Global LAnd Surface Satellite (GLASS) Products: Characteristics
Transcription
Global LAnd Surface Satellite (GLASS) Products: Characteristics
Global LAnd Surface Satellite (GLASS) Products: Characteristics and Preliminary Applications Shunlin Liang & GLASS data production team University of Maryland and Beijing Normal University GV2M, Avignon, Feb. 6, 2014 Acknowledgements More than 100+ people contributing to the project for generating the GLASS products; Funding supports mainly from the 863 program of China, managed by the National Remote Sensing Center of China (NRSCC), Ministry of Science and Technology Outline Overview of the GLASS products (1) Shortwave broadband albedo (2) Leaf Area Index (LAI) (3) Longwave broadband emissivity (4) Shortwave radiation (5) Photosynthetically Active Radiation (PAR) Summary Global LAnd Surface Satellite (GLASS) Products Products Temporal Spatial Temporal range resolution resolution Leaf area index (LAI) 1981-2013 1km, 5km 8 days Longwave emissivity 1981-2013 1km, 5km 8 days Shortwave albedo 1981-2013 1km, 5km 8 days Incident shortwave radiation 2008-2010 5km 3 hours Incident PAR 2008-2010 5km 3 hours FREE GLASS Product Distribution Beijing Normal University (BNU) Center for Global Change data Processing and Analysis http://www.bnu-datacenter.com University of Maryland (UMD) Global Land Cover Facility http://glcf.umiacs.umd.edu (1) Shortwave albedo product 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 MODIS, MISR POLDER MERIS GEOLAND2 GLOBALBEDO GLASS Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., & Liu, S. (2014). Improved direct‐estimation algorithm for mapping daily land‐ surface broadband albedo from MODIS data. IEEE Transaction on Geoscience and Remote Sensing, 52(2):907‐919 Liu, N., Liu, Q., Wang, L., Liang, S., Wen, J., Qu, Y., & Liu, S. (2013a). Mapping spatially‐temporally continuous shortwave albedo for global land surface from MODIS data. Hydrology and Earth System Sciences, 17, 2121‐2129 Liu, Q., Wang, L., Qu, Y., Liu, N., Liu, S., Tang, H., & Liang, S. (2013b). A Preliminary Evaluation of GLASS Albedo Product. International Journal of Digital Earth, 6, 69‐95 AB1 Intermediate product AB2 Intermediate product MODIS data 2000—present MCD43 albedo product 1981—1999 AB1 STF AB2 AVHRR data AB1 STF Final product Statistics data base Intermediate product STF Final product : Angular Bin (AB) — two inversion algorithms Statistics-based Temporal Filtering (STF) — post-processing algorithm First satellite land product based on the integration of multiple algorithms Long‐term changes in land albedo Mean albedo Global albedo anomaly Example 1: Calibrating/Validating the State‐of‐the‐art GCM Simulations 0.45 0.4 Shortwave albedo 0.35 BCC‐CSM1 CanCM4 CCSM4 CFSv2 CNRM‐CM5 FGOALS‐s2 GEOS‐5 GFDL‐CM2p1 HadCM3 IPSL‐CM5A‐LR MIROC4h MIROC5 MPI‐ESM‐LR MPI‐ESM‐MR MRI‐CGCM3 GEWEX CERES GLASS MODIS ISCCP MERIS 0.3 0.25 0.2 0.15 0.1 1 2 3 4 5 6 7 8 9 10 11 12 Month Inter-comparison of 30-year global albedo climatology derived from satellite products and CMIP5 model outputs. He, et al. 2014 Example 2 1981-2000 2000-2012 (2) Leaf area index (LAI) product Temporal LAI Products Spatial resolution resolution (day) MODIS 1km 8 Temporal range CYCLOPES 1/112° 10 2010‐ present 1999‐2003 GLOBECARBON 1/11.2° 10 1998‐2007 Geoland2 1km, 0.05º 10 1981-2012 GLASS 1km, 0.05° 8 1981‐2013 General Regression Neural Networks Input layer Pattern layer Output layer … … … GRNN yk … xj … … ym One-year LAI profiles … … y1 x2 … MODIS reflectance data from an entire year x1 Summation layer xn A GRNN with a multi-input–multi-output architecture Xiao, Z., Liang, S., Wang, J., Chen, P., & Yin, X. (2014). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52(1):209-223 (3). GLASS emissivity product Emissivity is one of the important components in land surface energy balance and has significant impacts on model simulations; R n R s n R l n ( 1 ) F d s F dl T 4 Insolation albedo Emissivity Longwave downward radiation Skin temperature No global broadband emissivity satellite product yet; Most GCMs assume constant emissivity values Land surface spectral emissivity products have large errors Jan. 2003 Broadband emissivity from MODIS Aug. 2003 Jin, M., and S. Liang, (2006), Impacts of the MODIS broadband emissivity on GCM simulation, J. Climate, 19:2867-2881. Figure 14: Emissivity impacts on surface air temperature differences in the coupled CAM2/CLM2 model: default emissivity values and MODIS emissivity maps products resolutions, temporal range wavelengths CERES emissivity map Global, 10’×10’, no temporal 12 spectral bands and one variation broadband(5‐100 µm) MODIS‐based baseline fit database Global, 0.05º, monthly, 2003‐ 10 wavelengths 2011 (3.6 – 14.3 µm) AIRS 30ºN‐30ºS, monthly , April 3.7 – 14 µm 2003‐March 2006 ( 0.05 µm resolution) 30ºN‐30ºS, monthly , April 3.7 – 14 µm 2007‐March 2011 ( 0.05 µm resolution) Global discontinuous, 90m, 5 bands 2000‐present IASI ASTER spectral spectral MODIS Global coverage, 0.05º, 2000‐ 6 bands (3.8‐12.0µm) present GLASS Global, 1km, 0.05º 1 broadband (8‐13.5µm) GLASS Longwave Emissivity product Unique features: Took advantage of MODIS shortwave reflectance and ASTER spectral emissivity。 