Midterm Review Packet Answers
Transcription
Midterm Review Packet Answers
Extra Practice Chapter 1 (pp. 896–897) 15. AB 1 BC 5 AC (4x 2 5) 1 (2x 2 7) 5 54 1. Sample answer: Points A, F, and B are collinear. A name for the line is @##$ AB. 6x 2 12 5 54 @##$ is F. 2. The intersection of plane ABC and EG 6x 5 66 ###$ are opposite rays, ###$ 3. Sample answer: ###$ FE and FG FA and ###$ FB x 5 11 are opposite rays. AB 5 4x 2 5 5 4(11) 2 5 5 39 4. Yes; because A, C, and G are noncollinear, there is a BC 5 2x 2 7 5 2(11) 2 7 5 15 } } Because AB 5 39 and BC 5 15, AB and BC are not congruent. plane that contains them. 5. Sample answer: @##$ AB intersects plane AFD at more than one point. 6. PQ 1 QT 5 PT 7. PS 5 PQ 1 QS PQ 1 42 5 54 16. PS 5 12 1 31 PQ 5 54 2 42 AB 1 BC 5 AC (14x 1 5) 1 (10x 1 15) 5 80 24x 1 20 5 80 PS 5 43 24x 5 60 PQ 5 12 8. QR 1 RS 5 QS x 5 2.5 9. PR 5 PQ 1 QR QR 1 17 5 31 AB 5 14x 1 5 5 14(2.5) 1 5 5 40 PR 5 12 1 14 QR 5 31 2 17 BC 5 10x 1 15 5 10(2.5) 1 15 5 40 } } Because AB 5 40 and BC 5 40, AB and BC are congruent. PR 5 26 QR 5 14 10. QS 1 ST 5 QT 11. RT 5 RS 1 ST 31 1 ST 5 42 RT 5 17 1 11 ST 5 42 2 31 RT 5 28 17. AB 1 BC 5 AC (3x 2 7) 1 (2x 1 5) 5 108 5x 2 2 5 108 ST 5 11 12. 5x 5 110 AB 1 BC 5 AC x 5 22 (x 1 3) 1 (2x 1 1) 5 10 AB 5 3x 2 7 5 3(22) 2 7 5 59 3x 1 4 5 10 BC 5 2x 1 5 5 2(22) 1 5 5 49 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3x 5 6 } } Because AB 5 59 and BC 5 49, AB and BC are not congruent. x52 AB 5 x 1 3 5 2 1 3 5 5 1 } } Because AB 5 5 and BC 5 5, AB and BC are congruent. 13. AB 1 BC 5 AC 2 1 2 11 23 2 8 22 1 4 19. M }, } 5 M 2}, 1 2 2 2 1 2 1 2 2 22.3 1 3.1 21.9 2 9.7 20. M }, } 5 M(0.4, 25.8) 2 2 (3x 2 7) 1 (3x 2 1) 5 16 6x 2 8 5 16 1 2 3 2 1 27 1 9 21. M }, } 5 M(1, 1) 2 2 6x 5 24 x54 1 2 5 412 312 22. M }, } 5 M 3, } 2 2 2 AB 5 3x 2 7 5 3(4) 2 7 5 5 BC 5 3x 2 1 5 3(4) 2 1 5 11 } } Because AB 5 5 and BC 5 11, AB and BC are not congruent. 14. 1 3 2 1 7 24 1 1 9 18. M }, } 5 M }, 2} 2 2 2 2 BC 5 2x 1 1 5 2(2) 1 1 5 5 AB 1 BC 5 AC (11x 2 16) 1 (8x 2 1) 5 78 19x 2 17 5 78 19x 5 95 x55 AB 5 11x 2 16 5 11(5) 2 16 5 39 BC 5 8x 2 1 5 8(5) 2 1 5 39 1 1 2 2 1.7 1 8.5 27.9 2 8.2 23. M }, } 5 M(5.1, 28.05) 2 2 }} } 24. ZM 5 Ï (7 2 0) 1 (1 2 1)2 5 Ï 49 5 7 2 So, the length of the segment with endpoint Z and midpoint M is 2 p ZM 5 2 p 7 5 14. }} } 25. YM 5 Ï (1 2 4)2 1 (7 2 3)2 5 Ï 25 5 5 So, the length of the segment with endpoint Z and midpoint M is 2 p YM 5 2 p 5 5 10. }}} } 26. XM 5 Ï (12 2 0)2 1 (4 2 [21])2 5 Ï 169 5 13 So, the length of the segment with endpoint X and midpoint M is 2 p XM 5 2 p 13 5 26. } } Because AB 5 39 and BC 5 39, AB and BC are congruent. Geometry Worked-Out Solution Key ngws-EP.indd 461 461 7/11/06 11:47:38 AM continued }}} } 27. WM 5 Ï (210 2 5)2 1 (25 2 3)2 5 Ï 289 5 17 So, the length of the segment with endpoint W and midpoint M is 2 p WM 5 2 p 17 5 34. }}} } 28. VM 5 Ï [9 2 (23)] 1 [5 2 (24)] 5 Ï 225 5 15 2 2 So, the length of the segment with endpoint V and midpoint M is 2 p VM 5 2 p 15 5 30. }} } 29. UM 5 Ï (11 2 3)2 1 (24 2 2)2 5 Ï 100 5 10 41. The figure is a concave polygon. 42. The figure is not a polygon because at least one side intersects more than two other sides. 43. The figure is not a polygon because part of the figure is not a line segment. 44. The figure is a convex polygon. 45. DFHKB and ABCDEFGHJK are equilateral polygons. DFHKB is a pentagon because it has five sides. ABCDEFGHJK is a decagon because it has ten sides. So, the length of the segment with endpoint U and midpoint M is 2 p UM 5 2 p 10 5 20. 30. m∠QPS 5 m∠QPR 1 m∠RPS 5 578 1 648 5 1218 46. Sample answer: 31. m∠LMN 5 m∠LMJ 1 m∠JMN 5 368 1 688 5 1048 ABK is a triangle. 32. ∠WXY > ∠ZWY, so m∠ZWY 5 438. AEJK is a quadrilateral. BDFHK is a pentagon. m∠XWZ 5 m∠XWY 1 m∠ZWY 5 438 1 438 5 868 ADGHJK is a hexagon. 33. m∠ABC 5 m∠ABD 1 m∠CBD JCDEFGH is a heptagon. 1338 5 (7x 1 4)8 1 (3x 1 9)8 133 5 10x 1 13 47. 91 5 l(7) 120 5 10x 13 5 l 12 5 x The length l is 13 centimeters. So, m∠ABD 5 (7x 1 4)8 5 (7[12] 1 4)8 5 888. 34. m∠GHK 5 178 4x 2 3 5 17 A 5 lw 1 1 48. A 5 } bh 5 }(6)(8) 5 24 2 2 The area of the triangle is 24 square feet. 4x 5 20 x55 So, m∠KHJ 5 (3x 1 2)8 5 (3[5] 1 2)8 5 178. 35. Because they share a common vertex and side, but have no common interior points, ∠1 and ∠2 are adjacent angles. 49. 36. 418 1 m∠1 1 498 1 m∠2 5 1808 50. 1 A 5 }2 bh 1 66 5 }2(12)h 11 5 h The height h of the triangle is 11 meters. y 908 1 m∠1 1 m∠2 5 1808 B(3, 6) m∠1 1 m∠2 5 908 So, ∠1 and ∠2 are complementary. 37. The sides of ∠1 and ∠2 form two pairs of opposite rays. So ∠1 and ∠2 are vertical angles. Also, ∠1 forms a linear pair with a right angle. The angles in a linear pair are supplementary, so m∠1 1 908 5 1808, or m∠1 5 908. Similarly, m∠2 5 908. So ∠1 and ∠2 are supplementary because m∠1 1 m∠2 5 908 1 908 5 1808. 38. Sample answer: ∠ACE and ∠ACB form a linear pair, so they are supplementary. ∠ACB > ∠BCD, so m∠ACB 5 m∠BCD. Using substitution, m∠ACE 1 m∠BCD 5 1808. So, ∠ACE and ∠BCD are supplementary. 39. Sample answer:∠ACE and ∠BCF are vertical angles that cannot be complementary, because each angle is obtuse. 40. Because ∠ACF is a straight angle, m∠DCF 5 908, and ∠ACB > ∠BCD, ∠ACB and ∠BCD are complementary angles and adjacent angles. Because ∠BCE is a straight angle, m∠DCF 5 908, and ∠ECF > ∠BCD, ∠ECF and ∠BCD are complementary angles, and neither vertical nor adjacent angles. Because ∠ECF > ∠BCD, ∠ECF and ∠ACB are complementary angles and vertical angles. 462 1 A(2, 1) C(6, 1) x 1 }} } }} } AB 5 Ï(3 2 2)2 1 (6 2 1)2 5 Ï26 ø 5.1 BC 5 Ï(1 2 6)2 1 (6 2 3)2 5 Ï34 ø 5.8 AC 5 6 2 2 5 4 P 5 AB 1 BC 1 AC ø 5.1 1 5.8 1 4 5 14.9 The height h is the vertical distance from B to the } horizontal base AC, so h 5 6 2 1 5 5. 1 1 A 5 }2 bh 5 }2 (4)(5) 5 10 So, the perimeter of nABC is about 14.9 units and the area is 10 square units. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Extra Practice, Geometry Worked-Out Solution Key ngws-EP.indd 462 7/11/06 11:47:42 AM Extra Practice, 51. continued 6. Starting with the third number, each number is the sum of y the previous two numbers. F(6, 5) The next number in the pattern is 16 1 26 5 42. 214 1 D (1, 1) E(3, 1) 2, x 1 2, 4, 212 DE 5 3 2 1 5 2 }} } }} } EF 5 Ï(6 2 3)2 1 (5 2 1)2 5 Ï25 5 5 P 5 DE 1 DF 1 EF ø 2 1 6.7 1 5 5 13.7 The height h is the vertical distance from F to the } horizontal line containing base DE, so h 5 5 2 1 5 4. 1 1 A 5 }2 bh 5 }2(2)(4) 5 4 So, the perimeter of nDEF is about 13.7 units and the area is 4 square units. Chapter 2 (pp. 898–899) 15, 21, 13, 19, . . . The pattern alternates between adding 6 to the previous number and subtracting 8 from the previous number. The next number in the pattern is 19 2 8 5 11. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0.5, 1 0.25, 0.125, 0.0625, . . . 1 3}2 1 3}2 3}2 Each number is }12 the previous number. The next number in the pattern is }12 (0.625) 5 0.03125. The numbers are consecutive prime numbers. The next prime number in the pattern is 17. 7.5, 8.0, 8.5, . . . Each number is 0.5 more than the previous number. The next number in the pattern is 8.5 1 0.5 5 9.0 1 3 1 9 }, 1 }, 1 3}3 3}3 If x 5 0, then 2x 5 0, so 2x ò x. Because a counterexample exists, the conjecture is false. 9. Sample answer: AB can be drawn so that it divides Suppose m∠A 5 408. ###$ ∠A into two 208 angles. So ∠A can be bisected, but ∠A is not obtuse. Because a counterexample exists, the conjecture is false. 20� 20� B 10. If-then form: If two lines intersect, then they form two pairs of vertical angles. Inverse: If two lines do not intersect, then they do not form two pairs of congruent angles. Contrapositive: If two lines do not form two pairs of vertical angles, then the two lines do not intersect. regular polygon. Converse: If a figure is a four-sided regular polygon, then it is a square. Inverse: If a figure is not a square, then it is not a four-sided regular polygon. 10.5 10.5 10.5 5. 1, 8. Sample answer: 11. If-then form: If a figure is a square, then it is a four-sided 3. 2, 3, 5, 7, 11, 13, . . . 4. 7.0, 4 1 6 10 1 16 Converse: If two lines form two pairs of vertical angles, then the two lines intersect. 1 3}2 10, 16, 26, . . . The difference of 10 and 12 is 10 2 12 5 22 and 22 is not between 10 and 12. Because a counterexample exists, the conjecture is false. A 16 28 16 28 16 2. 1, 6, 7. Sample answer: DF 5 Ï(6 2 1)2 1 (5 2 1)2 5 Ï45 ø 6.7 1. 17, 23, 6 1 10 1 27 }, . . . Contrapositive: If a figure is not a four-sided regular polygon, then it is not a square. 12. False; Not all hexagons are regular. Counterexample: 1 3}3 Each number is }13 the previous number. 1 } The next number in the pattern is }13 1 } 27 2 5 81 . 1 13. True; By definition, two angles are complementary angles if the sum of their measures is 908. 14. By the Law of Syllogism, the given conditional statements lead to the following conditional statement: “If a triangle is equilateral, then it is regular.” Geometry Worked-Out Solution Key ngws-EP.indd 463 463 7/11/06 11:47:49 AM Extra Practice, continued 15. By the Law of Syllogism, the given conditional statements lead to the following conditional statement: “If two coplanar lines are not parallel, then they form congruent vertical angles.” 16. John only does his math homework when he is in study hall. John is doing his math homework. So, John is in study hall. 17. May sometimes buys pretzels when she goes to the supermarket. May is at the supermarket. So, she might buy pretzels. @##$, but 18. Cannot be determined; The marking shows @##$ SV ⊥ TW that does not guarantee that @##$ SV is perpendicular to every line in plane Z that it intersects. 