Improving Learning in Business Simulations with an Agent
Transcription
Improving Learning in Business Simulations with an Agent
©CopyrightJASSS MárciaBaptista,CarlosRoqueMartinho,FranciscoLima,PedroA.SantosandHelmutPrendinger(2014) ImprovingLearninginBusinessSimulationswithanAgent-BasedApproach JournalofArtificialSocietiesandSocialSimulation 17(3)7 <http://jasss.soc.surrey.ac.uk/17/3/7.html> Received:17-Apr-2013Accepted:23-Feb-2014Published:30-Jun-2014 Abstract Artificialsocietysimulationsmayprovideunprecedentedinsightintotheintricatedynamicsofeconomicmarkets.Suchaninsightmayhelpsolvethewell-knownblack-boxdilemmaofbusinesssimulations,where designersprefermodelconcealmentovermodeltransparency.Thecorecontributionofthisworkisanagent-basedbusinesssimulationthatmodelsthemarketplaceasanartificialsocietyofconsumers.Inthe simulation,usersassumetheroleofastoreownerplayingagainstanartificialintelligencecompetitor.Thesimulationcanbeaccessedviaagraphicaluserinterfacethatanimatesthedecisionbehaviorof consumers.Consumersaremodeledasagentswithconcretebeliefs,intentionsanddesiresthatacttomaximizetheirutilityandaccomplishtheirpurchaseplans.Weclaimthatunliketheclassicalequation-based approach,thevisualizationofmarketdynamicsfacilitatedbyouragent-basedapproachcanprovideimportantinformationtotheuser.Wehypothesizethatsuchinformationiskeytounderstandingseveral economicconcepts.Tovalidateourhypothesis,weconductedanexperimentwith30users,wherewecomparedtheeffectsofthegraphicalanimationofthemarket.Ourresultsindicatethattheagent-based approachhasbetterlearningoutcomesbothatthelevelofusers'subjectiveself-assessmentandatthelevelofobjectiveperformancemetricsandknowledgeacquisitiontests.Asasecondarycontribution,we demonstratebyexamplehowsimplecodificationrulesattheleveloftheutilityfunctionsofagentsallowtheemergenceofdiversemacroeconomicbehaviorofatwo-productduopoly. Keywords: Agent-BasedModeling,BusinessSimulation,ConsumerBehavior,LearningProcesses Introduction 1.1 Businesssimulationswerecreatedtoserveasvirtualenvironmentswherethelearningofconcepts,theoriesandpracticesfromeconomicsandmanagementcouldoccurinasystematicexperimentalway.These simulationsusuallyconsistofbusinessgameswheretheparticipanttakestheroleofafirmmanagerinacompetitivemarket,mostoftenagainstotherhumanplayers(Summers2004). 1.2 Sincethe1980smuchdebatehasbeenheldontheblack-boxnatureoftraditionalbusinesssimulations.Inblack-boxsimulations,theinternalstructureofthemodelsupportingthesimulationisnotdisclosedtothe participants.Participantsoperatebytrialanderrorandbasetheirdecisionsonthestaticresultsthatconventionalequation-basedmodelsprovide. 1.3 AuthorssuchasMachuca(2000)andGrößleretal.(2000)proposethatbusinesssimulationsshouldbemadetransparenttopromotemoreeffectivelearning.Theyarguethatusersshouldhaveaccessto informationregardingtheunderlyingmodelstructureandbeabletorelatethisinformationtotheobservedresults.Theauthorsclaimthattheadditionalprovisionofinformationmayimproveusers'performanceand learningacquisition. 1.4 Despitetheongoingdiscussion,empiricalstudiessuchasKopainskyetal.(2011)showonlyaweaktomoderaterelationbetweensimulationtransparencyandlearningofusers.Thiscanbeexplainedbythe limitedexplanatorycapabilitiesoftheequation-basedmodelsusedinthestudies. 1.5 Aparadigmnotyetextensivelyappliedtobusinesssimulationsistheagent-basedapproach,whoseexplanatorypotentialhasbeensubjecttomuchdebate(Grüne-Yanoff2009;Waldherr&Wijermans2013).With theagent-basedapproach,theunderlyingoperationofthesimulationcanbedisclosedwithoutdiminishingitsstrategicvalue,asthistechniquecanprovideanaturaldescriptionofaneconomicenvironmentand captureitsmacrobehaviorasanemergentphenomena. 1.6 Inthiswork,wepresentanagent-basedbusinesssimulationandconductanempiricalstudyontheimpactoftheinformationprovidedbytheagent-basedapproach.WestartinSection2withareviewofdemand modelsinbusinesssimulations.Section3and4detailouragent-basedsimulationandunderlyingmodelofconsumerbehavior.InSection5,wedescribeourempiricalstudyanddemonstratethatinformation exclusivelyprovidedbytheagent-basedapproachcanpromoteeffectivelearning.InSection6weconcludewithadiscussionofourresultsandareflectiononourwork. Background 2.1 Theproblemofmodelingthemarketplaceisperhapsthemostfundamentalchallengeofabusinesssimulation.Infact,thealgorithmsresponsibleforcalculatingmarketandfirmleveldemandhavebeen consideredthemostcomplexanddemandingalgorithmsofabusinesssimulation(Goosenetal.2001).Suchalgorithmsarecoreasfirms'abilitytocapturemarketshareformstheessenceofabusiness simulation. 