 + (m||s)n)r n mod n2 is an on-line-off-line trapdoor hash (length l, k: |(m||s)|2 < |n|2 ∧ s > pq). Return to Paillier First FACT-based on-off trapdoor hash suitable for chameleon signatures K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Conclusion proposed new trapdoor permutations based on factoring n = p2q K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Conclusion proposed new trapdoor permutations based on factoring n = p2q analyzed Paillier modulo p 2 q K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Conclusion proposed new trapdoor permutations based on factoring n = p2q analyzed Paillier modulo p 2 q designed new practical trapdoor hashes K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures Conclusion proposed new trapdoor permutations based on factoring n = p2q analyzed Paillier modulo p 2 q designed new practical trapdoor hashes Thanks for your attention! K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q Trapdoor One-way Permutations Applications Homomorphic Encryption Trapdoor Hashing for On-line/Off-line Signatures Trapdoor Hashing for Chameleon Signatures J. F. Boyar and S. A. Kurtz. A discrete logarithm implementation of perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990. H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS. The Internet Society, 2000. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 355–367. Springer, 2001. K. Schmidt-Samoa, T. Takagi Paillier modulo p 2 q