31. If m∠JKL 5 m∠GHI and m∠GHI 5 m∠ABC, then m∠JKL 5 m∠ABC. Transitive Property of Equality 32. If m∠MNO 5 m∠PQR, then m∠PQR 5 m∠MNO. Symmetric Property of Equality 33. m∠XYZ 5 m∠XYZ Reflexive Property of Equality 34. Given: Point C is in the interior of ∠ABD. ∠ABD is a right angle. Prove: ∠ABC and ∠CBD are complementary. A C 19. True; The diagram shows that point Y lies in plane Z and 20. B @##$ lies in plane Z. True; The diagram shows that TW 21. False; ∠SYT and ∠WYS are adjacent because they share side ###$ YS . 22. False; ∠SYT and ∠TYV are both right angles, so they are Statements Reasons 1. ∠ABD is a right angle. 1. Given 2. m∠ABD 5 908 2. Definition of right angle ###$ of ∠TYU and 23. True; The noncommon sides ###$ YT and YW 3. Point C is in the interior of ∠ABD. 3. Given 24. Cannot be determined; The diagram does not give 4. m∠ABD 5 m∠ABC 1 4. Angle Addition Postulate m∠CBD supplementary. ∠UYW are opposite rays. enough information. 25. 4x 1 15 5 39 Write original equation. 4x 5 24 Subtraction Property of Equality x56 Division Property of Equality 26. 6x 1 47 5 10x 2 9 Write original equation. 47 5 4x 2 9 Subtraction Property of Equality 56 5 4x Addition Property of Equality 14 5 x Divison Property of Equality 27. 2(27x 1 3) 5 250 214x 1 6 5 250 214x 5 256 x54 54 1 9x 5 21x 1 18 54 5 12x 1 18 36 5 12x 35x 5. 908 5 m∠ABC 1 m∠CBD 5. Substitution Property of Equality 6. ∠ABC and m∠CBD are complementary. 6. Definition of complementary angles } } } 35. Given: XY > YZ > ZX Prove: The perimeter of nXYZ is 3 p XY. X Write original equation. Distributive Property Subtraction Property of Equality Division Property of Equality 28. 54 1 9x 5 3(7x 1 6) Z Y Write original equation. Subtraction Property of Equality Statements } } 1. XY > YZ > ZX Subtraction Property of Equality 2. XY 5 YZ 5 ZX 2. Definition of congruent segments 3. Perimeter of nXYZ 5 XY 1 YZ 1 ZX 3. Perimeter formula 4. Perimeter of nXYZ 5 XY 1 XY 1 XY 4. Substitution 5. Perimeter of nXYZ 5 3 p XY 5. Simplify. Distributive Property } Division Property of Equality 29. 13(2x 2 3) 2 20x 5 3 Write original equation. 26x 2 39 2 20x 5 3 Distributive Property 6x 2 39 5 3 Simplify. 6x 5 42 Addition Property of Equality x57 Division Property of Equality 30. 31 1 25x 5 7x 2 14 1 3x Write original equation. 31 1 25x 5 10x 2 14 Simplify. 31 1 15x 5 214 Subtraction Property of Equality 15x 5 245 Subtraction Property of Equality x 5 23 464 D Reasons 1. Given Copyright © by McDougal Littell, a division of Houghton Mifflin Company. @##$ passes through point Z. XU 36. If m∠CGF 5 1588, the m∠EGD 5 1588. ∠CGF and ∠EGD are vertical angles, so they are congruent by the Vertical Angles Congruence Theorem. Division Property of Equality Geometry Worked-Out Solution Key ngws-EP.indd 464 7/11/06 11:47:53 AM Extra Practice, continued 37. If m∠EGA 5 678, the m∠FGD 5 238. Because m∠AGD 5 908, m∠AGC 5 1808 2 908 5 908 by the Linear Pair Postulate. Then, m∠EGC 5 m∠AGC 2 m∠EGA 5 908 2 678 5 238. Because ∠EGC and ∠FGD are vertical angles, they are congruent. So, m∠EGC 5 m∠FGD 5 238. 38. If m∠FGC 5 1498, then m∠EGA 5 598. By the Vertical Angles Congruence Theorem, m∠BGC 5 908. So, m∠FGB 5 m∠FGC 2 m∠BGC 5 1498 2 908 5 598. Because ∠FGB and ∠EGA are vertical angles, they are congruent. So, m∠FGB 5 m∠EGA 5 598. 39. m∠DGB 5 908 Because m∠AGD 5 908, m∠DGB 5 1808 2 908 5 908 by the Linear Pair Postulate. 40. m∠FGH 5 908 ∠AGD and ∠BGD form a linear pair, and m∠AGD 5 908. So, m∠BGD 5 908. m∠BGD 5 m∠FGB 1 m∠FGD. It is given that ∠FGD > ∠BGH, so m∠FGD 5 m∠BGH. Using substitution, m∠FGB 1 m∠BGH 5 908. So, m∠FGH 5 908. 41. Given: ∠UKV and ∠VKW are complements. Prove: ∠YKZ and ∠XKY are complements. U Z V 9. ∠CJD and ∠FKL are alternate exterior angles. ∠CJD and ∠AML are alternate exterior angles. 10. ∠LMJ and ∠MLK are consecutive interior angles. ∠LMJ and ∠MJK are consecutive interior angles. @##$ is a transversal of @##$ @##$. 11. BG AD and HE @##$ is a transversal of @##$ @##$. CF AD and HE 12. m∠1 5 448, m∠2 5 1368; m∠2 5 1368 because when two parallel lines are cut by a transversal, the alternate exterior angles are congruent; m∠1 5 448 because it is a linear pair with ∠2 (1808 2 1368 5 448). 13. m∠1 5 688, m∠2 5 1128; m∠1 5 688 because when two parallel lines are cut by a transversal, the alternate interior angles are congruent; m∠2 5 1128 because it is a linear pair with ∠1 (1808 2 688 5 1128). 14. m∠1 5 1068, m∠2 5 1068; m∠1 5 1068 because when two parallel lines are cut by a transversal, the corresponding angles are congruent; m∠2 5 1068 because vertical angles are congruent. 15. Because alternate interior angles are congruent, 9x8 5 818 x59 Because two angles that form a linear pair are supplementary, K (100 2 y)8 1 818 5 1808 W Y 8. ∠AML and ∠MLK are alternate interior angles. 181 2 y 5 180 X 181 5 y 1 180 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Statements 1. ∠UKV and ∠VKW are complements. Reasons 1. Given 3x8 1 908 5 1808 2. m∠UKV 1 m∠VKW 2. Definition of complementary angles 5 908 3. ∠UKV > ∠XKY, ∠VKW > ∠YKZ 15y 16. Because consecutive interior angles are supplementary, 3. Vertical angles are congruent. 4. m∠UKV 5 m∠XKY, 4. Definition of congruent m∠VKW 5 m∠YKZ angles (13y 1 5)8 1 (5y 2 5)8 5 1808 3x 5 90 18y 5 180 x 5 30 y 5 10 17. Because alternate exterior angles are congruent, (7y 2 18)8 5 (6y 1 1)8 y 2 18 5 1 y 5 19 5. m∠YKZ 1 m∠XKY 5 908 5. Substitution Because two angles that form a linear pair are supplementary, 6. ∠YKZ and ∠XKY are complements. 6. Definition of complementary angles (6y 1 1)8 1 (3x 2 10)8 5 1808 6(19) 1 1 1 3x 2 10 5 180 114 1 1 1 3x 2 10 5 180 Chapter 3 (pp. 900–901) 1. ∠6 and ∠2 are corresponding angles. 2. ∠7 and ∠2 are alternate exterior angles. 3x 1 105 5 180 3x 5 75 x 5 25 3. ∠5 and ∠3 are consecutive interior angles. 18. No, there is not enough information to prove that min. 4. ∠4 and ∠5 are alternate interior angles. 19. Yes; You would use the Consecutive Interior Angles 5. ∠1 and ∠5 are corresponding angles. 6. ∠3 and ∠6 are alternate interior angles. 7. ∠AMB and ∠HLM are corresponding angles. Converse Theorem. If two lines are cut by a transversal so that a pair of consecutive interior angles are supplementary, then the lines are parallel. ∠AMB and ∠MJC are corresponding angles. Geometry Worked-Out Solution Key ngws-EP.indd 465 465 7/11/06 11:47:56 AM continued 20. Yes; You would use the Consecutive Interior Angles Converse Theorem. If two lines are cut by a transversal so that a pair of consecutive interior angles are supplementary, then the lines are parallel. 21. Yes; If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel. 22. Yes; Sample answer: If two lines are cut by a transversal so the alternate interior angles are congruent, then the lines are parallel. 23. Yes; If two lines are cut by a transversal so the consecutive interior angles are supplementary, then the lines are parallel. 524 1 24. Slope of Line 1: m 5 } 5 } 10 2 7 3 31. y 5 mx 1 b 2 When m 5 }3 , x 5 23, and y 5 0: 2 0 5 }3(23) 1 b 0 5 22 1 b 25b 2 So, y 5 }3x 1 2. 32. y 5 mx 1 b 1 When m 5 2}3, x 5 9, and y 5 4: 1 4 5 2}3 (9) 1 b 523 2 1 5 }6 5 }3 Slope of Line 2: m 5 } 822 4 5 23 1 b Parallel; The lines are parallel because the slopes are equal. 521 4 25. Slope of Line 1: m 5 } 5 } 5 4 1 22 2 (23) 22 2 (23) 1 5 }6 Slope of Line 2: m 5 } 5 2 (21) 75b 1 So, y 5 2}3 x 1 7. 33. y 5 mx 1 b When m 5 22, x 5 1, and y 5 22: Neither; The lines are not parallel because the slopes are not equal and the lines are not perpendicular because the product of the slopes is not 21. 720 7 1 26. Slope of Line 1: m 5 } 5 } 5 } 14 2 8 2 (26) 22 5 22(1) 1 b 22 5 22 1 b 05b So, y 5 22x. 34. y 5 mx 1 b 224 22 5} 5 22 Slope of Line 2: m 5 } 221 1 When m 5 2}3 , x 5 6, and y 5 3: Perpendicular; The lines are perpendicular because the product of their slopes is 21. 3 5 2}3 (6) 1 b 29 2 (26) 23 3 27. Slope of Line 1: m 5 } 5 } 5 } 24 2 0 24 4 925 4 3 5 22 1 b 55b So, y 5 2}3 x 1 5. 3 Line 2 is steeper because }3 > }4. 3 2 (25) 21 2 (21) 1 1 5 }3 Slope of Line 2: m 5 } 1 2 (22) 4 1 8 0 28. Slope of Line 1: m 5 } 5 } undefined 0 424 35. y 5 mx 1 b When m 5 1, x 5 27, and y 5 3: 3 5 1(27) 1 b 3 5 27 1 b Slope of Line 2: m 5 } 5} 50 22 25 2 (23) 10 5 b Line 1 is steeper because Line 1 is a vertical line and Line 2 is a horizontal line. So, y 5 x 1 10. 621 5 29. Slope of Line 1: m 5 } 5 } 5 5 221 1 10 2 1 9 When m 5 4, x 5 0, and y 5 3: 1 5 }2 5 4}2 Slope of Line 2: m 5 } 321 1 Line 1 is steeper because 5 > 4}2 . 30. y 5 mx 1 b When m 5 2, x 5 4, and y 5 7: 36. y 5 mx 1 b 3 5 4(0) 1 b 3501b 35b So, y 5 4x 1 3. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Extra Practice, 7 5 2(4) 1 b 7581b 21 5 b So, y 5 2x 2 1. 466 Geometry Worked-Out Solution Key ngws-EP.indd 466 7/11/06 11:47:59 AM Extra Practice, continued 45. Given: ###$ BA ⊥ ###$ BC, 37. y 5 mx 1 b ###$ bisects ∠ABC. BD 2 When m 5 }5, x 5 29, and y 5 4: 2 B 18 4 5 2} 1b 5 Reasons ###$ ⊥ BC ###$ 1. BA 38 5 1. Given 2. ∠ABC is a right angle. 2. Definition of perpendicular lines 38 So, y 5 }5 x 1 } . 5 38. y 5 mx 1 b 3. m∠ABC 5 908 3. Definition of right angle 23 5 1(8) 1 b ###$ bisects ∠ABC. 4. BD 4. Given 23 5 8 1 b 5. m∠ABD 5 m∠DBC 5. Definition of angle bisector 6. m∠ABC 5 m∠ABD 1 m∠DBC 6. Angle Addition Postulate 7. m∠ABD 1 m∠DBC 5 908 7. Transitive Property of Equality 8. m∠ABD 1 m∠ABD 5 908 8. Substitution Property of Equality 9. 2(m∠ABD) 5 908 9. Simplify. 10. m∠ABD 5 458 10. Division Property of Equality When m 5 1, x 5 8, and y 5 23: 211 5 b So, y 5 x 2 11. 39. m∠ADB 1 m∠BDC 5 m∠ADC m∠ADB 1 218 5 908 m∠ADB 5 698 40. m∠ADB 5 908 because vertical angles are congruent. 41. m∠ADB 1 178 5 908 m∠ADB 5 738 42. m∠ADB 1 m∠BDC 5 m∠ADC 2x8 1 (x 1 12)8 5 908 2x 1 x 1 12 5 90 3x 1 12 5 90 3x 5 78 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. C Statements }5b Chapter 4 (pp. 902–903) 1. y B x 5 26 m∠ADB 5 2x8 5 (2 p 26)8 5 528 43. m∠ADB 1 m∠BDC 5 m∠ADC (3x 1 32)8 1 26x8 5 908 3x 1 32 1 26x 5 90 29x 1 32 5 90 29x 5 58 x52 m∠ADB 5 (3x 1 32)8 5 (3(2) 1 32)8 5 (6 1 32)8 5 388 44. D Prove: m∠ABD 5 458 4 5 }5 (29) 1 b 2 A m∠ADB 1 m∠BDC 5 m∠ADC (4x 2 1)8 1 (2x 1 1)8 5 908 4x 2 1 1 2x 1 1 5 90 6x 5 90 x 5 15 C 1 x 22 A }}} AB 5 Ï(21 2 (21))2 1 (2 2 (22))2 } } 5 Ï0 1 16 5 Ï16 5 4 }}} } } AC 5 Ï(4 2 (21))2 1 (2 2 (22))2 5 Ï25 1 16 5 Ï41 }} } } BC 5 Ï(4 2 (21))2 1 (2 2 2)2 5 Ï25 1 0 5 Ï25 5 5 Because no sides are congruent, the triangle is scalene. 