2.2 SinceGoosen(1981)firstproposedaformalalgorithmforbusinesssimulations,severaldemandmodelshavebeenpresented,withmucheffortbeingdevotedtoenhancetheirflexibilityandvalidity.Thesemodels typicallyfallintothefollowingfourmajorcategories,whichwedescribeindetailinthesectionsbelow: Equation-based:mathematicalfunctionsmodelmarketdemandandfirmdemand. Interpolation-based:aninterpolationmethodderivesthegraphicsofmarketandfirmdemandfunctions. Statistical-based:purchaseprobabilitydistributionsmeasuretheproportionofconsumerswhoconsumeagivenproduct. Agent-based:thecomplexityofthemarketplaceiscapturedusingabottom-upapproachthatmodelsthebehavioralrulesofeachconsumer.Inthisway,themacrobehaviorofthesystememergesfromthe interactionbetweenconsumersandfirms. Equation-basedmodels 2.3 Anequation-baseddemandmodelusuallyconsistsoftwofunctions: 1. Afunctionofmarketdemand(Q)calculatedfromtheaveragevaluesofdemanddeterminantssuchasprice(P),advertisingandpromotionvariables(M)andproductqualityvariables(R): Q =f(P,M,R) qi=wiQ wi=g( Pi,Mi,Ri) 2. Afunctionoffirmleveldemand( qi)usedtocalculatetheweightofeachfirm(wi)whenallocatingmarketshare: Sincethefirstformalequation-basedmodel,severalmodelswhichallowthesimulationofdifferenteconomicphenomenahavebeenproposed.AmongthemostimportantcontributionsistheworkofTeach(1990), withitsgravityflowmodel,laterextendedbyGold&Pray(1997)andCannonetal.(2012). Interpolationapproach 2.4 Goosen&Kusel(1993)recognizedthattofindgeneralflexiblemathematicalfunctionstomodelmarketandfirmdemandwasanintricatetask.Hence,theauthorsproposedtheinterpolationapproachasamethod ofimplementingself-designedfunctions.Themethodisagraphicalapproachwherethesimulationdesignerhastosketchthefunctiondesiredbetweentwovariablessuchaspriceandquantity,chooseanumber ofimportantpoints(inflection,minimumandmaximumpoints),programaninterpolationfunctionandfinally,usingthatfunction,generatetheremainingpoints. 2.5 Theinterpolationmethodwascriticized(Gold1993)foritsdifficultiestomodelinteractiveeffectsbetweendemandvariablesandforbeingrathertime-consuming.Thismightexplainwhyitsadoptionneverbecame aswidespreadastheequation-basedapproach. Statisticalapproach 2.6 Carvalho(1995)proposedanotherapproachtomodelmarketdemand.Theauthorconsideredthatpreviousworkdidnotexplicitlymodelthecrucialelementofamarketplace:theconsumer.Hence,Carvalho proposedamodelbasedontheso-called'equimarginalprinciple'usingagammaprobabilitydistributiontosimulatethepreferencesofconsumers. 2.7 Carvalho'smodelreceivednegativecriticsregardingtheinstabilityofitsdemandfunction,thelackoftheself-claimedindependenceofconsumersandsuppliers,andthedifficultiestocontrolthedistribution http://jasss.soc.surrey.ac.uk/17/3/7.html 1 22/10/2015 parametervaluesdefiningthemarketplace(Gold&Pray1995).Similarlytotheinterpolationapproach,thistypeofmodelneverbecameaspopularasequation-basedmodels. Agent-basedapproach 2.8 Agent-basedmodelingcanbedefinedasanapproachtosimulatecomplexadaptivesystemscomprisedofseveralautonomousandinteractingentities(Bandinietal.2009).Parunaketal.(1998)providean extensivediscussionofthesimilaritiesanddifferencesbetweentheagent-basedapproachandtraditionalequation-basedmodeling. 2.9 Severalauthors(Yilmazetal.2006;Araietal.2005)havearguedinfavorofusingtheagent-basedapproachtogeneratebehaviorinbusinesssimulations.IndustrygamessuchasSimCity2013havestartedto adoptmulti-agentsystemsastheirmainapproachtoeconomicenvironmentmodeling.Inacademiaalso,anumberofagent-basedgameshavebeenpresented,suchastheworkofUmedaetal.(2009). 2.10 Extensiveworkhasbeendoneinthegeneralareaofagent-basedmodelsofconsumerbehavior.AmongthemostimportantcontributionsistheworkofSaidetal.(2002)andDelreetal.(2010).Thesemodels simulatethemarketplaceasamulti-agentsystemwhereconsumersareagentsthatperformcomplexinteractionssuchasimitationandsocialcomparison.Suchmodelshaveaconsiderabledegreeofcomplexity sincetheyaredevisedtoexplainparticularmarketphenomenasuchaslock-inandinnovationdiffusion. BusinessSimulation Figure1:Interfaceofsimulationincludingthe(I.A)decisionspanel,(I.B)agent-basedpaneland(I.C)panelwithinformationoffirms. 3.1 Wedevelopedanagent-basedbusinesssimulationwheretheuserplaysagainstanartificialintelligence(AI)competitorinatwo-productduopoly.Thesimulationisaround-basedgame,asitistypicalinmost businesssimulations(Kenworthy&Wong2005).Thesimulationgameconsistsofthefollowingelements: Firmrepresentsthehumanplayer.Theuseractsasafirmandmanagesabakerystorewhereheorshecanselltwodistinctproducts(bread,cookies)tothefinal(artificial)consumer. CompetitorFirmrepresentstheAIcompetitortotheuser.TheAIcompetitormanagesabakerystorethatcompeteswiththehumanplayertoselltwoproducts.Thefinalconsumerisagnosticregardingthetypeof seller(humanplayerorartificialplayer). Consumersrepresenttheautonomous(artificial)agentsofthesimulation.Ineachround,theconsumerhasagivenbudget(I)tospendonproductsfromthebakeries.Thegameconsidersapopulationof100 consumerswithanincomedistributionaccordingtoaPoissondistribution(λ =300).Todecideonwhichproductstopurchase,theconsumerusesinformationabouttheproductsforsaleandmaximizesanutility function.Consumersattempttoaccomplishtheirintentionssequentiallyinarandomorder. Productsrepresentthegoodssoldbythefirmstoconsumers.Inthesimulation,weconsidertwoproducts:breadandcookies.Weassumethatmarginalcostsareconstantandequalforbothfirms(USD10).The twoproductshaveequalmarginalutilitiesastheutilityfunctionofconsumersisthefollowing: u( x 1,x 2)= ( ) j+ )j (1) x 1p1+x 2p2≤I (2) ( wherex 1,x 2representthequantitiesofproducts1(bread),2(cookies)thattheconsumercanpurchaseatpricesp1,p2withabudgetI. 3.2 Fig.1depictsthesimulationinterfaceanditsthreefundamentalelements:(I.A)decisionspanel,(I.B)agent-basedsimulationpaneland(I.C)panelwithinformationaboutthefirms. 