First broadband emissivity product from AVHRR data。 Cheng, J., S. Liang, Y. Yao, X. zhang (2013). "Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation." IEEE Geoscience and Remote Sensing Letters 10(2): 401‐405. Ren, H., S. Liang, G. Yan, J. Cheng (2013). "Empirical algorithms to map global broadband emissivities over vegetated surfaces." IEEE Transactions on Geoscience and Remote Sensing: 51(5):2619‐2631. Cheng, J. and S. Liang (2013). "Estimating global land surface broadband thermal‐infrared emissivity from the Advanced Very High Resolution Radiometer optical data." International Journal of Digital Earth: 6,34‐49 Cheng, J., & S. Liang, (2014). Effects of thermal‐infrared emissivity directionality on surface broadband emissivity and longwave net radiation estimation. IEEE Geoscience and Remote Sensing Letters, 11(2):499‐503 Cheng, J., S. Liang, Y. Yao, B. Ren, L. Shi, H. Liu, (2014), A comparative study of three land surface broadband emissivity datasets from satellite data, Remote Sensing, 4(1):111‐134 GLASS Longwave emissivity product Product intercomparison and validation Comparison with JPL/ASTER in the summer,(a)GLASS; (b)ASTER; (c) differences; (d) Histogram of the differences. Comparison with JPL/ASTER in the winter,(a) GLASS; (b)ASTER; (c) differences; (d) Histogram of the differences. In‐situ validation (4)‐(5) shortwave radiation and PAR products current global incident shortwave radiation satellite products Insolation Spatial Temporal Temporal Products resolution resolutio range n ISCCP 280km 3‐hour 1983‐2008 GEWEX‐ 1° 3‐hour 1983‐2007 SRB CERES 140km 3‐hour 1997‐present GLASS 5km 3‐hour 2008‐2010 WMO requirements for surface downward shortwave irradiance Uncertainty Uncertainty Horizontal Goal threshold resolution goal (Wm‐2) (Wm‐2) (km) Global NWP 1 20 10 Agricultural N/A N/A 1 Meteorology Climate‐ 5 10 25 AOPC Horizontal resolution Theshold (km) 100 20 100 Polar Orbiting: MODIS Geostationary: GOES-W GOES-E MSG MTSAT FY2C Solar radiation on Nov. 11, 2008 PAR in July 2008 Validation along with other products CERES‐MODIS‐CALIPSO‐ GLASS Insolation ISCCP-FD CloudSat (CCCM) Site Model B Enhanced R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE Bondville 0.87 14.68 104.97 0.71 -7.06 149.88 0.84 12.9 119.5 0.82 -0.5 126.16 FortPeck 0.84 10.51 102.75 0.69 9.61 150.37 0.81 5.3 112.40 0.80 2.3 115.02 Goodwin Creek 0.91 -6.29 99.54 0.64 12.61 184.11 0.69 14.3 172.0 0.66 -3.8 179.35 Penn State 0.85 18.17 109.3 0.7 5.92 152.88 0.87 6.9 107.0 0.86 -8.6 111.18 Sioux Falls 0.81 11.52 114.41 0.65 37.83 168.85 0.62 -11.4 167.4 0.58 -37.8 178.77 Boulder 0.81 -12.8 126.38 0.72 6.49 154.96 0.34 -12.0 249.3 0.47 -43.0 214.41 DesertRock 0.92 -52.4 112.94 0.87 -42.4 125.27 0.52 -24.2 198.0 0.49 -26.6 206.38 Impacts of improved PAR products on calculating gross primary productivity (GPP) GLASS ISCCP Princeton 6 radiation products Same model for calculating GPP ECWMF MERRA NCEP in-situ measurements at 12 sites in China GLASS radiation product produces the best GPP values Cai, W., W. Yuan, S. Liang, et al., (2014), Improved Estimations of Gross Primary Production Using Satellite-derived Photosynthetically Active Radiation, Journal of Geophysical Research – Biogeosciences, doi: 10.1002/2013JG002456 Figure 7. Annual mean GPP estimates of 2008 and 2009 driven by six radiation products: The grayscale image in each plot is the standard deviation of the annual GPP. Phase‐II GLASS products (Dec. 2013‐Nov. 2016) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Incident shortwave radiation Incident PAR Broadband albedo Broadband emissivity Longwave net radiation All‐wave net radiation Skin temperature Evapotranspiration Leaf area index Fraction of absorbed PAR by green vegetation Fraction of green vegetation coverage Gross primary productivity Summary Long-term high-quality satellite products are essential in detecting and assessing global environmental changes Global LAnd Surface Satellite (GLASS) products with unique features have been extensively validated Sample products and the pdf files of the papers are in the DVD Examples are given to demonstrate that they are very useful for environmental change studies Everyone is warmly welcome to evaluate and utilize them. Web addresses of the data centers are in the booklet