2 2 (22) 4 } Slope of AB: m 5 } 5 }0 undefined 21 2 (21) 0 222 } Slope of BC: m 5 } 5 }5 5 0 4 2 (21) } } } } Because AB is vertical and BC is horizontal, AB ⊥ BC. So, the triangle is a right triangle. m∠ADB 5 (4x 2 1)8 5 (4(15) 2 1)8 5 (60 2 1)8 5 598 Geometry Worked-Out Solution Key ngws-EP.indd 467 467 7/11/06 11:48:03 AM Extra Practice, 2. continued 7. nDFG > nFDE; you can prove this by either using y the SAS Congruence Postulate or the ASA Congruence Postulate. B 1 x 22 8. nJNM > nKML; using the information given in the A C }}} } } AB 5 Ï(3 2 (21))2 1 (1 2 (21))2 5 Ï16 1 4 5 Ï20 }}} } } AC 5 Ï(2 2 (21))2 1 (22 2 (21))2 5 Ï9 1 1 5 Ï10 }} } } BC 5 Ï(2 2 3)2 1 (22 2 1)2 5 Ï1 1 9 5 Ï10 Because two sides are congruent, the triangle is isosceles. 22 2 (21) 21 1 5} 5 2}3 Slope of AC: m 5 } 3 2 2 (21) sides are congruent. 11. (7x 2 5)8 5 448 5x 1 85 5 180 23 22 2 1 } Slope of BC: m 5 } 5} 53 223 21 7x 5 49 5x 5 95 1 } } Because 2}3 p 3 5 21, AC ⊥ BC. So, the triangle is a right triangle. y 9. STWX > UTWV; all pairs of corresponding angles and 10. 5x8 1 368 1 498 5 1808 } 3. A diagram, you can use either the SAS Congruence Postulate or the SSS Congruence Postulate. Because } } JN i KM you know that ∠N > ∠KML by the Corresponding Angles Postulate. So you can now also use the ASA Congruence Postulate. x57 x 5 19 12. No; the labels are not in the appropriate order to match the sides that are congruent. A true congruence statement would be nPQR > nTVU. B 13. No; the labels are not in the appropriate order to match 1 x C }} } } AB 5 Ï(2 2 (23))2 1 (4 2 4)2 5 Ï25 1 0 5 Ï25 5 5 }}} AC 5 Ï(5 2 (23)) 1 (22 2 4) 2 } 2 2 } Because no sides are congruent, the triangle is scalene. 0 424 5 }5 5 0 Slope of AB: m 5 } 2 2 (23) } 26 3 22 2 4 } Slope of AC: m 5 } 5} 5 2}4 8 5 2 (23) } 22 2 4 522 26 3 Slope of BC: m 5 } 5 } 5 22 Because there are not any negative reciprocals, there are no perpendicular lines. So, the triangle is not a right triangle. 4. x8 1 3x8 1 568 5 1808 } } } } BC 5 Ï(6 2 2)2 1 (2 2 6)2 5 Ï16 1 16 5 Ï 32 }}} } } PQ 5 Ï(3 2 (21))2 1 (3 2 (22))2 5 Ï16 1 25 5 Ï41 }}} PR 5 Ï(7 2 (21))2 1 (21 2 (22))2 } } 5 Ï64 1 1 5 Ï65 }} } } QR 5 Ï(7 2 3)2 1 (21 2 3)2 5 Ï16 1 16 5 Ï32 Because all 3 pairs of corresponding sides are congruent, nABC > nPQR. }} } } 16. AB 5 Ï (2 2 (24))2 1 (6 2 5)2 5 Ï 36 1 1 5 Ï 37 }}} } } AC 5 Ï(22 2 (24))2 1 (3 2 5)2 5 Ï4 1 4 5 Ï8 }} } } BC 5 Ï(22 2 2)2 1 (3 2 6)2 5 Ï16 1 9 5 Ï25 5 5 }} } } PQ 5 Ï(8 2 2)2 1 (2 2 1)2 5 Ï36 1 1 5 Ï37 }} } } }} } } PR 5 Ï(5 2 2)2 1 (21 2 1)2 5 Ï9 1 4 5 Ï13 4x 1 56 5 180 4x 5 124 x 5 31 The angles of the triangle are 318, (3 3 31)8 5 938, and 568. So, the triangle is an obtuse triangle. 5. x8 1 (x 1 1)8 1 (x 1 5)8 5 1808 3x 1 6 5 180 3x 5 174 x 5 58 The angles of the triangle are 588, (58 1 1)8 5 598, and (58 1 5)8 5 638. So, the triangle is an acute triangle. 6. Because the angles form a linear pair, 608 1 x8 5 1808. So, x 5 120. The angles of the triangle are 908, 608, and (180 2 90 2 60)8 5 308. So, the triangle is a right triangle. 468 } }} } BC 5 Ï(5 2 2) 1 (22 2 4) 5 Ï9 1 36 5 Ï45 2 } }} AC 5 Ï(6 2 (22))2 1 (2 2 1)2 5 Ï64 1 1 5 Ï65 } 5 Ï64 1 36 5 Ï100 5 10 }} }} 15. AB 5 Ï (2 2 (22))2 1 (6 2 1)2 5 Ï 16 1 25 5 Ï 41 QR 5 Ï(5 2 8)2 1 (21 2 2)2 5 Ï9 1 9 5 Ï18 } } } } Because AC À PR and BC À QR, nABC À nPQR. } } 17. nXUV > nVWX; because XV > XV, the triangles are congruent by the HL Congruence Theorem. 18. nNRM > nPRQ; because ∠NRM > ∠PRQ by the Vertical Angles Congruence Theorem, nNRM > nPRQ by the SAS Congruence Postulate. 19. nHJL > nKLJ; ∠HJL > ∠JLK by the Alternate } } Interior Angles Theorem. Because JL > LJ, nHJL > nKLJ by the SAS Congruence Postulate. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 21 the sides that are congruent. A true congruence statement would be nJKM > nLKM. } } 14. Yes; by the Segment Addition Postulate, AC > BD. Also, } } CD > DC. So nACD > nBDC by the SSS Congruence Postulate. 20. Yes; because ∠HLG > ∠KLJ by the Vertical Angles Congruence Theorem, nGHL > nJKL by the ASA Congruence Postulate. Geometry Worked-Out Solution Key ngws-EP.indd 468 7/11/06 11:48:08 AM Extra Practice, } continued } 21. Yes; because QN > QN, nMNQ > nPNQ by the AAS 31. 9x 1 12 5 12x 2 6 Congruence Theorem. 23x 5 218 22. No; you can only show that all 3 angles are congruent. x56 23. Yes; nABC > nDEF by the ASA Congruence Postulate. (9x 2 12)8 1 (12x 2 6)8 1 y8 5 1808 24. No; there is no SSA Congruence Postulate. 9x 1 12 1 12x 2 6 1 y 5 180 25. State the given information from the diagram, and state } } that AC > AC by the Reflexive Property of Congruence. Then use the SAS Congruence Postulate to prove nABC > nCDA, and state ∠1 > ∠2 because corresponding parts of congruent triangles are congruent. 21x 1 6 1 y 5 180 y 5 174 2 21x y 5 174 2 21(6) 5 48 32. 2x 2 3 5 11 26. State the given information from the diagram. Prove nDEF > nGHJ by the HL Congruence Theorem, and state ∠1 > ∠2 because corresponding parts of congruent triangles are congruent. x57 5x 5 10 } that SR > SR by the Reflexive Property of Congruence. Then use the Segment Addition Postulate to show } } that PR > US. Use the SAS Congruence Postulate to prove nQPR > nTUS, and state ∠1 > ∠2 because corresponding parts of congruent triangles are congruent. }} } }} } } }} } } x52 34. 2(x 1 1)8 5 628 2 2(x 1 1)8 1 628 1 y8 5 1808 2x 1 2 5 62 2x 1 2 1 62 1 y 5 180 2x 5 60 2x 1 64 1 y 5 180 } x 5 30 28. AB 5 Ï (6 2 0) 1 (0 2 8) 5 Ï 36 1 64 5 Ï 100 5 10 2 y57 33. 6x 2 5 5 x 1 5 27. State the given information from the diagram, and state } y 1 4 5 11 2x 5 14 y 5 116 2 2x y 5 116 2 2(30) AC 5 Ï(0 2 0)2 1 (0 2 8)2 5 Ï0 1 64 5 Ï64 5 8 BC 5 Ï(0 2 6) 1 (0 2 0) 5 Ï36 1 0 5 Ï36 5 6 2 2 }} DE 5 Ï(9 2 3)2 1 (2 2 10)2 } 5 56 35. Because the triangle is a right triangle with two congruent sides, the 2 remaining angles must measure } 5 Ï36 1 64 5 Ï100 5 10 }} } } 5 } 5 458. DF 5 Ï(3 2 3)2 1 (2 2 10)2 5 Ï0 1 64 5 Ï64 5 8 }} } } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. EF 5 Ï(3 2 9)2 1 (2 2 2)2 5 Ï36 1 0 5 Ï36 5 6 Because all 3 pairs of corresponding sides are congruent, nABC > nDEF by the SSS Congruence Postulate. Then, ∠A > ∠D because corresponding parts of congruent triangles are congruent. 908 2 1808 2 908 2 } (2x 2 11)8 5 458 1 29. AB 5 Ï (22 2 (23)) 1 (3 2 (22)) } 2 P9 } P S9 S }}} AC 5 Ï(2 2 (23))2 1 (2 2 (22))2 37. y 21 5 Ï1 1 25 5 Ï26 } y 5 29 x 5 28 36. }}} 2 (y 1 16)8 5 458 2x 5 56 Q9 S9 } }} P9 P } S } DE 5 Ï(6 2 5) 1 (6 2 1) 5 Ï1 1 25 5 Ï26 2 2 }} } }} } } DF 5 Ï(10 2 5)2 1 (5 2 1)2 5 Ï25 1 16 5 Ï41 } EF 5 Ï(10 2 6) 1 (5 2 6) 5 Ï16 1 1 5 Ï17 2 2 Because all 3 pairs of corresponding sides are congruent, nABC > nDEF by the SSS Congruence Postulate. Then, ∠A > ∠D because corresponding parts of congruent triangles are congruent. 30. x8 1 y8 1 1328 5 1808 x8 1 x8 1 1328 5 1808 2x8 5 488 x 5 24 y 5 x 5 24 x R9 R } BC 5 Ï(2 2 (22)) 1 (2 2 3) 5 Ï16 1 1 5 Ï17 2 1 Q 21 5 Ï25 1 16 5 Ï41 2 Q9 x } }}} y R9 Q R 38. y P9 S9 Q9 R9 1 P 21 S x Q R Geometry Worked-Out Solution Key ngws-EP.indd 469 469 7/11/06 11:48:13 AM Extra Practice, 39. continued 12. y A 1 AB 5 BC 8x 1 7 5 11x 2 5 B 12 5 3x 1 x 45x D So, AB 5 8(4) 1 7 5 39. C } } Yes, CD is a rotation of AB; the rotation is 1808. 40. y 13. KN 5 JN 5 12 14. LJ 5 LK 12x 2 4 5 6x 1 8 A 6x 5 12 C B x52 1 So, LJ 5 12(2) 2 4 5 20. x 21 15. Because x 5 2, KP 5 7(2) 1 10 5 24. } } No, CD is not a rotation of AB. 16. JP 5 KP 5 24 } } 17. Yes. Because ###$ LN is the perpendicular bisector of JK and Chapter 5 (pp. 904–905) } } } } } 1. LN i AB; LN connects the midpoints of AC and CB, so it 2. 3. 4. 5. } is parallel to the third side, AB. } } } } } CB i LM; LM connects the midpoints of AC and AB, so it } is parallel to the third side, CB. } } } } } MN i AC; MN connects the midpoints of AB and CB, so } it is parallel to the third side, AC. } } AM 5 LN 5 MB; Midsegment LN is half as long as AB which is divided into congruent segments by midpoint M. } } MN 5 AL 5 LC; Midsegment MN is half as long as AC which is divided into congruent segments by midpoint L. 6. Sample answer: 7. Sample answer: y y R(a, b) C(0, 4) P is equidistant from the endpoints J and K of JK, by the Converse of the Perpendicular Bisector Theorem, P is on ###$ LN. } } ###$ ###$ bisects 18. Because AC ⊥ ###$ BA, CD ⊥ BD , and AC 5 CD, BC ∠ABD by the Converse of the Angle Bisector Theorem. So, m∠ABC 5 m∠CBD 5 328. 19. Because ∠EFH > ∠GFH, ###$ FH bisects ∠EFG. Then } ###$ } because HE ⊥ ###$ FH and HG ⊥ FH , EH 5 GH 5 15 by the Angle Bisector Theorem. 20. m∠JKM 1 m∠LKM 5 m∠JKL 258 1 m∠LKM 5 508 m∠LKM 5 258 ####$ bisects ∠JKL. Then because } ####$ and JM ⊥ KM So, KM } ####$ LM ⊥ KM, LM 5 JM 5 13 by the Angle Bisector Theorem. 21. No; Not enough information is given to apply the Converse of the Perpendicular Bisector Theorem or to use congruent triangles. D(4, 0) x E(0, 0) 8. Sample answer: T(0, 0) S(6, 0) x 9. Sample answer: L(0, 5) M(5, 5) 23. Yes, x 5 17; By the Angle Bisector Theorem. 24. By the Concurrency of Medians of a Triangle Theorem, 2 FP 5 }3 TF. y y 22. Yes, x 5 4; The triangles are congruent by ASA. F(0, s) 2 FP 5 }3 TF K(0, 0) 10. N(5, 0) x AB 5 BC 2x 1 3 5 x 1 7 x54 So, AB 5 2(4) 1 3 5 11. 11. AB 5 BC 5x 2 1 5 3x 1 5 2x 5 6 x53 So, AB 5 5(3) 2 1 5 14. 470 H(0, 0) G(t, 0) x 2 14 5 }3 TF 21 5 TF 25. By the Concurrency of Medians of a Triangle Theorem, 2 1 1 DP 5 }3 DS, so PS 5 }3 DS 5 }2 DP. 1 2 } DP 5 PS 1 2 }DP 5 8.5 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. D DP 5 17 26. DS 5 DP 1 PS 5 17 1 8.5 5 25.5 1 1 27. PR 5 } RE 5 } (24) 5 8 3 3 Geometry Worked-Out Solution Key ngws-EP.indd 470 7/11/06 11:48:20 AM Extra Practice, continued } 28. Because BD is the segment from vertex B that is 29. 