3.3 Ineachround,thehumanplayerhastodecideontwoissuesusingthedecisionspanelI.A:(1)quantityforsaleand(2)sellingpriceofproducts.Aftertheusersubmitshis/herdecisionsinpanelI.A,theAI competitorsubmitsitsdecisions.ThehumanplayerandtheAIcompetitordecidesimultaneouslywithoutknowingeachotherdecisionsforthatround. 3.4 ThereasoningalgorithmoftheAIcompetitorisbasedonCournot'sadjustmentmodel,firstproposedinthecontextofaduopolymodelbyCournot(1838).TheAIcompetitorassumesthatthehumanplayer(1)will setthepricesofproductsequaltothemarketpricesofthelastmarketquantitiessoldand(2)setthesamequantitiesforsaleasinthepreviousround.TheAIcompetitorsetsthepriceofproductsequaltotheprices itpredictsthehumanplayerisgoingtosetandchoosesquantitiesforsaleasbestresponsestothequantitiesitassumesthehumanplayerisgoingtochose. 3.5 Theperformanceofthehumanplayer(andAIcompetitor)isevaluatedaccordingtotheircumulativeprofits.Theuserwinsthegameifs/heeither(i)hasmorecumulativeprofitsthanhisorherAIcompetitoratthe endofthegame(determinedbyapre-setnumberturns)or(ii)isabletobankrupthisorherAIcompetitor.BothfirmsstartwithaninitialcapitalofUSD10,000. http://jasss.soc.surrey.ac.uk/17/3/7.html 2 22/10/2015 Figure2:InterfaceofCAPSTONEsimulation(http://www.capsim.com/business-simulations/products/capstone.html). 3.6 Notethatexistingequation-basedsimulationsusuallydonotpresentresultstoparticipantswithreal-timeanimations,astheycanonlydisplaythefinaloutputofademandequationattheendofeachround.Hence, resultsarepresentedstaticallythroughtheuseofspreadsheets.Fig.2showsanexampleofatraditionalequation-basedbusinesssimulationinterface. (a)Startofround (b)Middleofround Figure3:Participantscananalyzeperformanceindicatorschanginginvirtualtimeasthe simulationruns(PanelI.C-Informationoffirms). 3.7 Incontrast,inoursimulation,theresultsofaroundarenottheoutcomeofanequation.Instead,resultsemergefromthecomplexinteractionofseveralconsumeragentsduringaperiodoftime.Consequently,in eachround,participantscananalyzeinvirtualtimethechangeofseveralindicatorsoffirms'performance,suchasquantitiessold,stockandprofit(seeFig.3). 3.8 Importantly,ouragent-basedapproachcanshowhowperformanceindicatorschangeinresponsetothebehaviorofconsumeragents.Theintentionofaconsumertopurchaseaproductisshownbyananimation whereaniconrepresentingacustomermovesfromahouseicontoastoreicon(seeFig.4).Ifconsumerschangetheirpurchaseplans,theymayvisitthesamebakeryseveraltimesduringthesameround. http://jasss.soc.surrey.ac.uk/17/3/7.html 3 22/10/2015 (a)Consumerstrytoaccomplishtheirpurchaseplans (b)Consumersreturnhomeandreformulatetheirpurchaseplans Figure4:Theagent-basedsimulationallowsanalysingthebehaviorofconsumersinvirtualtime. 3.9 Whenelaboratingtheirpurchaseplans,consumersareawareofproductpricesbutnotofproductavailabilityatstores.Accordingly,consumersmayfailtoaccomplishtheirintentionsifaproductisnotavailableat aparticularstore.Insuchcase,theymaygotootherstoresorgiveupontheirpurchaseintentions.Consumersdisplaythelevelofaccomplishmentoftheirintentionsbyagraphicalchangeoftheirstate.Satisfied consumers,i.e.,consumerswhoareabletopurchasealltheproductstheyintendedtogetatagivenstore,arerepresentedwithgreencolorwhiledissatisfiedconsumersarerepresentedwithredcolor(see Fig.4b). ConsumerModel 4.1 Whileseveralmodelsofconsumerbehaviorhavebeenpresented(Delreetal.2010;Leeetal.2013;Sengupta&Glavin2013),theseusuallyarenotsuitedforbusinesssimulations.Theyaimtoexplainparticular phenomenaandarerathercomplex.Teach&Murff(2008)arguethatthetrendtodevelopmoreandmorecomplexmodelsmayinfacthindertheeducationaleffectivenessofbusinesssimulations.Amongother arguments,theauthorschallengethepre-establishedviewthattheamountofcognitiveprocessingofusersrelatestocomplexityofsimulationmodel.Weagreedtothisassessmentandthuscreatedasimple agent-basedmodelforourbusinesssimulation. Asimpleagent-basedmodel 4.2 Inoursimulation,consumerbehaviorisbasedonthedeliberativeBeliefs,DesiresandIntentions(BDI)architecture(Bratman1987),perhapsthebestknownandmoststudiedmodelofpracticalreasoningagents. Inourarchitecture,theinternalstateofthe(artificial)consumerconsistsofthefollowingelementsillustratedinFig.5: Beliefsrepresenttheinformationtheconsumerhasaboutthecurrentstateoftheworld,i.e.,themarketplace,anditsowninternalstate.Twotypesofbeliefsareconsidered: Beliefintheavailabilityofaparticularproductatastore. Beliefthatgivenitsavailablebudget(I),theconsumerisabletopurchaseproducts. Desiresrepresentthegoalsoftheconsumer.Weconsidertheexistenceofthedesiretoconsumeproducts. Intentionsrepresentthepossiblecoursesofactionoftheconsumer.Purchaseintentionsaregeneratedduringthereasoningprocessoftheconsumer,eachforapossiblebundleofproductsgiventheagent's budgetrestriction.Apurchaseintentionischaracterizedbyatuple(x 11,x 12,x 21,x 22)with x ijrepresentingthequantityofproductifromfirmjdesiredbytheagent. Figure5:TherationalityelementsoftheBDIarchitectureofaconsumer. 