Session2 - A. AMELONG pdf
Transcription
Session2 - A. AMELONG pdf
Predicting maize kernel number using genetic information Agustina Amelong, Brenda L. Gambín and Lucas Borrás Universidad Nacional de Rosario - CONICET Argentina Montpellier 2015 Background • Kernel number is responsible for most maize yield variations. • Kernel number is a quantitative trait highly influenced by the environment. • Crop physiology models can help link the environment with the trait of interest, and predict GxE interactions. Kernel Number per Plant Crop physiology model for kernel number determination Ear Biomass Model based in: Edmeades & Daynard, 1979; Tollenaar, 1991; Otegui & Bonhomme, 1998; Andrade et al., 1999; Echarte et al., 2004; Borrás et al., 2007; Pagano & Maddonni, 2007; D’Andrea et al., 2008; Borrás et. al, 2009. Plant Growth Rate Kernel Number per Plant Ear Biomass Crop physiology model for kernel number determination Ear Biomass Model based in: Edmeades & Daynard, 1979; Tollenaar, 1991; Otegui & Bonhomme, 1998; Andrade et al., 1999; Echarte et al., 2004; Borrás et al., 2007; Pagano & Maddonni, 2007; D’Andrea et al., 2008; Borrás et. al, 2009. Crop physiology model for kernel number determination Plant Growth Rate Kernel Set Efficiency Kernel Number per Plant Ear Biomass Plant Biomass Partitioning Ear Biomass Model based in: Edmeades & Daynard, 1979; Tollenaar, 1991; Otegui & Bonhomme, 1998; Andrade et al., 1999; Echarte et al., 2004; Borrás et al., 2007; Pagano & Maddonni, 2007; D’Andrea et al., 2008; Borrás et al., 2009. Crop physiology model for kernel number determination Ear Biomass A Ceb ISeb PGRb Plant Growth Rate Kernel Set Efficiency Kernel Number per Plant Plant Biomass Partitioning B Ckn ISkn EBb Ear Biomass Model based in: Edmeades & Daynard, 1979; Tollenaar, 1991; Otegui & Bonhomme, 1998; Andrade et al., 1999; Echarte et al., 2004; Borrás et al., 2007; Pagano & Maddonni, 2007; D’Andrea et al., 2008; Borrás et. al, 2009. Ear Biomass Differences in plant biomass partitioning among genotypes 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 7 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Plant Growth Rate Borrás et al. Crop Science 2009. We phenotyped model parameters for a RIL population (B73 x Mo17). Kernel number per plant (kernenls pl-1) We phenotyped model parameters for a RIL population (B73 x Mo17). Ear Biomass (g pl-1) 30 ISEB: 16 CEB: 0.39 20 PGRb:1.2 10 0 800 CKN: 0.09 ISKN: 87 600 EBb:2.1 400 200 0 0 2 4 Plant growth rate (g pl-1 d-1) 6 0 10 Ear Biomass (g Example: Curve parameters for RIL #157 Amelong et al. Field Crops Research 2015. 20 pl-1) 30 Genetic analysis Phenotypic information + Genetic information www.maizegdb.org First, we did a QTL analysis. Second, we did a Genomic Prediction analysis. Objective Compare kernel number and ear biomass predictions using QTL information vs. genomic estimations (GBLUP). Model validation Exp Location Sowing Date RILs Stand Density pl m-2 I Zavalla Sep 2009 42 + parents 5 II Zavalla Oct 2010 115 + parents 7.5 III Zavalla Oct 2011 26 + parents 4 y 10 IV Pergamino Sept 2009 20 + parents 3 y 12 V Iowa May 2007 parents 3y9 CEB Ear Biomass (g ear-1) A ISEB PGRb Plant growth rate (g pl-1 d-1) Kernel number per plant (KN pl-1) Prediction using our crop physiology model B CKN ISKN EBb Ear Biomass (g ear-1) CEB Ear Biomass (g ear-1) A ISEB PGRb Plant growth rate (g pl-1 d-1) MEASURED Plant growth rate Kernel number per plant (KN pl-1) Prediction using our crop physiology model B CKN ISKN EBb Ear Biomass (g ear-1) Prediction using our crop physiology model ESTIMATED Kernel number per plant CEB Ear Biomass (g ear-1) A ISEB PGRb Plant growth rate (g pl-1 d-1) MEASURED Plant growth rate Kernel number per plant (KN pl-1) ESTIMATED Ear Biomass B CKN ISKN EBb Ear Biomass (g ear-1) Results Predicted values Ear Biomass (gr pl-1) Kernel Number per Plant (kernel pl-1) r2: 0.18 p<0.001 Observed values Amelong et al. Field Crops Research 2015. r2: 0.14 p<0.001 QTL analysis over model parameters Predicted values Results Ear Biomass (gr pl-1) Kernel Number per Plant (kernel pl-1) r2: 0.43 P<0.001 r2: 0.38 P<0.001 r2: 0.18 p<0.001 r2: 0.14 p<0.001 Observed values Model parameters estimated with GBLUP QTL analysis over model parameters Predicted values Results Ear Biomass (gr pl-1) Kernel Number per Plant (kernel pl-1) r2: 0.43 P<0.001 r2: 0.38 P<0.001 r2: 0.18 p<0.001 r2: 0.14 p<0.001 r2: 0.46 P<0.001 r2: 0.35 P<0.001 Observed values Model parameters estimated with GBLUP QTL analysis over model parameters Average model parameters Conclusions • Genetic information helped predict kernel number per plant with different accuracies depending on the approach, although overall accuracies were low. Conclusions • Genetic information helped predict kernel number per plant with different accuracies depending on the approach, although overall accuracies were low. • Results indicate higher prediction accuracies when using GBLUP compared to using QTL information. Conclusions • Genetic information helped predict kernel number per plant with different accuracies depending on the approach, although overall accuracies were low. • Results indicate higher prediction accuracies when using GBLUP compared to using QTL information. • Predictions accuracy of ear biomass or kernel number per plant was mostly related to accurate plant growth data rather than genotype specific parameters describing biomass partitioning and kernel set differences. Thanks for your attention.