30. 31. 32. 33. 34. } } perpendicular to side AC of nABC, BD is an altitude of nABC. } Because BD divides ∠ABC into the two congruent } angles, ∠ABD and ∠CBD, BD is an angle bisector of nABC. } } } Because AD > CD, D is the midpoint of AC. } Then because BD is the segment from vertex B of nABC } } to the midpoint D of the opposite side AC, BD is a median of nABC. } } } Because BD ⊥ AC, BD is an altitude of nABC. } } } Because AD > CD, BD is a median of nABC. } } } } } } Because BD ⊥ AC, AD > CD, and BD > BD, } nABD > nCBD by SAS. So, ∠ABD > ∠CBD and BD is an angle bisector of nABC. } } } } } Because BD ⊥ AC and AD > CD, BD is a perpendicular bisector of nABC. } } } } Because nABD > nCBD, BD ⊥ AC, AD > CD, and ∠ABD > ∠CBD. So, by the same reasons used in } Exercise 31, BD is a perpendicular bisector, an angle bisector, a median, and an altitude of nABC. } } } } Sample answer: Because AB > CB, BD ⊥ AC, and } } BD > BD, nABD > nCBD. Then ∠ABD > ∠CBD and } } } AD > CD. By the same reasons used in Example 31, BD is a perpendicular bisector, an angle bisector, a median, and an altitude of nABC. } } } Sides from smallest to largest: PQ, PR, QR Copyright © by McDougal Littell, a division of Houghton Mifflin Company. By Theorem 5.10, angles from smallest to largest: ∠R, ∠Q, ∠P 35. m∠L 1 m∠J 1 m∠K 5 1808 m∠L 1 608 1 618 5 1808 m∠L 5 598 Angles from smallest to largest: ∠L, ∠J, ∠K By Theorem 5.11, sides from smallest to largest: } } } JK, LK, LJ 36. m∠G 5 908 2 728 5 188 Angles from smallest to largest: ∠G, ∠F, ∠E By Theorem 5.11, sides from smallest to largest: }} } EF, EG, FG 37. Let x be the length of the third side. 918>x x18>9 17 > x x>1 The length of the third side must be greater than 1 inch and less than 17 inches. 38. Let x be the length of the third side. 24 1 13 > x x 1 13 > 24 37 > x x > 11 The length of the third side must be greater than 11 feet and less than 37 feet. 39. Let x be the length of the third side. 913>x x13>9 12 > x x>6 The length of the third side must be greater than 6 inches and less than 12 inches. 40. 1 ft 5 12 in. 12 1 17 < x x 1 12 > 17 x>5 29 < x The length of the third side must be greater than 5 inches and less than 39 inches. 41. 2 yd 5 6 ft 416>x x14>6 10 > x x>2 The length of the third side must be greater than 2 feet and less than 10 feet. 42. 2 yd 5 6 ft 616>x x16>6 12 > x x>0 The length of the third side must be less than 12 feet. } } } } MN > QR, but included angle ∠M is greater than the included angle ∠Q. So, by the Hinge Theorem, LN > PR. } } } } 44. VU < ST; In nVSU and nTUS, VS > TU and SU > US, but m∠VSU < m∠TUS. So, by the Hinge Theorem, VU < ST. } } 45. m∠WYX > m∠WYZ; In nWXY and nWZY, XY > ZY } } and WY > WY. But WX > WZ. So, by the Converse of the Hinge Theorem, m∠WYX > m∠WYZ. 43. LN > PR; In nLMN and nPQR, LM > PQ and 46. m∠1 5 m∠2; The triangles are conguent by SSS. 47. JK 5 MN; nJKL > nMNP by SAS. } } 48. BC < DE; In nABC and nCDE, AB > CD and } } AC > CE, but the included ∠A is smaller than the included ∠DCE, so by the Hinge Theorem, BC < DE. } } 49. GH > QR; In nFGH and nPQR, FG > PQ and } } FH > PR, but the included ∠F is larger than the included ∠P. So, by the Hinge Theorem, GH > QR. 50. m∠3 > m∠4; There are two triangles with two pairs of congruent sides. But the side opposite included ∠3 is longer than the side opposite included ∠4. So, by the Converse of the Hinge Theorem, m∠3 > m∠4. 51. m∠5 < m∠6; There are two triangles with two pairs of congruent sides. But the side opposite included ∠5 is shorter than the side opposite included ∠6. So, by the Converse of the Hinge Theorem, m∠5 < m∠6. Chapter 6 (pp. 906–907) 1. x 1 3x 1 5x 5 1808 9x 5 1808 x 5 208 The angle measures are 208, 3(208) 5 608, and 5(208) 5 1008. Geometry Worked-Out Solution Key ngws-EP.indd 471 471 7/11/06 11:48:23 AM Extra Practice, continued x11 1 812 2 18. If } 5 }, then } 5 }, because you can apply the x 1 8 2 2. x 1 5x 1 6x 5 1808 12x 5 1808 Reciprocal Property of Proportions and then add the value of each ratio’s denominator to its numerator. x 5 158 The angle measures are 158, 5(158) 5 758, and 6(158) 5 908. 19. 3. 2x 1 3x 1 5x 5 1808 NJ NK NL NM 6 NK 6 1 15 14 }5} }5} 10x 5 1808 6 p 14 5 NK(6 1 15) x 5 188 84 5 21 p NK The angle measures are 2(188) 5 368, 3(188) 5 548, and 5(188) 5 908. 4. 5x 1 6x 1 9x 5 1808 4 5 NK 20. 20x 5 1808 The angle measures are 5(98) 5 458, 6(98) 5 548, and 9(98) 5 818. 15 p 4 5 y p 20 21x 5 84 60 5 20y x54 35y 8. 6a 2 18 5 4a 2 2 20 5 2z 2a 5 16 10 5 z a58 6 3 x18 21 10. x25 2 x16 3 }5} 6(21) 5 3(x 1 8) (x 1 6)2 5 3(x 2 5) 26 5 3x 1 24 2x 1 12 5 3x 2 15 230 5 3x 27 5 x x22 4 x 1 10 10 }5} 12 8 12. 51t t23 }5} (x 2 2)10 5 4(x 1 10) 12(t 2 3) 5 8(5 1 t) 10x 2 20 5 4x 1 40 12t 2 36 5 40 1 8t 6x 5 60 4t 5 76 x 5 10 } t 5 19 } 13. x 5 Ï 4 p 9 5 Ï 36 5 6 } 14. x 5 Ï 3 p 48 5 Ï 144 5 12 The geometric mean of 3 and 48 is 12. } } 15. x 5 Ï 9 p 16 5 Ï 144 5 12 The geometric mean of 9 and 16 is 12. } BA 1 CB CB EF 1 DE DE CA 10 12 1 8 8 }5} CA(8) 5 10(12 1 8) CA 5 25 21. The diagram shows ∠R > ∠S, ∠Q > ∠T, ∠P > ∠U, and ∠N > ∠V. RQ ST 11 QP 20 TU RN SV 8.8 16 8.8 16 88 160 11 PN 20 UV 11 20 } 5 }, } 5 } 5 } 5 }, } 5 } and 88 160 11 20 }5}5}5} Because corresponding angles are congruent and corresponding side lengths are proportional, RQPN , STUV. The scale factor of RQPN to STUV is equal to the ratio of any two corresponding lengths, or 11 : 20. } 16. x 5 Ï 7 p 11 5 Ï 77 } The geometric mean of 7 and 11 is Ï77 ø 8.8. y 9 7 x 17. If } 5 }, then } 5 } by the Reciprocal Property of y 9 7 x Proportions. ∠F > ∠K. DE JL 6 3 DF JK 8 4 EF LK 3 1.5 } 5 } 5 2, } 5 } 5 2, } 5 } 5 2 Because corresponding angles are congruent and corresponding side lengths are proportional, nDEF , n JLK. The scale factor of nDEF to nJLK is equal to the ratio of any two corresponding lengths, or 2:1. QR 36 3 23. The scale factor of nPQR to nLMN: } 5 } 5 } 12 1 MN The geometric mean of 4 and 9 is 6. } EF DE 22. The diagram shows ∠D > ∠J, ∠E > ∠L, and 210 5 x 11. BA CB }5} 8CA 5 200 2a 2 1 a23 }5} 6 2 (a 2 3)6 5 2(2a 2 1) 21 5 2z 1 1 }5} DE EF }5} }5} x p 21 5 14 p 6 3 p 7 5 (2z 1 1) p 1 9. 20 4 15 y 6. 1 3 7. } 5 } 7 2z 1 1 CB BA 24. m∠P 1 m∠Q 1 m∠R 5 1808 x8 1 908 1 22.68 5 1808 x 5 67.4 y 3 }5} 1 13 }5} y 5 13 p 3 5 39 15 5 z p 3 15 z 3 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6 21 x 14 }5} BA EF }5} x 5 98 5. CB DE }5} 55z 25. Perimeter of nPQR: 15 1 36 1 39 5 90 Perimeter of nLMN: 5 1 12 1 13 5 30 472 Geometry Worked-Out Solution Key ngws-EP.indd 472 7/11/06 11:48:26 AM Extra Practice, continued 26. The blue special segments are altitudes of triangles. y18 27 }5} 18 y 35. Apply the Triangle Proportionality Thoerem. ( y 1 8)18 5 y(27) 5x 5 15 18y 1 144 5 27y x53 144 5 9y 7.5 7.5 27. The blue special segments are angle bisectors at 6 5y 5 42 42 (4y 1 2)30 5 (3y 1 4)36 y5} 5 8.4 5 120y 1 60 5 108y 1 144 36. Because three parallel lines intersect two transversals, 12y 5 84 apply Theorem 6.6. y57 24 6 x 5 }5} 28. In nPQR, 638 1 788 1 m∠R 5 1808 m∠R 5 398 6x 5 120 So, ∠R > ∠V and ∠P > ∠W. x 5 20 Therefore, nPQR , nWUV by AA Similarity Postulate. 29. In nBFG, 338 1 1108 1 m∠G 5 1808 37. (x, y) → (3x, 3y) A(1, 1) → D(3, 3) m∠G 5 378 B(4, 1) → E(12, 3) So, nABC is not similar to nFBG, because ∠C À ∠G. } } } } } } 30. Because VW ⊥ WX and XY ⊥ WX, VW i XY by the Lines Perpendicular to a Transversal Theorem. So, ∠1 > ∠3 by the Corresponding Angles Postulate. Also ∠W > ∠Z by the Right Angles Congruence Theorem. So, nVWX ,nXZY by the AA Similarity Postulate. } } } } 31. Because JK i NP and KL i PM, ∠J > ∠PNM and ∠L > ∠PMN by the Corresponding Angles Postulate. Therefore, nJKL , nNPM by the AA Similarity Postulate. 32. In nVXW and nZXY, ∠VXW and ∠ZXY are vertical C(1, 2) → F(3, 6) y F D C 1 E A B x 1 38. (x, y) → (5x, 5y) angles, so ∠VXW > ∠ZXY. A(2, 2) → E(10, 10) 3 1 4 1 VX WX } 5 } 5 } and } 5 } 5 } 6 2 8 2 ZX YX B(22, 2) → F(210, 10) Because an angle of nVXW is congruent to an angle of nZXY, and the lengths of the sides including these angles are proportional, nVXW , nZXY by the SAS Similarity Theorem. D(2, 21) → H(10, 25) C(21, 21) → G(25, 25) y F 33. In nHJK and nSRT, by comparing the corresponding B sides in order from smallest to largest you have 3 JK 5 RT 5 So, }7 5 }y . 4y 1 2 36 }5} 30 3y 1 4 18 30 5 triangles are similar by the SAS Similarity Theorem. 5 corresponding vertices. HJ SR 5 Because } 5} 5 }7 and } 5 }7, the two 10.5 3 1 7.5 512 16 5 y Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 7.5 x 5 2 }5} 24 40 3 5 HK ST 27 45 3 5 C } 5 } 5 }, } 5 } 5 }, and } 5 } 5 }. Because the corresponding side lengths are proportional, nHJK , nSRT by the SSS Similarity Theorem. G 4 E A D 6 x H 34. An angle of the triangle is bisected, so Theorem 6.7 applies. a 17 21 34 }5} 34a 5 357 a 5 10.5 Geometry Worked-Out Solution Key ngws-EP.indd 473 473 7/11/06 11:48:30 AM Extra Practice, 1 1 1 39. (x, y) → } x, } y 2 2 continued 2 4. 25 m A(2, 2) → D(1, 1) 24 m B(8, 2) → E(4, 1) 1 h2 5 49 24 m h57 1 The area is 168 m2. y C 5. A E 1 1 1 40. (x, y) → } x, } y 3 3 26 ft 6. 17 cm 2 h 15 cm A(3, 26) → E(1, 22) 17 cm 152 1 h 2 5 172 15 cm B(6, 26) → F(2, 22) 1 1 A 5 }2 bh 5 }2 (30)(8) 5 120 C(6, 9) → G(2, 3) The area is 120 cm2. D(23, 9) → H(21, 3) 7. C h58 402 0 242 1 322 1600 5 1600 ✓ 3 The triangle is a right triangle. G 8. x 2 F A 752 0 212 1 722 5625 0 441 1 5184 5625 5 5625 ✓ B length of B 6 41. Enlargement; Scale factor: } 5 } 5 3 or 3 : 1 2 length of A length of B 5 1 42. Reduction; Scale factor: } 5 } 5 } or 1 : 2 10 2 length of A Chapter 7 (pp. 908–909) 1. A Pythagorean triple is 7, 24, 25. Notice that if you multiply the integers of the Pythagorean triple by 2, you get the lengths of the legs of the triangle: 7 p 2 5 14 and 24 p 2 5 48. So, the length of the hypotenuse is 25 p 2 5 50. 