4.3 Thereasoningprocessofaconsumerconsistsinthefollowingsteps: Step1Theconsumerverifiesthreeconditions:(1)ifthedesiretoconsumegoodsisacurrentgoal,(2)theagentholdsthebeliefinitseconomiccapabilityand(3)atleastonebeliefintheavailabilityofproductsat stores.Ifallthesethreeconditionshold,thereasoningprocessproceedstoStep2.Otherwise,thereasoningprocessends. Step2Foreachaffordablecombinationofgoodstheconsumergeneratesapurchaseintention.Thegenerationofintentionsisgroundedinthebeliefsregardingtheavailabilityofaproductonthemarketandits economiccapability.For illustrationpurposes,considerascenariowherethehumanplayer(Player1)setsprices p1=200andp2=200andtheAIcompetitor(Player2)setsp1=400andp2=400.Aconsumer withabudgetof400believingthatstoreshaveallproductsavailablegeneratesfiveconsumptionintentionsatthisstep.Thegeneratedintentionscorrespondtoallpossiblecombinationsofproductsitcan affordgivenitscurrentbudget:(1,1,0,0),(2,0,0,0),(0,2,0,0),(0,0,1,0)and(0,0,0,1). Step3Theconsumerselectsapreferredintentionfromthelistofpurchaseintentionsaccordingtothemaximizationofanutilityfunction.Incaseofidenticalutilityvalues,arandomfactorisused.Utilityfunction(1) isusedtosimulatethepreferencesoftheconsumer. Step4Theconsumerattemptstoaccomplishitspreferredpurchaseintentionasaneffectivepurchaseplan.Atthispoint,allthesimulatedconsumersattempttopurchasetheirdesiredproductsinsequenceina randomassortment.Theaccomplishmentofanagent'spurchaseplanthusdependsonitsindirectinteractionwithitspeers. http://jasss.soc.surrey.ac.uk/17/3/7.html 4 22/10/2015 Step5Theconsumerupdatesitsbeliefsanddesiresasfollows: Economiccapabilitybelief:accordingtotheamountspentonsuccessfulpurchases,theagentupdatesitsavailablebudgetandthebeliefinitseconomiccapabilityifitstillhasmoneylefttobuy anotherunitofanavailableproduct Productavailabilitybelief:theagentabandonsitsbeliefintheavailabilityofaproductatastoreifitsattempttopurchaseagivenproductatastorewasunsuccessful Desiretoconsume:ifthelistofintentionsgeneratedinStep2isemptytheagentdropsitsdesiretoconsume Afterthisrevision,thereasoningprocessoftheagentreturnstoStep1forareformulationofintentions. 4.4 Whileourbusinesssimulationsimulatesatwo-productduopolywithsingularmarketdynamics,ourmodelofconsumerbehaviorwasdesignedtobeabletoaccommodatethesimulationofdiversemarket structures.TheuseofdistinctutilityfunctionsinStep3canleadtoamyriadofemergenteconomicphenomena.Onthisdiversityliesmuchofthepotentialoftheagent-basedapproachasopposedtotheequationbasedapproach.Forillustrativepurpose,weprovidespecificexamplesofutilityfunctionsthatcancoverthemajoreconomicphenomenaaddressedinintroductorymicroeconomicstextbookssuchasFrank& Glass(1997). Simulationofindependentgoods 4.5 Independentgoodscanbesimulatedinourmodelbyintroducingdifferentbudgetrestrictionsforeachgood.Thefollowingequationsillustrateamarketoftwoindependentgoods. U( x 1,x 2)= b1( j)+ b2( j) (3) x 2p2=I2,x 1p1=I1 (4) I1+I2≤I (5) Simulationofeffectsofchangesinpriceandincome Itispossibletosimulateordinaryaswellasinferiorandnormalgoodsusingourmodelandthefollowingconstruction.Thisconstructionalsoimplementstheconceptofdiminishingmarginalutilitybytheuseofa decreasingpreferencefunction( bi( j))(7).WiththissetofequationswecanalsosimulateVeblengoodsbyintroducingthepriceofthegoodinthedefinitionofthepreferencefunction(bi( j,pi)).Astheprice increases,theconsumercanperceivethisincreaseasanevidenceofhighquality.Asimilarpreferencefunction( bi( j,ai)),varyingwiththeexposureoftheconsumertoadvertising(ai),canmodeladvertising effects. U( x 1,...,x n)= b1( j)+...+ bn( j) (6) bi( j+1)≤bi( j) (7) x 1p1+x 2p2+...+x npn≤I (8) Simulationofsubstituteandcomplementarygoods Itispossibletosimulatesubstitutioneffectsinourmodel.Forinstance,Equation9allowssimulatingperfectsubstitutegoodswhileequation10allowssimulatingsubstitutegoodswithdifferentmarginalutilityrates. U( x 1,x 2)= U( x 1,x 2)= b1( j) (9) b2( j) (10) x 1p1+x 2p2≤I (11) b1( j)+ Complementarygoodscanbesimulatedbyintroducingavirtualcomplementaryproducttotheconsumer'sutilityfunctionwithr 1andr 2representingtheratioofproducts1and2whichcomposethe''virtual'' complementaryproduct12: U( x 1,x 2)= b1( j)+ b2( j)+ b12( j) (12) x 1p1+x 2p2≤I (13) Experiment 5.1 Weconductedanexperimentwithuserstoinvestigatehowtheinformationprovidedbytheagent-basedapproachinfluenceslearningwithbusinesssimulations.Toassesslearningweusedtheclassicalfour-level frameworkofKirkpatrick(1959).ToapplythisframeworkwefollowedtheguidelinesofSchumannetal.(2001)onhowtoadaptKirkpatrick'smodeltobusinesssimulations. 5.2 WedecidedtoassesstwoofthefourlevelsofKirkpatrick'smodel:reactionandlearning.Thereactionlevelassesseshowthelearnerperceivesthesimulationexperience.Atthislevel,wewereinterestedinhow humanplayersperceivetheirlearning.Thelearninglevelevaluatestheextenttowhichparticipantschangetheirattitudes,improvetheirknowledgeorincreasetheirskillwithinthecontextofasimulationsession.At thislevelwewereinterestedintheimprovementofperformanceinplayingthebusinesssimulationandtheacquisitionofbasicconceptsrelatedwithbehavioroffirmsandmarkets.Basedonthesetwolevelswe formulatedthreemainhypotheses: ReactionHypothesis(ReactionLevel):Humanplayerssubjectivelyperceivethattheylearnmorewhenagent-basedinformationispresent. EconomicConceptAcquisitionHypothesis(LearningLevel):Humanplayers'performanceontestsabouteconomicconceptsisbetterwhenagent-basedinformationispresent. In-SimulationPerformanceHypothesis(LearningLevel):Humanplayers'performanceinthesimulationisbetterwhenagent-basedinformationispresent. 