2. (hypotenuse)2 5 (leg)2 1 (leg)2 512 5 x 2 1 242 2601 5 x 2 1 576 2025 5 x 2 45 5 x The length of the leg is 45. 3. A Pythagorean triple is 5, 12, 13. Notice that if you multiply 12 and 13 by 12, you get the lengths of the longer leg and the hypotenuse of the triangle: 12 p 12 5 144 and 13 p 12 5 156. So, the length of the shorter leg is 5 p 12 5 60. The triangle is a right triangle. 9. 272 0 112 1 252 729 0 121 1 625 729 Þ 746 The triangle is not a right triangle. 10. 132 0 72 1 112 169 0 49 1 121 169 Þ 170 The triangle is not a right triangle. } 11. (5Ï 26 )2 0 172 1 192 25 p 26 0 289 1 361 650 5 650 ✓ The triangle is a right triangle. } 12. (Ï 181 )2 0 92 1 102 181 0 81 1 100 181 5 181 ✓ The triangle is a right triangle. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. E h2 5 64 1600 0 576 1 1024 y D H h 5 24 The area is 240 ft2. x 1 h2 5 576 1 1 A 5 }2 bh 5 }2 (20)(24) 5 240 B D 102 1 h 2 5 262 26 ft h 10 ft 10 ft F 474 242 1 h 2 5 252 25 m A 5 }2 bh 5 }2 (48)(7) 5 168 C(2, 6) → F(1, 3) 1 h Geometry Worked-Out Solution Key ngws-EP.indd 474 7/11/06 11:48:35 AM Extra Practice, continued 13. 14 1 21 5 35 14 1 25 5 39 35 > 25 39 > 21 } 18. 4Ï 21 ø 18.33 } 4Ï21 1 31 ø 49.33 43.33 > 31 21 1 25 5 46 49.33 > 25 25 1 31 5 56 46 > 14 } 56 > 4Ï21 The segment lengths form a triangle. 252 ? 142 1 212 The segment lengths form a triangle. 625 ? 196 1 441 312 ? 961 ? 336 1 625 The segment lengths 14, 21, and 25 form an acute triangle. 14. 32 1 60 5 92 961 5 961 } 32 1 68 5 100 92 > 68 The segment lengths 4Ï21 , 25, and 31 form a right triangle. 100 > 60 19. nABD , nBCD , nACB 60 1 68 5 128 128 > 32 The segment lengths form a triangle. 682 ? 322 1 602 20. nGHK , nGJH , nHJK HJ JG KJ HJ }5} 4624 5 4624 The segment lengths 32, 60, and 68 form a right triangle. 21. nPQR , nPSQ , nQSR RQ PR SR RQ }5} 15. 11 1 19 5 30 30 < 32 The segment lengths do not form a triangle. 5 5 22. } 5 } x 5 x55 } 16. 3Ï 11 ø 9.95 } 3 1 3Ï11 ø 12.95 3 1 9 5 12 } 12 > 3Ï11 12.95 > 9 y 1 23. } 5 } 4 y 4 5 y2 } 9 1 3Ï11 5 18.95 25y 18.95 > 3 The segment lengths form a triangle. } BC BD AB AD }5} 4624 ? 1024 1 3600 (3Ï11 )2 } (4Ï21 )2 1 252 961 ? 16 p 21 1 625 625 < 637 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } 4Ï21 1 25 ø 43.33 24. 5 3 x13 5 }5} ? 32 1 92 3x 1 9 5 25 9 p 11 ? 9 1 81 3x 5 16 99 > 90 } The segment lengths 3, 9, and 3Ï11 form an obtuse triangle. } 17. 3Ï 40 ø 18.97 } } 27 > 3Ï40 30.97 > 15 } 15 1 3Ï40 ø 33.97 6 8 y 2 h 56 18 h2 5 36 1 64 10 h2 5 100 10 6 8 y }5} The segment lengths form a triangle. } 2 h 5 10 33.97 > 12 (3Ï40 )2 the large triangle. 2 12 1 3Ï40 ø 30.97 12 1 15 5 27 x ø 5.3 25. Find the hypotenuse of ? 122 1 152 10y 5 48 y 5 4.8 9 p 40 ? 144 1 225 360 < 369 } The segment lengths 12, 15, and 3Ï40 form an acute triangle. 9 x 26. } 5 } 7 9 7x 5 81 x ø 11.6 Geometry Worked-Out Solution Key ngws-EP.indd 475 475 7/11/06 11:48:38 AM Extra Practice, continued 27. Find the hypotenuse of 3 the smallest triangle. 34 h 2 5 32 1 52 y h 2 5 9 1 25 h 2 5 34 } h 5 Ï34 } Ï34 3 }5} y ø 9.7 28. leg 5 leg 37. x57 } hypotenuse 5 leg p Ï2 12 p tan 278 5 x } y 5 7Ï2 6.1 ø x } So, x 5 7 and y 5 7Ï2 . 12 Check: tan 638 ? } 6.1 29. hypotenuse 5 2 p shorter leg 18 5 2 p g 1.9626 ø 1.97 ✓ 95g } longer leg 5 shorter leg p Ï3 38. } h 5 9Ï3 25 tan 698 x5} } So, g 5 9 and h 5 9Ï3 . x ø 9.6 } 30. hypotenuse 5 leg p Ï 2 9.6 } 9Ï2 5 aÏ2 Check: tan 218 ? } 25 95a 0.3839 ø 0.384 So, a 5 9 and b 5 9. } 31. longer leg 5 shorter leg p Ï 3 39. } x tan 418 5 } 19 19 p tan 418 5 x m 5 5Ï3 hypotenuse 5 2 p shorter leg 16.5 ø x n 5 10 19 Check: tan 498 ? } 16.5 } So, m 5 5Ï3 and n 5 10. 1.1504 ø 1.1515 } 32. hypotenuse 5 leg p Ï 2 } 15 5 sÏ2 40. 15 x sin 448 5 } 14 14 p sin 448 5 x } } 5 s Ï2 9.7 ø x } 15Ï2 }5s y 2 } cos 448 5 } 14 } 15Ï2 15Ï2 and t 5 } . So, s 5 } 2 2 } 33. longer leg 5 shorter leg p Ï 3 } 25 tan 698 5 } x x p tan 698 5 25 } h 5 gÏ3 } x tan 278 5 } 12 } 10Ï3 5 wÏ3 10 5 w hypotenuse 5 2 p shorter leg v 5 2w v 5 2(10) 14 p cos 448 5 y 10.1 ø y So, x ø 9.7 and y ø 10.1. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. y 5 5 opp. ∠A 18 2 34. tan A 5 } 5 } 5 } ø 0.6667 27 3 adj. to ∠A opp. ∠B 27 3 tan B 5 } 5} 5 }2 5 1.5000 18 adj. to ∠B opp. ∠A 60 3 35. tan A 5 } 5 } 5 } 5 0.6000 5 100 adj. to ∠A opp. ∠B 100 5 tan B 5 } 5} 5 }3 ø 1.6667 60 adj. to ∠B opp. ∠A 3 24 36. tan A 5 } 5 } 5 } ø 0.4286 7 56 adj. to ∠A opp. ∠B 56 7 tan B 5 } 5} 5 }3 ø 2.3333 24 adj. to ∠B v 5 20 So, v 5 20 and w 5 10. 476 Geometry Worked-Out Solution Key ngws-EP.indd 476 7/11/06 11:48:42 AM Extra Practice, 41. continued 8 47. (GH)2 5 (GJ)2 1 (JH)2 sin 328 5 }y (GH)2 5 62 1 72 y p sin 328 5 8 (GH)2 5 36 1 49 8 sin 328 y5} (GH)2 5 85 } GH 5 Ï85 y ø 15.1 GH ø 9.2 x cos 328 ø } 15.1 7 tan G 5 }6 15.1 p cos 328 5 x 7 m∠G 5 tan211 }6 2 ø 49.48 12.8 ø x So, x ø 12.8 and y ø 15.1. 42. 43. 40.68 ø m∠H The side lengths are 6 units, 7 units, and about 9.2 units. The angle measures are 908, about 49.48, and about 40.68. y p cos 778 5 Ï3 } Ï3 cos 778 17 x5} cos 268 y5} x ø 18.9 y ø 7.7 y x sin 268 ø } 18.9 sin 778 ø } 7.7 48. 1808 5 908 1 258 1 m∠B 658 5 m∠B AB sin 258 5 } 25 18.9 p sin 268 5 y 7.7 p sin 778 5 x 25 p sin 258 5 AB 8.3 ø y 7.5 ø x 10.6 ø AB So, x ø 18.9 and y ø 8.3. 5.7 So, x ø 7.5 and y ø 7.7. 45. cos 548 5 } y y p cos 548 5 5.7 5.7 cos 548 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Ï3 cos 778 5 } y } x p cos 268 5 17 44. 1808 5 908 1 49.48 1 m∠H } 17 cos 268 5 } x 4 sin 148 5 }y 25 p cos 258 5 AC y p sin 148 5 4 22.7 ø AC 4 sin 148 y5} y5} y ø 9.7 y ø 16.5 x sin 548 ø } 9.7 x cos 148 ø } 16.5 9.7 p sin 548 5 x 16.5 p cos 148 5 x 7.8 ø x 16.0 ø x So, x ø 7.8 and y ø 9.7. 2 2 AC cos 258 5 } 25 So, x ø 16.0 and y ø 16.5. 2 46. (DE) 5 (DF) 1 (EF) (DE)2 5 122 1 52 2 (DE) 5 144 1 25 The side lengths are about 10.6 units, about 22.7 units, and 25 units. The angle measures are 908, 658, and 258. Chapter 8 (pp. 910–911) 1. Quadrilateral; (4 2 2) p 1808 5 3608 x8 1 598 1 1288 1 618 5 3608 x 5 112 2. Pentagon; (5 2 2) p 1808 5 5408 x8 1 1378 1 828 1 1408 1 918 5 5408 x 5 90 3. Heptagon; (7 2 2) p 1808 5 9008 x8 1 1548 1 1158 1 1228 1 1498 1 1538 1 908 5 9008 (DE)2 5 169 x 5 117 DE 5 13 4. x8 1 1468 1 1368 5 3608 5 tan D 5 } 12 m∠D 5 x 5 78 5 tan21 } 1 12 2 ø 22.68 1808 5 908 1 22.68 1 m∠E 67.48 ø m∠E The side lengths are 5 units, 12 units, and 13 units. The angle measures are 908, about 22.68, and about 67.48. 5. x8 1 468 1 948 1 358 1 (1808 2 1488) 1 858 5 3608 x 5 68 6. Pentagon; (5 2 2) p 1808 5 5408 x8 1 1018 1 1078 1 x8 1 1008 5 5408 2x 5 232 x 5 116 Geometry Worked-Out Solution Key ngws-EP.indd 477 477 7/11/06 11:48:44 AM Extra Practice, continued 7. (6 2 2) p 1808 5 7208 21. 2 p ZV 5 ZX 20. WZ 5 YX 22. 7208 Interior angle: } 5 1208 6 y A 3608 Exterior angle: } 5 608 6 B The measure of an interior angle of a regular hexagon is 1208. The measure of an exterior angle of a regular hexagon is 608. 1 D x 21 8. (9 2 2) p 1808 5 12608 C 12608 }} } AB 5 Ï(7 2 5)2 1 (3 2 6)2 5 Ï13 Interior angle: } 5 1408 9 }} } CD 5 Ï(3 2 5)2 1 (1 2 (22))2 5 Ï13 } } So, AB > CD. 3608 Exterior angle: } 5 408 9 The measure of an interior angle of a regular 9-gon is 1408. The measure of an exterior angle of a regular 9-gon is 408. 3 } 326 Slope of AB 5 } 5 2}2 725 3 } 1 2 (22) Slope of CD 5 } 5 2}2 325 9. (17 2 2) p 1808 5 27008 } } } } } } Slopes are equal, so AB i CD. AB > CD and AB i CD, so ABCD is a parallelogram. 27008 Interior angle: } ø 158.88 17 3608 23. Exterior angle: } ø 21.28 17 y B C A The measure of an interior angle of a regular 17-gon is about 158.88. The measure of an exterior angle of a regular 17-gon is about 21.28. 1 D 21 x 10. a 5 7, b 5 12 } 322 1 } Slope of AB 5 } 5 }2 26 2 (28) b55 122 1 } Slope of CD 5 } 5 }2 23 2 (21) So, a 5 5 and b 5 5. a 5 18 } } Slopes are equal, so AB i CD. } } } } AB > CD and AB i CD, so ABCD is a parallelogram. 2 3 }a 5 b 24. 2 3 }(18) 5 b y B A 12 5 b C D So, a 5 18 and b 5 12. 13. b 5 63 2 a 5 180 2 63 21 a 5 117 }} 15. a 5 7 4a 5 180 2b 1 4 5 b 1 7 a 5 45 b53 b 5 3a } } AB 5 Ï(2 2 (21))2 1 (14 2 11)2 5 Ï18 5 3Ï2 So, a 5 117 and b 5 63. 14. a8 1 3a8 5 1808 x }}} So, a 5 7 and b 5 3. b 5 3(45) } } CD 5 Ï(3 2 6)2 1 (8 2 11)2 5 Ï18 5 3Ï2 } } So, AB > CD. 14 2 11 } Slope of AB 5 } 51 2 2 (21) } 8 2 11 Slope of CD 5 } 51 326 } } } } } } Slopes are equal, so AB i CD. AB > CD and AB i CD, so ABCD is a parallelogram. b 5 135 So, a 5 45 and b 5 135. 16. ∠WXV > ∠YZV 17. ∠ZWV > ∠ XYV 18. ∠WVX > ∠YVZ 19. WV 5 YV Copyright © by McDougal Littell, a division of Houghton Mifflin Company. a55 b1156 478 } }}} CD 5 Ï(23 2 (21))2 1 (1 2 2)2 5 Ï5 } } So, AB > CD. 2a 5 10 12. }}} AB 5 Ï(26 2 (28))2 1 (3 2 2)2 5 Ï5 11. 2a 1 4 5 14 Geometry Worked-Out Solution Key ngws-EP.indd 478 7/11/06 11:48:49 AM Extra Practice, 25. 2 continued 33. The diagonals of a rhombus are perpendicular, so y m∠LQM 5 908. x 21 34. The four sides of a rhombus are congruent, so MN 5 5. B A 1 35. x 5 }(19 1 31) 2 C x 5 25 D }}} } AB 5 Ï(4 2 (21)) 1 (24 2 (25)) 5 Ï26 2 2 }}} } CD 5 Ï(1 2 6)2 1 (210 2 (29))2 5 Ï26 } } So, AB > CD. } 24 2 (25) 1 Slope of AB 5 } 5 }5 4 2 (21) } 210 2 (29) 1 Slope of CD 5 } 5 }5 126 } } } } } } Slopes are equal, so AB i CD. AB > CD and AB i CD, so ABCD is a parallelogram. } 26. Draw PR to form nPQR and nRSP. Show that nPQR > nRSP. Then show that ∠QPR > ∠SRP and ∠QRP > ∠SPR. Use the Alternate Interior Angles } } } } Converse to show that PS i RQ and PQ i RS. Then by definition, PQRS is a parallelogram. 