5.3 Beforeproceeding,webrieflyexplainwhywedidnotconsidertheothertwolevelsofKirckpatrick'sframework.Thebehaviorlevelrequiresassessinghowparticipantsareabletoapplythenewlyacquired knowledgeandskillstonewsettings.Giventhedifficultiesassociatedwithsuchassessment,thislevelwasnotconsidered.Wealsodidnotevaluatetheresultslevelwhichconsistsoftheevaluationofthereturn oninvestmentofthelearningexperience.Thislevelwasnotapplicableinthecontextofourexperiment. Method SubjectsandDesign 5.4 ThirtysubjectsfromtheNationalInstituteofInformaticsparticipatedinthestudy.Therewere6femalesand24malesbetween22and39yearsofage(average27years).Allsubjectswerestudentsorstaffatthe institute,recruitedthroughflyers.25subjects(83%)hadpreviousexperiencewithcomputersimulations,7subjects(23%)hadpreviousexperiencewithbusinesssimulationsand6subjects(20%)wereacquainted withconceptsfromeconomics.SubjectswerepaidanequivalentofUSD10forparticipation.Toprovideafurtherincentiveforgoodperformance,anextraamount,equivalenttoUSD5,wasawardedtoeach winningparticipant. http://jasss.soc.surrey.ac.uk/17/3/7.html 5 22/10/2015 Figure6:Interfaceofsimulationwithouttheinformationtoolsprovidedbytheagent-basedapproach. 5.5 Wepreparedtwoconditionsasindependentvariables: Richinformation(RI)condition:heresubjectsplaythesimulationwiththecompletesetofinformationtoolsprovidedbytheagent-basedapproach.Accordingly,subjectsusethegraphicalinterfaceshownin Fig.1. Sparseinformation(SI)condition:subjectsplaythesimulationwithoutthesetofinformationtoolsprovidedbytheagent-basedapproach.SubjectsusethegraphicalinterfaceshowninFig.6. 5.6 Thedependentvariableofourstudywasthelearningoutcomeoftheparticipants.WeassessedthisvariableusingthereactionandlearninglevelsofKirckpatrick'sframeworkwiththefollowingmetrics:reaction wasmeasuredbyanalyzingsubjects'answerstoapost-experimentquestionnaire;learningwasmeasuredbyusingtwoapproaches: Pre-experimenttestandpost-experimenttest:Thesetestsaimedtomeasuretheknowledgeofparticipantsonarangeofeconomictopicsrelatedwiththebehavioroffirmsandmarkets. Behaviorlogging:Thebehaviorofparticipantswasloggedduringthesimulationsessions.Toassesssubjects'performanceweusedthefollowingthreemetrics:(1)numberofroundstowingame,(2)profit perround,and(3)cumulativeprofits. 5.7 Inthestudy,abetween-subjectdesignwasusedtocomparetheRIandSIconditions.Subjectswereassignedtotheconditionsrandomly.Duringtheexperiment,subjectswereseatedinfrontofalaptopcomputer andusedamousetointeractwiththesimulation. Materials 5.8 Inthissection,webrieflyreviewthematerialsusedintheexperiment. Instructions Theinstructionsprovidedtothesubjectsconsistedof(i)adescriptionofthepurposeoftheexperiment,(ii)instructionsonhowtoplaythegame,and(iii)theequationofmarketdemand.Participantsweretoldthat theexperimentwasintendedtoinvestigatepeople'sdecisionprocessinabusinesssimulation. Tests Thepre-experimenttestandpost-experimenttestconsistedofthesamesetoffivemultiple-choicequestions.Eachquestionwasdevisedtoassessthesubject'sknowledgeaboutaparticulareconomicconcept. Table1presentsthelistofquestionsused. Questionnaire Thepost-questionnaireisconcernedwiththereactionlevelofthesubjects.Weuseda7-pointLikertscale.Table2presentsthetwostatementsthataimedtoinvestigatesubjects'subjectiveperceptionoftheir knowledgeacquisition. Table1:Questionsofknowledgeacquisitiontests. EconomicConcept ID Question Lawofdemand E-Q1 Ifafirmincreasesthepriceofaproduct(witheverythingelseconstant)whathappens? E-Q2 ConsideramarketwithtwofirmsAandBcompetingtosellthesameproduct.IffirmAincreasesitsprice(witheverythingelseconstant)what happens? E-Q3 ConsideramarketwithtwofirmsAandBcompetingtosellthesameproduct.IffirmAdecreasesitsprice(witheverythingelseconstant)what happens? E-Q4 Consideramarketwithtwofirmscompetingtosellthesameproduct.Thegoalofeachfirmistoincreaseitsworkingcapital.Eachfirmcandecide onthepriceandquantityforsaleofitsproduct.Inthisscenario,whatisthebeststrategyofafirm? E-Q5 ConsideramarketwithtwofirmscompetingtoselltwoproductsAandB.Thegoalofeachfirmistoincreaseitsworkingcapital.Eachfirmcan decideonthepriceandquantityforsaleofitsproduct.Assumeeachfirmhasalimitedwarehousecapacityandafixedcostperunit.Inthis scenario,whatdowepredictthathappensaftersometime? SubstituteProducts Behavioroffirms MarketBehavior Table2:Statementsofreactionquestionnaire. ID Statement R-Q1 Playingthesimulationincreasedmyknowledgeofthedynamicsofmarkets. R-Q2 Playingthesimulationincreasedmyknowledgeofthestrategicbehavioroffirms. Procedure 5.9 Thestudywasconductedbyanexperimenterandanon-technicalassistant,andwasdividedintofivemainparts: 1. 2. 3. 4. 5. Welcome(5min):subjectsarewelcomedtothestudyandreadtheinstructions Profilingandpre-experimenttest(10min):subjectsfillinaprofilingformandanswertheknowledgeacquisitiontestshowninTable1 Training(5min):subjectsplaythesimulationfortworoundsasatrainingsession Simulation(40min):subjectsplaythebusinesssimulationfor15rounds Reactionquestionnaireandpost-experimenttest(10min):subjectsanswerthequestionnaireshowninTable2andtheknowledgeacquisitiontestshowninTable1 http://jasss.soc.surrey.ac.uk/17/3/7.html 6 22/10/2015 5.10 Finally,thesubjectsreceivethereward.Eachexperimentlastedupto1hourand10minutes. Results ReactionHypothesis 5.11 InthissectionweanalyzetheresultsofthereactionquestionnaireinTable2tocomparethesubjectiveperceptionofsubjectsonhowmuchtheylearnedbetweentheRIconditionandtheSIcondition.Resultsfrom thethequestionnairessuggestthatsubjectsintheRIconditionfeltmorestronglytheylearnedaboutmarkets(Mean=5.71,STD=0.73)andbehavioroffirms(Mean=5.93,STD=0.73)thanstudentsintheSI condition(Mean=4.93,STD=1.53andMean=4.60,STD=1.30).1Inparticular,Studentt-tests(unequalvariances)showedthattheagreementlevelsofsubjectsonquestionsR-Q1andR-Q2werestatistically differentbetweentheRIandSIconditions(p<0.05).Figure8summarizesthementionedfindings.Basedonthesefindings,weclaimthattheReactionHypothesisisconfirmed. Figure8:AgreementlevelsonquestionsR-Q1andR-Q2forRIandSIconditions.1:"stronglydisagree";2:"disagree";3:"weaklydisagree";4:"neutral";5:"weaklyagree";6:"agree";7: "stronglyagree". EconomicConceptAcquisitionHypothesis 5.12 Inthissectionweanalyzetheresultsofthepre-experimentandpost-experimentknowledgeteststocomparetheknowledgeacquisitionofsubjectsbetweentheRIconditionandtheSIcondition.Here,knowledge acquisitionorimprovementmeansthatsubjects,whogavewronganswersinthepre-experimenttest,wereabletogivethecorrectanswerinthepost-experimenttest. 5.13 Resultsfromourpre-experimentandpost-experimentknowledgetests(Table1)suggestthatahighpercentageofstudentsalreadyknewtheconceptofthelawofdemand(60%)andsubstitutegoods(70%)– eventhoughonly20%ofthesubjectsreportedhavingpreviousknowledgeineconomics.OurresultssuggestthatthesubjectsunacquaintedwiththeseconceptswerebetterabletolearntheminconditionRIthan inconditionSI.AsshowninFig.9,incomparisontoconditionSI,conditionRIhadahigherproportionofsubjectsshowingsignsofknowledgeimprovementforquestionsE-Q1(lawofdemand)andE-Q2 (substituteproducts). Figure9:ProportionofsubjectswhoshowedsignsofknowlegeimprovementinconditionRIandSI. 5.14 Incontrastwiththelawofdemandandsubstituteproducts,theresultsofourpre-experimenttestsindicatethatonly27%ofstudentshadpriorknowledgeonstrategicbehavioroffirms(E-Q4)andonly30%of studentshadpriorknowledgeontheexpectedoutcomeofthesimulatedmarket(E-Q5).Resultsofourpost-experimenttestsonthosequestionssuggestthatthesubjectsunacquaintedwiththetopicsoffirmand marketbehaviorwerebetterabletolearntheminconditionRIratherthaninconditionSI.AsshowninFig.9,conditionRIhadahigherproportionofsubjectsshowingsignsofknowledgeimprovementinquestions E-Q4andE-Q5,thanconditionSI.Differencesinlearningbetweenthetwoconditionswereparticularlypronouncedwhentestingtheknowledgeofparticipantsonthepredictedoutcomeofthesimulatedmarket (differenceof26%onE-Q5).TheseresultsconfirmtheEconomicConceptAcquisitionHypothesis. In-SimulationPerformanceHypothesis 5.15 Herewewanttocomparesubjects'actualin-simulationbehaviorbetweentheRIconditionandtheSIcondition.Asmetricsweused(1)thenumberofroundstodefeattheAIcompetitor,(2)theprofitsperround (USD)and(3)cumulativeprofits(USD). 5.16 Amongthe19subjectswhowereabletodefeattheAIcompetitor,10wereundertheRIconditionand9undertheSIcondition.Interestingly,thesubjectsintheRIconditionwereabletowininlessrounds(Mean= 9.3,STD=1.16)thansubjectsintheSIcondition(Mean=13.1,STD=2.93).ThisdifferencewasstatisticallysignificantaccordingtoaStudentt-test(p<0.01). 5.17 WecomparedtheaverageprofitperroundofsubjectsunderRIconditionandunderSIcondition.Inlinewiththepreviousresults,wefoundthatsubjectshadhigherprofitsperroundinRIcondition(Mean=4,172, STD=2,772)thaninSIcondition(Mean=2,045,STD=2,273)2.ThisdifferencewasstatisticallysignificantaccordingtoaStudentt-test(p<0.05).Figure10depictstheevolutionofaverageprofitperroundin conditionRIandSI.Asshown,forthemajorityoftherounds(73.3%),subjectswereabletoachievehigherprofitsperroundundertheRIcondition. http://jasss.soc.surrey.ac.uk/17/3/7.html 7 22/10/2015 Figure10:EvolutionofaverageprofitperroundinconditionRIandSI. 5.18 Finally,wealsocomparedRIandSIconditionsaccordingtocumulativeprofitsofsubjectsattheendoftheseventhround(theminimumsetofroundsplayedbysubjects).Ananalysisofourresultsshowedthat,as expected,subjectshadhighercumulativeprofitsintheRIcondition(Mean=23,167,STD=16,628)thanintheSIcondition(Mean=10,508,STD=13,478)3.Thisdifferencewasstatisticallysignificantaccordingto aStudentt-test(p<0.05). DiscussionandConclusions 6.1 Wedescribedabusinesssimulationwherethemarketplaceismodeledasacomplexsystemcomposedofseveralinteractingconsumeragents.Theuniquefeatureofoursimulationisaninterfacethatanimates theoperationoftheagents(consumers)andthusallowstheusertovisualizethedynamicsofthemarketplace. 6.2 Thecorequestionofourworkiswhetherusersactuallylearnbetterwhenprovidedwithinformationfacilitatedbyanagent-basedsimulationofaneconomicenvironment.Toanswerthisquestionwesetoutto investigatelearningattwofundamentallevels:thereactionandlearninglevelsofKirckpatrick'sclassicalframework. 