27. Show that nPQR > nRSP by the AAS Congruence } } Theorem. Show that ∠QPR > ∠SRP, PQ > RS and } QR > SP. Use the Alternate Interior Angles Converse } } } } to show that PS i RQ and PQ i RS. Then by definition, PQRS is a parallelogram. } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 28. ∠PTQ > ∠RTS because they are vertical angles. Show that nPTQ > nRTS by the AAS Congruence Theorem. } } Show that PT > RT and ∠PTS > ∠RTQ. Use the SAS Congruence Postulate to show that nPTS > nRTQ. Show that ∠TRQ > ∠TPS. Finally show that } } } } PS i RQ and PQ i RS using the Alternate Interior Angles Converse. Then by definition, PQRS is a parallelogram. 29. By the AAS Congruence Theorem, each of the four triangles formed by the diagonals are congruent to each } } } } other. So, AB > BC > CD > DA. Because two side lengths are equal, the angles opposite them are equal in measure. So, the 8 angles formed at the vertices are all congruent to each other. The interior angles of a quadrilateral measure 3608. So, each of these 8 angles measures 458. So, m∠A 5 m∠B 5 m∠C 5 m∠D 5 908. Because the four sides are congruent and there are four right angles, the quadrilateral is a square. 30. m∠PTQ 5 908 by the Triangle Sum Theorem. So, the diagonals are perpendicular. PQRS is a rhombus by definition. 31. Since the quadrilateral is a parallelogram with congruent diagonals, it is a rectangle. 32. The diagonals of a rhombus are perpendicular, so m∠LQM 5 908. m∠LMQ 1 m∠QLM 1 m∠LQM 5 1808 1 36. 34 5 } (x 1 43) 2 1 37. 0.5 5 } (0.6 1 x) 2 68 5 x 1 43 1 5 0.6 1 x 0.4 5 x 25 5 x 38. m∠V 5 m∠S 5 758 39. m∠S 5 m∠V m∠S 1 m∠T 1 m∠V 1 m∠R 5 3608 m∠V 1 1048 1 m∠V 1 608 5 3608 2(m∠V) 1 1648 5 3608 2(m∠V) 5 1968 m∠V 5 988 40. m∠T 5 m∠R 5 908 m∠V 1 m∠R 1 m∠S 1 m∠T 5 3608 m∠V 1 908 1 808 1 908 5 3608 m∠V 5 1008 41. The diagonals bisect each other. By Theorem 8.10, ABCD is a parallelogram. 42. m∠A 1 m∠B 1 m∠C 1 m∠D 5 3608 1198 1 m∠B 1 518 1 618 5 3608 m∠B 5 1298 Because m∠A 1 m∠D 5 1808 and m∠B 1 m∠C 5 1808, by the Consecutive Interior Angles Converse, } } AB i CD. So, ABCD is a trapezoid. } } 43. Because one pair of opposite sides, AD and BC, are congruent and parallel, ABCD is a parallelogram by Theorem 8.9. Because the diagonals of the parallelogram are perpendicular, by Theorem 8.11 ABCD is a rhombus. } } 44. Because the diagonals AC and BD bisect each other, ABCD is a parallelogram. ABCD is also a rectangle because its diagonals are congruent and a rhombus because its diagonals are perpendicular. Because ABCD is a rectangle and a rhombus, ABCD is a square. } } 45. Because AB i CD, m∠D 1 m∠A 5 1808 and m∠B 1 m∠C 5 1808. So, m∠D 5 658 and m∠B 5 1158. Because the base angles are congruent and ABCD has one pair of parallel opposite sides, ABCD is an isosceles trapezoid. 46. By the ASA Congruence Postulate nAGD > nBGC, } } } } so AG > BG and GD > GC. Using the Converse of the } } } } Base Angles Theorem, AG > GD and BG > GC. By } } } } substitution, AG > GC > BG > GD. The diagonals of ABCD are congruent and bisect each other but are not perpendicular. By Theorem 8.13, ABCD is a rectangle. m∠LMQ 1 308 1 908 5 1808 m∠LMQ 5 608 Geometry Worked-Out Solution Key ngws-EP.indd 479 479 7/11/06 11:48:54 AM Extra Practice, 47. continued 49. y y E(9, 12) E(14, 4) D(6, 8) F(12, 8) D(10, 3) 2 G(9, 6) G(12, 0) 2 2 F(20, 2) x x 2 }} 423 1 } Slope of DE 5 } 5 }4 14 2 10 DE 5 Ï(9 2 6)2 1 (12 2 8)2 5 5 }} EF 5 Ï(12 2 9) 1 (8 2 12) 5 5 2 2 }} 224 1 } Slope of EF 5 } 5 2}3 20 2 14 } FG 5 Ï(9 2 12)2 1 (6 2 8)2 5 Ï13 }} } GD 5 Ï(6 2 9)2 1 (8 2 6)2 5 Ï13 022 1 } Slope of FG 5 } 5 }4 12 2 20 DEFG is a kite because two pairs of consecutive sides are congruent and the opposite sides are not congruent. 48. 320 3 } Slope of GD 5 } 5 2}2 10 2 12 } } So, DE i FG. DEFG is a trapezoid because it has one pair of parallel sides. y D(1, 2) E(4, 1) 1 50. x 1 y E(1, 13) F(5, 13) D(�2, 10) G(0, �1) F(3, �2) G(�2, 6) 2 } DE 5 Ï(4 2 1)2 1 (1 2 2)2 5 Ï10 }} 2 } EF 5 Ï(3 2 4)2 1 (22 2 1)2 5 Ï10 }}} } FG 5 Ï(0 2 3)2 1 (21 2 (22))2 5 Ï10 }} } GD 5 Ï(1 2 0) 1 (2 2 (21)) 5 Ï10 2 2 1 } 122 Slope of DE 5 } 5 2}3 421 } 22 2 1 Slope of EF 5 } 53 324 1 } 21 2 (22) Slope of FG 5 } 5 2}3 023 } 2 2 (21) Slope of GD 5 } 53 120 So, ∠D, ∠E, ∠F, and ∠G are right angles because the segments that form them are perpendicular. DEFG is a square because the four sides are congruent and the four angles are right angles. x 13 2 10 } Slope of DE 5 } 51 1 2 (22) } 13 2 13 Slope of EF 5 } 50 521 13 2 6 } Slope of FG 5 } 51 5 2 (22) 10 2 6 4 } Slope of GD 5 } 5 }0 5 undefined 22 2 (22) } } So, DE i FG. }} EF 5 Ï(5 2 1)2 1 (13 2 13)2 5 4 }}} GD 5 Ï(22 2 (22))2 1 (10 2 6)2 5 4 } } So, EF > GD. DEFG is an isosceles trapezoid because it has one pair of parallel sides and one pair of non-parallel congruent sides. Chapter 9 (pp. 912–913) 1. To go from A to A9, move 4 units right and 2 units down. So, a rule for the translation is (x, y) → (x 1 4, y 2 2). Use the SAS Congruence Postulate. Notice that } AC 5 A9C9 5 3 and BC 5 B9C9 5 2. The slopes of AC and } } } A9C9 are 0, and the slopes of BC and B9C9 are undefined, so the sides are perpendicular. Therefore, ∠C and ∠C9 are congruent right angles. So, nABC > nA9B9C9. The translation is an isometry. 480 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. }} Geometry Worked-Out Solution Key ngws-EP.indd 480 7/11/06 11:49:02 AM Extra Practice, continued 2. To go from A to A9, move 3 units left and 1 unit down. So, a rule for the translation is (x, y) → (x 2 3, y 2 1). }} } 11. } AB 5 Ï(3 2 1)2 1 (0 2 4)2 5 Ï20 5 2Ï5 }} } }} } BC 5 Ï(21 2 3)2 1 (1 2 0)2 5 Ï17 2 1 }}} } }}} 2 } }}} } 1 F 2 } By the SSS Congruence Postulate, nABC > nA9B9C9. The translation is an isometry. 6. 7. 8. FG FG F G F G F GF GF F G F GF G F G F G F GF G F G 2 3 1 7 5 23 714 0 2 4 29 213 5 4 1 5 4 21 5 9. 7 23 2 21 5 6 9 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 12. 23 2 1 4 2 (21) 5(21) 1 9(8) 64 0 1 0 23 211 1 22 1 22 3 25 7 22 22 1 5 2 G D x A9 B9 C9 3 3 3 4 4 4 GF 1 7 23 6 0 8 24 GF 5 10 0 3 10 12 0 G A9 4 G C9 22 x C 13. F 24 24 24 24 24 1 5 67 0 6 B 5 5(2) 1 9(6) 5 y 5 24 7(21) 1 (23)(8) 3 4 B9 8 26 26 26 5 F 24 231 5 10. 520 29 2 4 7(2) 1 (23)(6) 4 A 11 213 9 D9 5 5 1 B 21 ####Y 5 〈1 2 7, 21 2 (23)〉 5 〈26, 2〉 PP9 ####Y 5 〈3 2 7, 2 2 (23)〉 5 〈24, 5〉 PP9 ####Y 5 〈28 2 7, 211 2 (23)〉 5 〈215, 28〉 PP9 1 C 2 So, AB 5 A9B9, BC 5 B9C9, and AC 5 A9C9. 5. 5 A A9C9 5 Ï(24 2 (22))2 1 (0 2 3)2 5 Ï13 4. 10 GF G y B9C9 5 Ï(24 2 0) 1 (0 2 (21)) 5 Ï17 ####Y 5 〈23 2 7, 4 2 (23)〉 5 〈210, 7〉 3. PP9 1 22 21 22 25 A9B9 5 Ï(0 2 (22))2 1 (21 2 3)2 5 Ï20 5 2Ï5 2 1 27 27 27 27 5 AC 5 Ï(21 2 1) 1 (1 2 4) 5 Ï13 2 F 5 F F 5 5 9 5 6 4 5 G 2 3 21 24 24 24 2 5 2 0 22 21 4 1 1 1 7 G G y E9 A9 E 2 C 9 B9 D9 x A 21 y 2 C9 C x 22 B9 B A9 C D 14. B� B y A B A� A 1 C� C x 1 15. B� y C� B A� A �1 3 C x D� D Geometry Worked-Out Solution Key ngws-EP.indd 481 481 7/11/06 11:49:09 AM Extra Practice, 16. y 2 A C� 20. B B� D D� F 0 21 x 3 E continued A� 0 21 GF 1 3 1 C(1, 0) → C9(0, 21) y A� GF 5 24 21 23 G Q x R9 P9 B 21. x 2 P9 Q9 R9 21 22 24 R Q9 21 B(4, 2) → B9(2, 24) C 4 P A(22, 1) → A9(1, 2) 2 Q R 2 4 y C E� 17. (a, b) → (b, 2a) A P 1 C� 0 21 S 4 1 2 23 0 F GF 0 S9 B� 4 T V 2 1 S9 T9 V9 22 3 0 GF 5 4 2 1 G y 18. (a, b) → (2a, 2b) T9 S A(23, 3) → A9(3, 23) V9 B(1, 2) → B9(21, 22) 21 V x C(1, 21) → C9(21, 1) T D(25, 0) → D9(5, 0) B 2 C� D� D 0 1 A B C 4 21 22 21 0 0 21 22 23 F GF x 2 C9 C B� 2 GF 5 A 21 B x D 23. (x, y) → (x 2 2, y 1 3) C(6, 22) → C9(2, 6) D(3, 23) → D9(3, 3) A(1, 1) → A9(21, 4) E(21, 21) → E9(1, 21) B(4, 1) → B9(2, 4) C� (a, b) → (b, 2a) B� x C B A� C� x 1 B� 24. Point A is one unit left of x 5 2, so its reflection A9 is one unit right of x 5 2 at (3, 1). Also, B9 is 2 units left of x 5 2 at (0, 1). Because point C is on x 5 2, you know that y C 5 C9. (x, y) → (x 1 3, y) C� C� C A9(3, 1) → A0(6, 1) B9(0, 1) → B 0(3, 1) 2 C9(2, 4) → C 0(5, 4) B� A 1 482 A C9(0, 7) → C 0(7, 0) E� D C B9(2, 4) → B 0(4, 22) B 2 E B� 1 A9(21, 4) → A0(4, 1) D� y A� C(2, 4) → C9(0, 7) C� A G A9 B(5, 1) → B9(21, 5) A� 2 21 C A(2, 1) → A9(21, 2) 2 1 24 D9 19. (a, b) → (2b, a) y A9 B9 C9 D9 0 21 22 23 y B9 A� D 1 B A� B� A� Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22. y A x Geometry Worked-Out Solution Key ngws-EP.indd 482 7/11/06 11:49:19 AM Extra Practice, continued 25. (a, b) → (2a, 2b) 33. A9 B9 A(1, 1) → A9(21, 21) A B B(4, 1) → B 9(24, 21) E C(2, 4) → C 9(22, 24) y C D C C9 1 C� B� A A� B� 34. B x 1 A� A B E A9 C� B9 Point A9 is one unit above y 5 22, so its reflection A0 is one unit below y 5 22 at (21, 23). Also, B0 is one unit below y 5 22 at (24, 23), and C 0 is two units above y 5 22 at (22, 0). 26. (x, y) → (x 2 4, y 2 4) y D C9 C 35. A9 A B9 B C E A(1, 1) → A9(23, 23) B(4, 1) → B9(0, 23) C(2, 4) → C9(22, 0) (a, b) → (b, a) C� B� 1 C9 A B 1 D C� A9(23, 23) → A0(23, 23) C x 36. B9 A9 A� A� B� B9(0, 23) → B 0(23, 0) B A C9(22, 0) → C 0(0, 22) E 27. 2(448) 5 888 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. A rotation of 888 about the intersection of lines k and m maps A to A0. 37. A A9 28. 2(738) 5 1468 flag has two lines of symmetry, one line passing vertically through the center of the circle and the other passing horizontally through the center of the circle. The flag has rotational symmetry of 1808. C 38. G H J 1 3 4 F 3 4 2 G 31. The flag has line symmetry and no rotational symmetry. 2 The flag has one line of symmetry passing vertically through the center of the rectangle. B E D B9 C 4 GF 5 y G9 The flag has one line of symmetry passing horizontally through the center of the rectangle. A C9 D 30. The flag has line symmetry and no rotational symmetry. 32. A9 B B9 E A rotation of 1468 about the intersection of lines k and m maps A to A0. 29. The flag has line symmetry and rotational symmetry. The C9 C D G9 H9 J9 3 9 12 12 6 12 J9 J H9 H x 22 39. 1 } 2 G K L M N 2 4 5 6 F 22 22 4 0 y C9 GF 5 K9 L9 M9 N9 1 2 2.5 3 21 21 2 0 G M M9 1 N9 N x 21 K9 L9 K L Geometry Worked-Out Solution Key ngws-EP.indd 483 483 7/11/06 11:49:28 AM Extra Practice, P Q R 23 23 21 F 4 P9 Q9 212 212 GF 5 21 23 23 2 Q9 24 212 212 G y P 2 x Q P9 R9 24 R R9 Chapter 10 (pp. 914–915) } 1. Sample answer: KF 2. @##$ AF is a common tangent. @##$ 3. Sample answer: CD @##$ is a secant. 