6.3 Thefirstlevel,reaction,consistedontheself-assessmentoflearningbysubjects.Ourresultssupportthehypothesisthatsubjectsperceivebetterlearningwiththeagent-basedinformation.Ofcourse,this subjectivefindingisnotsufficienttosupporttheclaimofimprovedactuallearning.Ashasbeenshown(Sitzmannetal.2010),thecorrelationbetweenself-assessmentandactuallearningisonlymoderate. However,thisisanimportantresultsinceitsuggeststhatparticipantsofbusinesssimulationsaremoreengagedintheirlearningprocesseswhenhavingaccesstoagent-basedinformation. 6.4 Thesecondlevel,learning,allowedustoobjectivelyassesslearningbasedonfactualevidence.Supportedbytheoutcomeofpre-experimentandpost-experimentknowledgeacquisitiontests,weconcludedthat subjectsarebetterabletolearnconceptsfromeconomics,suchasthelawofdemand,substituteproducts,strategicbehavioranddynamicsofmarkets,whenagent-basedinformationispresent.Wealsoobserved thatsubjectsdemonstratebetterin-simulationperformanceinthepresenceofagent-basedinformation. 6.5 Designingaconvincingreal-timeinterfaceforanagent-basedsystemisnotaneasytask.Thedifficultyofsuchendeavortendstoincreasewiththecomplexityoftheagent-basedmodel.Inourwork,wewereable tocreateaninterfacethathadaprovenpositiveinfluenceonthelearningprocessesofusers,asevidencedbytheresultsofourstudy.Thisisasignificantachievementofourdesign.Nonetheless,noveltechniques fromthefieldofintelligentuserinterfacescouldbeappliedtofurtherimprovethecurrentimplementation.Itseemstous,thatthistopicisquiteunexploredandcanbeofgreatinterestbothforthecommunityof businesssimulationsandforthegeneralcommunityofartificialsocietiesandsocialsimulation. 6.6 Regardingthefutureimprovementofouragent-basedmodelwefacetwoofthetraditionalchallengesofdesignersofagent-basedmodels(Knoerietal.2011).Thefirstchallengeishowtoensuremodel validation,andthesecondchallengeishowtocreateasimulationwithbehaviorallyrealisticagents.OurimplementationofrationalchoicetheoryisbasedontheBDIarchitecture,inlinewithwithclassical microeconomics.PropervalidationoftheproposedmodelcanbeachievedusingoneormoreofthevalidationapproachesproposedbyMoss(2008). 6.7 Sun&Naveh(2004)raisedtheinterestingquestionwhetheragent-basedmodelsmightbenefitfromhavingagentswithmorecognitiverealism.Asstatedbefore,itisnotcleariflearning,theprimarypurposeof businesssimulations,dependsonrealismandcomplexity.Accordingly,wemustcarefullystudythistopicinthefutureandtrytobalancetheneedforincreasedrealismwitheffectivelearningprocesses. 6.8 Tosummarize,wehaveoutlinedthethreemainresearchdirectionstofurtherourstudy:(1)intelligentagent-basedinterfaces,(2)extendingandvalidatingthepresentagent-basedmodel,and(3)increasingits realismandcomplexity. Notes 1 Priortostatisticalanalysis,anoutlierwasremovedfromthedataofthereactionquestionnaire.ThissubjectwasunderconditionRIandshowedstrongdisagreementwhenaskedifhehadlearnedaboutthe behavioroffirms(R-Q1)andmarkets(R-Q2)withthesimulation.Whenaskedaboutthereasonsforhisstrongdisagreementthesubjectreportedthathefeltthatthesimulationdidnotportrayareal-lifemarket. Surprisingly,thesubjectwasabletowinthesimulationinfewnumberofrounds(8comparedtothemeanof9.3ofconditionRI),answeredalltheknowledgeacquisitionquestionscorrectlyandshowedadeep knowledgeofthesimulatedmarketwhenquestioned.Hisassessment(1:stronglydisagree)ofsentencesR-Q1andR-Q2largelydeviatedfromtheaverageclassification(Mean=5.71andMean=5.93)ofthe remainingsubjectsunderthesamecondition.Insummary,ourexperimentwasnotdesignedforexpertsineconomics. 2 Priortothisstatisticalanalysis,anoutlierwasremovedfromthedata.ThissubjectwasunderRIconditionandexhibitedaverylowprofitperround(16.8)largelydeviatingfromtheaverage(Mean=4,172)ofthe remainingdata. 3 Priortothisstatisticalanalysis,threeoutlierswereremovedfromthedata.OnewasinconditionRIreportingacumulativeprofitof298,comparablylowerthantheaverage(Mean=23,167)whiletheothertwowere inconditionSI,reportingcumulativeprofitsof36,573and38,620,threetimeshigherthantheaverageoftheset(Mean=10,508). References ARAI,K.,DEGUCHI,H.&MATSUI, H.(2005).Agent-BasedModelingMeetsGamingSimulation.Springer.[doi:10.1007/4-431-29427-9] BANDINI, S.,MANZONI,S.&VIZZARI, G.(2009).Agentbasedmodelingandsimulation:Aninformaticsperspective.JournalofArtificialSocietiesandSocialSimulation12(4),4. http://jasss.soc.surrey.ac.uk/12/4/4.html.[doi:10.1007/978-0-387-30440-3_12] BRATMAN,M.(1987).Intentions,Plans,andPracticalReason .HarvardUniversityPress. CANNON, J.N.,C ANNON, H.M.&SCHWAIGER, M.(2012).Modelingthe'profitable-productdeathspiral':Accountingforstrategicproduct-mixinteractionsinmarketingsimulationgames. Simulation&Gaming43(6), 761-777.[doi:10.1177/1046878111434474] CARVALHO,G.(1995).Modelingthelawofdemandinbusinesssimulators. Simulation&Gaming26(1),60-79.[doi:10.1177/1046878195261006] COURNOT,A.-A.(1838).Recherchessurlesprincipesmathématiquesdelathéoriedesrichesses.Hachette. http://jasss.soc.surrey.ac.uk/17/3/7.html 8 22/10/2015 DELRE, S.,JAGER, W.,BIJMOLT,T.&J ANSSEN,M.(2010).Willitspreadornot?Theeffectsofsocialinfluencesandnetworktopologyoninnovationdiffusion.JournalofProductInnovationManagement27(2),267282.