4. EH 5. Sample answer: K 6. Sample answer: A } } 7. GH is a chord. 8. FJ is a diameter. SC 2 5 QC 2 1 SQ 2 9. (r 1 3)2 5 r 2 1 52 2 r 1 6r 1 9 5 r 2 1 25 6r 5 16 16 r 5 }3 SC 2 5 QC 2 1 SQ 2 (r 1 2)2 5 r 2 1 42 r 2 1 4r 1 4 5 r 2 1 16 4r 5 12 } r53 11. 3x 2 5 5 2x 1 7 } x 5 12 } 12. 9x 2 1 x 1 1 5 x 1 5 9x 2 5 4 4 x 2 5 }9 }} 2 x 5 6}3 (x 2 1)2 5 x 2 2 7 } 14. 6x 1 9 5 4x 1 7 x 2 2 2x 1 1 5 x 2 2 7 22x 5 28 x54 2x 5 22 x 5 21 C C } C 16. EB is a minor arc. Since BD is a diameter, mC DEB 5 1808. So, C mC EB 5 mC DEB 2 mDE mC EB 5 1808 2 308 mC EB 5 1508 15. ED is a minor arc; mED 5 308. 484 } } 8 13. angles, they are congruent. So, mCD 5 758. } r5} 6 10. C C C C C mEC 5 mED 1 mDC C 5 308 1 758 mEC C 5 1058 mEC C is a major arc. Since } 18. BEC AC is a diameter, mC AB 1 mC BC 5 1808. So, mC BC 5 1058. C 5 3608 2 mBC C mBEC C 5 3608 2 1058 mBEC C 5 2558 mBEC C 19. BC is a minor arc. As shown in Exercise 18, C 5 1058. mBC C is a semicircle. Since BCD C is a semicircle, 20. BCD 3608 C 5 2 5 1808. mBCD 21. mC AED 5 3608 2 mC AD C 5 3608 2 508 mAED mC AED 5 3108 AD C 5 mC 22. mBD 2 C 5 5082 mBD mC BD 5 258 C 2 mAD C 24. mBAE C5 mBA C 1 mC C 5 mAE 23. mDE AE C C mDE 5 1808 2 508 mBAE 5 258 1 1808 C 5 2058 C 5 1308 mDE mBAE C 3608 2 mAC 25. mC AB 5 2 C 5 3608 22 1308 mAB C 5 23082 mAB mC AB 5 1158 C 5 3608 2 12582 2 1258 26. mAB C 5 11082 mAB mC AB 5 558 C 5 3608 2 13582 2 1358 27. mAB C 5 9082 mAB mC AB 5 458 17. EC is a minor arc. Since ∠AGB and ∠CGD are vertical }} } } 28. AB is a diameter; Theorem 10.4 states that if one chord is a perpendicular bisector of another chord, then the first chord is a diameter. C C 29. AB > DE ; Theorem 10.3 states that in the same circle, the Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 40. continued minor arcs are congruent if and only if their corresonding chords are congruent. } } 30. Sample answer: AB > DE; Theorem 10.6 states that in the same circle, two chords are congruent if and only if they are equidistant from the center. Geometry Worked-Out Solution Key ngws-EP.indd 484 7/11/06 11:49:32 AM Extra Practice, continued 31. By Theorem 10.7, the measure of the intercepted arc of the 408 inscribed angle is 808. So the measure of the arc with the inscribed angle of y8 is 1808 2 808 5 1008. So 1 y 5 }2 (100) 5 50. Since the endpoints of the inscribed angle of x8 form a diameter of the circle, the intercepted 1 38. By the Linear Pair Postulate, the angles adjacent to the 1388 angle are 1808 2 1388 5 428. Then, by Theorem 10.12, 1 428 5 }2 (x8 1 50)8 84 5 x 1 50 arc is 1808. So, x 5 }2(180) 5 90. 32. The inscribed angle of x8 has an intercepted arc of 1408. 1 So, x 5 }2(140) 5 70. The inscribed angles of 208 and y8 intercept the same arc. By Theorem 10.8, the angles are congruent. So, y 5 20. 33. By Theorem 10.8, 34 5 x 39. By Theorem 10.11, 1 x8 5 }2 (1108) x 5 55 40. By Theorem 10.13, (2x 2 5)8 5 (x 1 20)8 1 758 5 }2 ((12x 1 3)8 2 5x8) x 5 25 1 By Theorem 10.7, 75 5 }2 (7x 1 3) 1 (y 1 27)8 5 }2 (4y 1 10)8 150 5 7x 1 3 147 5 7x y 1 27 5 2y 1 5 21 5 x 22 5 y 41. By Theorem 10.13, measure of the intercepted arc is 34. By Theorem 10.10, 3608 2 1108 2 928 5 1588 x8 1 758 5 1808 1 (10x 1 3)8 5 }2(1588 2 928) x 5 105 By Theorem 10.10, 1 10x 1 3 5 }2(66) y8 1 958 5 1808 10x 1 3 5 33 y 5 85 10x 5 30 35. By Theorem 10.10, x53 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 9x8 1 1178 5 1808 42. Using the tangent ratio, you find that the angle of the 9x 5 63 triangle formed by the radius and diameter shown is about 36.98. So, x57 By Theorem 10.10, x8 ø 3608 2 1808 2 36.98 (7y 2 1)8 1 838 5 1808 x ø 143.1 7y 1 82 5 180 43. By Theorem 10.14, 7y 5 98 15x 5 6 p 5 y 5 14 36. The measure of the missing arc is 3608 2 1688 2 888 2 568 5 488. 1 13x8 5 }2 (488 1 568) 1 8y8 5 }2 (888 1 488) 1 13x 5 }2 (104) 1 8y 5 }2 (136) 13x 5 52 8y 5 68 x54 37. By Theorem 10.12, 1 x8 5 }2 (558 1 358) 1 x 5 }2 (90) x 5 45 y 5 8.5 15x 5 30 x52 44. By Theorem 10.14, 10(x 1 1) 5 12 p 5 10x 1 10 5 60 10x 5 50 x55 46. By Theorem 10.15, 4 p (4 1 x) 5 5(8) 45. By Theorem 10.14, 3x p x 5 4 p 3 3x 2 5 12 x2 5 4 x52 47. By Theorem 10.16, 122 5 8(8 1 3x 1 1) 16 1 4x 5 40 144 5 8(3x 1 9) 4x 5 24 144 5 24x 1 72 x56 72 5 24x 35x Geometry Worked-Out Solution Key ngws-EP.indd 485 485 7/11/06 11:49:34 AM Extra Practice, continued 48. By Theorem 10.16, 54. y 2 (2x) 5 (x 1 2)(x 1 2 1 2x 1 5) 4x 2 5 (x 1 2)(3x 1 7) 2 4x 2 5 3x 2 1 13x 1 14 22 x 0 5 2x 2 1 13x 1 14 0 5 (2x 1 14)(x 1 1) 2x 1 14 5 0 x1150 14 5 x Chapter 11 (pp. 916–917) x 5 21 x cannot be a negative number since 2x must be positive so x 5 14. 49. h 5 0, k 5 22, r 5 4 1. Using b 5 13 and h 5 11, Area 5 bh 5 13(11) 5 143 square units. 2. Using b 5 16 and h 5 10, Area 5 bh 5 16(10) 5 160 square units. (x 2 h)2 1 ( y 2 k)2 5 r 2 3. Using b 5 15 and h 5 7.5, (x 2 0)2 1 ( y 2 (22))2 5 42 1 1 Area 5 }2 bh 5 }2(15)(7.5) 5 56.25 square units. x 2 1 ( y 1 2)2 5 16 50. h 5 2, k 5 23, 4. Using b 5 12 and h 5 7, }}} r 5 Ï(7 2 2)2 1 (28 2 (23))2 1 1 Area 5 }2 bh 5 }2 (12)(7) 5 42 square units. } 5 Ï52 1 (25)2 } 5. Find x, the length of the other leg. 5 Ï25 1 25 252 5 202 1 x 2 } 5 Ï50 625 5 400 1 x 2 (x 2 h)2 1 ( y 2 k)2 5 r 2 (x 2 2)2 1 (y 2 (23))2 5 (Ï50 )2 225 5 x 2 (x 2 2)2 1 (y 1 3)2 5 50 15 5 x } Perimeter 5 15 1 20 1 25 5 60 cm 51. h 5 m, k 5 n }}} r 5 Ï(m 1 h 2 m) 1 (n 1 k 2 n) 2 1 2 Area 5 }2 (20)(15) 5 150 cm2 } r 5 Ïh 2 1 k 2 512 5 242 1 x 2 } (x 2 m)2 1 ( y 2 n)2 5 (Ïh 2 1 k 2 )2 2601 5 576 1 x 2 (x 2 m)2 1 ( y 2 n)2 5 h 2 1 k 2 52. 2025 5 x 2 y 45 5 x Perimeter 5 45 1 24 1 51 5 120 ft 1 Area 5 }2 (24)(45) 5 540 ft2 1 x 21 1 7. A 5 } bh 2 1 53. y 22 5 4x 1 2 14.3 5 1.1x A 5 bh 7.2 5 3(3x) 3 7.2 5 9x x 0.8 5 x 10. 1 14.3 5 }2 x(2.2) 55x 23 A 5 bh 22 5 }2 (2x 1 1)(4) 20 5 4x 9. 8. 1 A 5 }2 bh 13 5 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6. Find x, the length of the other leg. (x 2 h)2 1 ( y 2 k)2 5 r 2 276 5 1 }2 2(23)(6x) 1 276 5 69x 45x 486 Geometry Worked-Out Solution Key ngws-EP.indd 486 7/11/06 11:49:39 AM Extra Practice, 1 11. A 5 } h(b1 1 b2) 2 continued 1 12. A 5 } h(b1 1 b2) 2 1 1 5 }2 (10)(12 1 21) C 5 2πr 5 2π 1 }2 2 5 5π 5 22 square units 5 165 square units The circumference of the red circle is 5π, or about 15.71 units. 1 14. A 5 } h(b1 1 b2) 2 1 1 5 }2 (7)(11 1 9) 5 }2 (9)(18 1 6) 5 70 square units 5 108 square units 1 15. A 5 } d1d2 2 1 16. A 5 } d1d2 2 1 1 5 }2 (9)(16) 5 }2 (11)(11) 5 72 square units 5 60.5 square units 1 17. A 5 } d1d2 2 1 18. A 5 } d1d2 2 1 1 5 }2 (3)(9) 5 }2 (4)(6) 5 13.5 square units 5 12 square units 100 a2 19. }2 5 } 81 b 10 9 } 5 }. The ratio of the lengths of the corresponding sides is 1 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } 5 } 5 }. 8 a2 21. }2 5 } 1 b The ratio of the lengths of the corresponding sides is } } Ï8 2Ï 2 a } 5 } 5 }. 1 1 b Area of small triangle 7.5 1 22. }} 5 } 5 } 15 2 Area of large triangle Length in small triangle 1 }} 5 } } Length in large triangle Ï2 1 Ï2 } 5Ï2 1 Ï2 ST 5 } } (CB) 5 } } (5) 5 } 2 } 5Ï 2 ø 3.5 inches. The length ST is } 2 Area of large rectangle 98 49 23. }} 5 } 5 } 50 25 Area of small rectangle Length in large rectangle 7 }} 5 } 5 Length in small rectangle 7 C 5 2πr 5 2π (2) 5 4π The circumference of the red circle is 4π, or about 12.57 units. 27 27. Diameter of red circle: d 5 } 5 9 3 9 Radius: r 5 }2 C 5 2πr 5 2π 1 }2 2 5 9π 9 The circumference of the red circle is 9π, or about 28.27 units. d 8 28. Radius: r 5 } 5 } 5 4 2 2 The circumference of the red circle is 8π, or about 25.13 units. C 1208 30. Arc length of C AB 5 p 2π(10) ø 20.94 feet 3608 308 8 31. Arc length of C AB 5 p 2π 1 2 2 ø 2.09 inches 3608 1508 20 32. Arc length of C AB 5 p 2π 1 2 2 ø 26.18 centimeters 3608 908 29. Arc length of AB 5 } p 2π(3) ø 4.71 meters 3608 25 a2 20. }2 5 } 100 b 5 10 d 4 26. Radius of red circle: r 5 } 5 } 5 2 2 2 C 5 2πr 5 2π (4) 5 8π The ratio of the lengths of the corresponding sides is a b 5 5 }2 (4)(4 1 7) 1 13. A 5 } h(b1 1 b2) 2 a b 5 d 25. Radius of red circle: r 5 } 5 } 2 2 7 ST 5 }5(EF) 5 }5(10) 5 14 m } } } } } 33. A 5 πr 2 5 π (32) 5 9π in.2 The area of a circle with a 3 inch radius is 9π square inches. So, the area is about 28.27 square inches. 34. A 5 πr 2 5 π(2.5)2 5 6.25π The area of a circle with a 2.5 centimeter radius is 6.25π square centimeters. So, the area is about 19.63 square centimeters. 20 2 35. A 5 πr 2 5 π } 5 100π 2 1 2 The area of a circle with a 20 foot diameter is 100π square feet. So, the area is about 314.16 square feet. 1 2 13 2 36. A 5 πr 2 5 π } 2 5 42.25π The area of a circle with a 13 meter diameter is 42.25π square meters. So, the area is about 132.73 square meters. Area of large figure 150 25 24. }} 5 } 5 } 54 9 Area of small figure Length in large figure Length in small figure 5 3 }} 5 } 5 5 ST 5 }3 (JK) 5 }3 (9) 5 15 in. Geometry Worked-Out Solution Key ngws-EP.indd 487 487 7/11/06 11:49:41 AM Extra Practice, continued C mC DGE 5 3608 2 458 5 3158 1 37. mDE 5 458 A 5 }2 bh 1 C mDE Area of small sector 5 } p πr 2 3608 458 5 } p π(52) ø 9.82 in.2 3608 mDGE Area of large sector 5 } p πr 2 3608 3158 5 } p π(52) ø 68.72 in.2 3608 C 38. Because ∠DFE is a straight angle, both sectors have the C mDHE 3608 1808 22 2 5}pπ } ø 190.07 cm2 2 3608 Area of each sector 5 } p πr 2 C C 5 3608 2 1008 5 2608 mDGE 39. mDE 5 1008 1 2 } 5 81Ï3 ø 140.30 square units 3608 46. Measure of a central angle: } 5 728 5 The apothem bisects a 728 central angle to form a right triangle with a 368 angle and a longer leg that is 2 units long. 2 36� x x 2 tan 368 5 } 2 tan 368 5 x The length of a side is 2x. C mDE 3608 1008 5 } p π (72) ø 42.76 ft2 3608 mDGE Area of large sector 5 } p πr 2 3608 2608 5 } p π(72) ø 111.18 ft2 3608 Area of small sector 5 } p πr 2 C C mC DE 5 3608 2 2408 5 1208 40. mDGE 5 2408 Perimeter: P 5 5 p 2x 5 10(2 tan 368) ø 14.53 units 1 1 Area: A 5 }2 aP ø }2 (2)(14.53) 5 14.53 square units 3608 47. Measure of a central angle: } 5 608 6 The apothem bisects a 608 central angle to form a right triangle with a 308 angle and a shorter leg a 30� 4.5 C mDE 3608 1208 5 } p π (22) ø 4.19 yd2 3608 mDGE Area of large sector 5 } p πr 2 3608 2408 5 } p π(22) ø 8.38 yd2 3608 Area of small sector 5 } p πr 2 C 41. The measure of a central angle of a regular octagon is 3608 8 } 5 458. 42. The measure of a central angle of a regular dodecagon is 3608 12 } 5 308. 43. The measure of a central angle of a regular 20-gon is 3608 20 that is } 5 2.25 units long. 2 Perimeter: P 5 6(4.5) 5 27 units 1 Area: A 5 }2 aP 5 }2 1 } 2(27) ø 52.61 square units 1 2.25 tan 308 3608 48. Measure of a central angle: } 5 458 8 The apothem bisects a 458 central angle to form a right triangle with a 22.58 angle and a hypotenuse that is 12 units long. 44. The measure of a central angle of a regular 25-gon is 3608 25 } 5 14.48. 22.5� a x sin 22.58 5 } 12 12 sin 22.58 5 x Side length: 2x 5 24 sin 22.58 Perimeter: P 5 8(24 sin 22.58) ø 73.48 units 1 45. P 5 3(18) 5 54 units 9 h 2 1 92 5 182 h h 2 1 81 5 324 Area: A 5 }2 aP 1 ø }2(12 cos 22.58)(73.48) 18 12 x a cos 22.58 5 } 12 12 cos 22.58 5 a } 5 188. 2.25 2.25 tan 308 5 } a 2.25 a5} tan 308 ø 407.29 square units Copyright © by McDougal Littell, a division of Houghton Mifflin Company. same area. } 5 }2(18)9Ï 3 h 2 5 243 } } h 5 Ï243 5 9Ï 3 488 Geometry Worked-Out Solution Key ngws-EP.indd 488 7/11/06 11:49:48 AM Extra Practice, continued 49. The center of the circle is the point of concurrency of the medians of the regular triangle, so the radius of the circle 2 is }3 the height of the triangle. Then the height of the triangle is 6. Using a side length of s: s 2 1 }2 2 s2 } 1 36 5 s 2 4 s 6 3 s 2 36 5 }4 s 2 48 5 s 2 1 } π (42) 2 }2 (4Ï3 )6 5 }} ø 0.587 2 ) There is about a 58.7% probability that a randomly chosen point in the circle lies in the shaded region. Area of sector 2 Area of triangle 50. P 5 }}} Area of circle 908 1 2 3608 }} } p π(152) 2 }(15)(15) π(152) ø 0.091 There is about a 9.1% probability that a randomly chosen point in the circle lies in the shaded region. 51. In the large triangle, the base 5 10 5 the height. The small triangle at the top is similar to the large triangle and its height is 3. So its base must be equal to 3. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. by polygons. 3. Yes, the solid is a polyhedron; the solid is a triangular pyramid; the solid is bounded by polygons and has a triangle for a base. 4. No, the solid is not a polyhedron; it is not bounded by 5. Using Euler’s Theorem, Area of circle 2 Area of triangle P 5 }}} Area of circle Sum of areas of shaded triangles P 5 }}} Area of large triangle 1 2 prism; the solid is bounded by polygons and has pentagons for bases. polygons and the bases are not polygons. } 4Ï 3 5 s 5 1. Yes, the solid is a polyhedron; the solid is a pentagonal 2. No, the solid is not a polyhedron; it is not bounded 1 62 5 s 2 π(4 Chapter 12 (pp. 918–919) 1 2 }(3)(3) 1 }(3)(7) 5 }} 1 }(10)(10) 2 5 0.3 There is a 30% probability that a randomly chosen point in the large triangle lies in the shaded region. 52. Base of rectangle: 4(6) 5 24 Height of rectangle: 2(6) 5 12 Area of rectangle 2 Sum of areas of circles P 5 }}}} Area of rectangle 24(12) 2 [π(62) 1 π(62)] 5 }} 24(12) ø 0.215 There is about a 21.5% probability that a randomly chosen point in the rectangle lies in the shaded region. 4.5 53. P 5 } 5 0.0375 120 6. B 5 6 p 5 5 30 F1V5E12 P 5 2(6 1 5) 5 2(11) 5 22 F 1 6 5 10 1 2 S 5 2B 1 Ph F 1 6 5 12 S 5 2(30) 1 (22)(4) F56 S 5 60 1 88 S 5 148 ft2 There are 6 faces. 7. Find the height of the triangle: } } } h 5 Ï52 2 (2.5)2 5 Ï25 2 6.25 5 Ï18.75 ø 4.33 1 1 B 5 }2 bh ø }2 (5)(4.33) ø 10.825 P 5 3(5) 5 15 S 5 2B 1 Ph ø 2(10.825) 1 (15)(9) ø 21.65 1 135 ø 156.65 cm2 8. Find the apothem of the hexagon: a tan 608 5 }3 3 p tan 608 5 a P 5 6 p 6 5 36 S 5 aP 1 Ph S 5 (3 p tan 608)(36) 1 (36)(8) S ø 187.06 1 288 S ø 475.06 m2 9. S 5 2πr 2 1 2πrh 10. S 5 2πr 2 1 2πrh S 5 2π(2)2 1 2π(2)(11) S 5 2π(1)2 1 2π(1)(1) S 5 8π 1 44π S 5 2π 1 2π S 5 4π ø 12.57 m2 S 5 52π 2 S ø 163.36 cm 11. S 5 2πr 2 1 2πrh 2 S 5 2π(22) 1 2π(22)(9) 12. S 5 2πr 2 1 2πrh S 5 2π(17)2 1 2π(17)(5) S 5 968π 1 396π S 5 578π 1 170π S 5 1364π S 5 748π S ø 4285.13 in.2 S ø 2349.91 mm2 There is a 3.75% chance that your favorite song will be playing when you randomly turn on the radio. Geometry Worked-Out Solution Key ngws-EP.indd 489 489 7/11/06 11:49:51 AM Extra Practice, S 5 2B 1 Ph Find the area of the triangular base: 192 5 2(4x) 1 (2(x 1 4))(4) 1 1 } 192 5 8x 1 (2x 1 8)(4) 192 5 8x 1 8x 1 32 P 5 3(2) 5 6 160 5 16x S 5 B 1 }2Pl 1 10 in. 5 x 1 } S 5 Ï3 1 }2 6(5) 14. Find the height of the triangular base: } 12 1 h2 5 3.52 S 5 Ï3 1 15 1 1 h2 5 12.25 S ø 16.73 cm2 h2 5 11.25 18. P 5 5(7) 5 35 } h 5 Ï11.25 1 1 B 5 }2 aP 5 }2 (4.8)(35) 5 84 Find the area of the triangular base: 1 S 5 B 1 }2Pl 1 B 5 }2 bh 1 1 S 5 84 1 }2 (35)(15) } B 5 }2 (2)(Ï11.25 ) S 5 84 1 262.5 } B 5 Ï11.25 P 5 2 1 3.5 1 3.5 5 9 S 5 2B 1 Ph S 5 346.5 m2 19. S 5 πr 2 1 πrl } 33.7 5 2(Ï11.25 ) 1 (9)(x) } 33.7 2 2Ï11.25 5 9x 3.00 m ø x S 5 2πr 2 1 2πrh 15. } B 5 }2 bh 5 }2 (2)(Ï3 ) 5 Ï3 754 5 2π(6)2 1 2π(6)(x) 21. 754 5 72π 1 12πx 754 2 72π 5 12πx 14.00 ft ø x 16. B 5 5(5) 5 25 S 5 2.7π S ø 8.48 m2 a 2 1 b2 5 l2 S 5 π(9)2 1 π(9)(15) 81 1 144 5 l 2 S 5 81π 1 135π 2 S 5 216π V 5 1960 cm3 25. B 5 x p x 5 x 2 V 5 π(1.15) (7.2) V 5 Bh V 5 π(1.3225)(7.2) 8 5 (x 2)(x) V 5 9.522π 8 5 x3 2 V ø 29.91 mm3 12 1 h 2 5 22 1 26. B 5 }(3)(6) 5 9 2 V 5 Bh } h 5 Ï3 72 5 9x 8 ft 5 x 27. 1 23. B 5 }(14)(14) 5 98 2 V 5 (98)(20) 24. V 5 πr2h 17. Find the height of the triangular base: S ø 678.58 yd2 V 5 Bh V 5 28 ft S 5 75 in. S 5 πr 2 1 πrl 92 1 122 5 l2 2 2 h 53 S 5 33π S ø 103.67 in.2 V 5 (14)(2) S 5 25 1 50 2 S 5 π 1 1.7π V 5 Bh 1 1 1 h2 5 4 S 5 9π 1 24π 22. B 5 (4)(3.5) 5 14 S 5 B 1 }2Pl 1 S 5 π(1)2 1 π(1)(1.7) 15 5 l P 5 4(5) 5 20 S 5 25 1 }2(20)(5) S 5 π(3)2 1 π(3)(8) 225 5 l 754 2 72 π 12π }5x 20. S 5 πr 2 1 πrl V 5 πr 2h 628 5 πx 2(8) 2 cm 5 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 13. continued 628 8π }� 5 x2 24.99 ø x 2 5.00 in. ø x 490 Geometry Worked-Out Solution Key ngws-EP.indd 490 7/11/06 11:49:56 AM Extra Practice, continued 28. B 5 (12)(12) 5 144 33. Find the radius of the base: 4.2 1 V 5 }3 Bh tan 688 5 } r 1 V 5 }3 (144)(15) (r)(tan 688) 5 4.2 4.2 tan 688 r5} V 5 720 in.3 29. Find the apothem and perimeter of the hexagonal base: a 5 (2.5)(tan 608) ø 4.33013 P 5 (5)(6) 5 30 1 1 B 5 }2 aP ø }2 (4.33013)(30) ø 64.95195 1 V 5 }3 Bh 1 V ø }3 π(1.696910)2(4.2) V ø 4.031305π V ø 12.66 ft3 1 V ø }3 (64.95195)(8) V ø 173.21 ft3 1 30. V 5 }πr 2h 3 1 V 5 }3 π(7.3)2(11.4) 1 3 V 5 }π(53.29)(11.4) V 5 202.502π V ø 636.18 m3 31. Find the radius of the base: 18 tan 458 5 } r (r)(tan 458) 5 18 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. r ø 1.696910 1 V 5 }3 πr 2h 18 r5} tan 458 r 5 18 1 V 5 }3 πr 2h 1 V 5 }3 π(18)2(18) 1 34. S 5 4πr 2 35. S 5 4πr 2 2 S 5 4π(13) S 5 4π(18)2 S 5 4π(169) S 5 4π(3.24) S 5 676π S 5 12.96π 2 S ø 2123.72 m S ø 40.72 in.2 4 V 5 }3 πr 3 4 4 V 5 }3 π(1.8)3 V 5 }3 π(2197) 4 V 5 }3 π(5.832) V ø 2929.333π V 5 7.776π V ø 9202.77 m3 V ø 24.43 in.3 V 5 }3 πr 3 4 V 5 }3 π(13)3 4 36. S 5 4πr 2 37. S 5 4πr 2 2 S 5 4π(14) S 5 4π(6.85)2 S 5 4π(196) S 5 4π(46.9225) S 5 784π S 5 187.69π 2 S ø 2463.01 yd S ø 589.65 cm2 4 V 5 }3 πr 3 4 4 V 5 }3 π(6.85)3 4 V 5 }3 πr 3 4 V 5 }3 π(14)3 V 5 }3 π(324)(18) V 5 }3 π(2744) V 5 }3 π(321.419125) V 5 1944π V ø 3658.667π V ø 428.558833π V ø 11,494.04 yd3 V ø 1346.36 cm3 V ø 6107.26 in.3 32. Find the height: h tan 308 5 }5 5 p tan 308 5 h 2.886751 ø h 1 3 V 5 }πr 2h 1 V ø }3 π(5)2(2.886751) 1 4 38. S 5 4πr 2 39. S 5 4πr 2 2 S 5 4π(20) S 5 4π(17.5)2 S 5 4π(400) S 5 4π(306.25) S 5 1600π S 5 1225π 2 S ø 5026.55 in. S ø 3848.45 mm2 4 V 5 }3 πr 3 4 V 5 }3 π(17.5)3 4 V 5 }3 πr 3 V 5 }3 π(20)3 4 4 4 V ø }3 π(25)(2.886751) V 5 }3 π(8000) V 5 }3 π(5359.375) V ø 24.056258π V ø 10666.667π V ø 7145.833π V ø 75.57 m3 V ø 33,510.32 in.3 V ø 22,449.30 mm3 Geometry Worked-Out Solution Key ngws-EP.indd 491 491 7/11/06 11:49:58 AM Extra Practice, 40. S 5 4πr 2 continued 41. S 5 4πr 2 S 5 4π(7.6)2 S 5 4π(11.5)2 S 5 4π(57.76) S 5 4π(132.25) S 5 231.04π S 5 529π S ø 725.83 m2 S ø 1661.90 ft2 4 V 5 }3 πr 3 4 4 V 5 }3 π(11.5)3 V 5 }3 π(438.976) 4 V 5 }3 π(1520.875) V ø 585.301333π V ø 2027.833π V 5 }3 πr 3 4 V 5 }3 π(7.6)3 3 V ø 1838.78 m 4 V ø 6370.63 ft3 a2 Surface area of A 42. }} 5 }2 Surface area of B b 32 324π }} 5 }2 Surface area of B 2 9 324π } }} 5 4 Surface area of B (9)(Surface area of B) 5 4(324π) (9)(Surface area of B) 5 1296π Surface area of B 5 144π in.2 a3 b 33 972π } }5 3 Volume of B 2 27 972π }5} 8 Volume of B Volume of A Volume of B } 5 }3 a2 Surface area of A 44. }} 5 }2 Surface area of B b 42 7 16 64π }} 5 } 49 Surface area of B 64π Surface area of B }} 5 }2 (16)(Surface area of B) 5 49(64π) (16)(Surface area of B) 5 3136π Surface area of B 5 196π cm2 a3 b 43 64π } 5 }3 Volume of B 7 64 64π }5} 343 Volume of B Volume of A Volume of B } 5 }3 (64)(Volume of B) 5 343(64π) Volume of B 5 343π cm3 12π a3 45. }3 5 }� 324π b 1 a3 }3 5 } 27 b 1 a }5} 3 b The scale factor of the smaller cylinder to the larger cylinder is 1 : 3. (27)(Volume of B) 5 7776π Volume of B 5 288π in.3 a2 Surface area of A 43. }} 5 }2 Surface area of B b 22 1 4 864 } }} 5 1 Surface area of B 864 Surface area of B }} 5 }2 (4)(Surface area of B) 5 864 Surface area of B 5 216 ft 2 a3 b 23 1728 } 5 }3 Volume of B 1 8 1728 } }5 1 Volume of B Volume of A Volume of B } 5 }3 (8)(Volume of B) 5 1728 Volume of B 5 216 ft3 492 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (27)(Volume of B) 5 8(972π) Geometry Worked-Out Solution Key ngws-EP.indd 492 7/11/06 11:50:00 AM