[doi:10.1111/j.1540-5885.2010.00714.x] F RANK,R.H.&GLASS, A.J.(1997).Microeconomicsandbehavior.McGraw-Hill. G OLD, S.(1993).Modelinginteractiveeffectsinmathematicalfunctionsforbusinesssimulations:AcritiqueofGoosenandKusel'sinterpolationapproach.Simulation&Gaming24(1),90-94. [doi:10.1177/1046878193241010] G OLD, S.&PRAY, T.(1995).Theuseofthegammaprobabilitydistribution:AcritiqueofCarvalho'sdemandsimulator.Simulation&Gaming26(1),80-87.[doi:10.1177/1046878195261007] G OLD, S.C.&PRAY, T.F.(1997).Modelingattributesindemandfunctionsofcomputerizedbusinesssimulations:AnextensionofTeach'sgravityflowalgorithm.DevelopmentsinBusinessSimulationand ExperientialExercises24,132-141. G OOSEN, K.,JENSEN,R.&WELLS, R.(2001).Purposeandlearningbenefitsofsimulations:Adesignanddevelopmentperspective.Simulation&Gaming32(1),21-39.[doi:10.1177/104687810103200104] G OOSEN, K.&KUSEL, J.(1993).Aninterpolationapproachtodevelopingmathematicalfunctionsforbusinesssimulations.Simulation&Gaming24(1),76-89.[doi:10.1177/1046878193241009] G OOSEN, K.R.(1981).Ageneralizedalgorithmfordesigninganddevelopingbusinesssimulations.DevelopmentsinBusinessSimulationandExperientialLearning8,41-47. G RößLER, A.,MAIER,F.H.&MILLING, P.M.(2000).Enhancinglearningcapabilitiesbyprovidingtransparencyinbusinesssimulators.Simulation&Gaming31(2),257-278.[doi:10.1177/104687810003100209] G RüNE-YANOFF, T.(2009).Theexplanatorypotentialofartificialsocieties.Synthese169(3),539-555.[doi:10.1007/s11229-008-9429-0] KENWORTHY, J.&WONG, A.(2005).Developingmanagerialeffectiveness:Assessingandcomparingtheimpactofdevelopmentprogrammesusingamanagementsimulationoramanagementgame.Developments inBusinessSimulationsandExperientialLearning 32,164-75. KIRKPATRICK,D.(1959).Techniquesforevaluatingtrainingprograms(afour-partseriesbeginninginthenovemberissue).JournalofAmericanSocietyofTrainingDirectors13(11),3-9. KNOERI, C.,BINDER,C.R.&ALTHAUS, H.-J.(2011).Anagentoperationalizationapproachforcontextspecificagent-basedmodeling. JournalofArtificialSocietiesandSocialSimulation14(2),4. http://jasss.soc.surrey.ac.uk/14/2/4.html. KOPAINSKY,B.,ALESSI, S.M.&PIRNAY-DUMMER,P.(2011).Providingstructuraltransparencywhenexploringamodel'sbehavior:Effectsonperformanceandknowledgeacquisition.In:29thInternational ConferenceoftheSystemDynamicsSociety. LEE, K.,KIM,S.,KIM,C.O.&PARK, T.(2013).Anagent-basedcompetitiveproductdiffusionmodelfortheestimationandsensitivityanalysisofsocialnetworkstructureandpurchasetimedistribution.Journalof ArtificialSocietiesandSocialSimulation16(1),3.http://jasss.soc.surrey.ac.uk/16/1/3.html. MACHUCA,J.A.(2000).Transparent-boxbusinesssimulators:Anaidtomanagethecomplexityoforganizations. Simulation&Gaming31(2),230-239.[doi:10.1177/104687810003100207] MOSS, S.(2008).Alternativeapproachestotheempiricalvalidationofagent-basedmodels. JournalofArtificialSocietiesandSocialSimulation11(1),5.http://jasss.soc.surrey.ac.uk/11/1/5.html. PARUNAK, H.V.D.,SAVIT,R.&RIOLO, R.L.(1998).Agent-basedmodelingvs.equation-basedmodeling:Acasestudyandusers'guide.In:Multi-AgentSystemsandAgent-BasedSimulation.Springer. SAID,L.,BOURON, T.&DROGOUL,A.(2002).Agent-basedinteractionanalysisofconsumerbehavior.In:1stInternationalConferenceonAutonomousAgentsandMultiagentSystems.ACM. SCHUMANN,P.L.,ANDERSON,P.H.,SCOTT, T.W.&LAWTON, L.(2001).Aframeworkforevaluatingsimulationsaseducationaltools.DevelopmentsinBusinessSimulationandExperientialLearning28,215-220. SENGUPTA, A.&GLAVIN,S.E.(2013).Predictingvolatileconsumermarketsusingmulti-agentmethods:Theoryandvalidation.In:SimulationinComputationalFinanceandEconomics:ToolsandEmerging Applications(ALEXANDROVA-KABADJOVA,B.,MARTINEZ-J ARAMILLO, S.,GARCIA-ALMANZA, A.L.&T SANG, E.,eds.).IGIGlobal,Hershey,pp.339-358. SITZMANN,T.,ELY, K.,BROWN, K.G.&BAUER,K.N.(2010).Self-assessmentofknowledge:Acognitivelearningoraffectivemeasure?AcademyofManagementLearning&Education9(2),169-191. SUMMERS,G.J.(2004).Today'sbusinesssimulationindustry. Simulation&Gaming35(2),208-241.[doi:10.1177/1046878104263546] SUN,R.&NAVEH, I.(2004).Simulatingorganizationaldecision-makingusingacognitivelyrealisticagentmodel.JournalofArtificialSocietiesandSocialSimulation7(3)5.http://jasss.soc.surrey.ac.uk/7/3/5.html. T EACH,R.D.(1990).Demandequationswhichincludeproductattributes.DevelopmentsinBusinessSimulationandExperientialLearning17,161-166. T EACH,R.D.&MURFF,E.J.(2008).Arethebusinesssimulationsweplaytoocomplex? DevelopmentsinBusinessSimulation&ExperientialExercises35,205-211. UMEDA,T.,ICHIKAWA,M.,KOYAMA, Y.&DEGUCHI,H.(2009).Evaluationofcollaborativefilteringbyagent-basedsimulationconsideringmarketenvironment.DevelopmentsinBusinessSimulationandExperiential Learning36,214-222. WALDHERR,A.&WIJERMANS, N.(2013).Communicatingsocialsimulationmodelstoscepticalminds.JournalofArtificialSocietiesandSocialSimulation16(4),13.http://jasss.soc.surrey.ac.uk/16/4/13.html. YILMAZ, L.,ÖREN,T.&AGHAEE, N.-G.(2006).Intelligentagents,simulation,andgaming.Simulation&Gaming37(3),339-349.[doi:10.1177/1046878106289089] http://jasss.soc.surrey.ac.uk/17/3/7.html 9 22/10/2015