ACCELERATOR MAGNETS Bending Field (Dipole) and Magnetic
Transcription
ACCELERATOR MAGNETS Bending Field (Dipole) and Magnetic
Transverse Motion and the Normalized Gradient ACCELERATOR MAGNETS B 0 r ϕ Stephan Russenschuck CERN, AT-MEL-EM 1211 Geneva 23, Switzerland O rb it ρ y v P a rtic le R z s x Displaced particle at ρ = R + x with field Bz = B0 + 1 dx 1 d p0 + ( 2 − k)x = 0 p0 ds ds R For x R, e/p0 = −1/(B0R) and k = − B1R 0 Bending Field (Dipole) and Magnetic Rigidity B ∂ Bz ∂ x x=0 x ∂ Bz ∂ x x=0 Quadrupole vz × B 3.3356p[GeV/c] = R[m] B0[T] Remark 1: Consider the “filling factor” in accelerators between 0.6 and 0.7. B x (vz × B) y (vz × B) LHC in the LEP Tunnel (Virtual Reality) Higher Order Multipole Fields: Sextupole x (vz × B) B y (vz × B) Remark 2: Magnet systems are the most costly item in an accelerator The 26 GeV Proton Synchrotron (PS) in its Tunnel Multipole Field Errors and Beam Parameters b1 , a1 b2 a2 b3 a3 b4 a4 b5 a5 b7 b6 , a6 , a7 , > Closed orbit distortions β -beating Vertical dispersion, linear coupling Off-momentum β beating Chromatic coupling inducing detuning Dynamic aperture and detuning Dynamic aperture at injection Dynamic aperture and detuning Off-momentum dynamic aperture Dynamic aperture at injection Dynamic aperture at injection Magnet Metamorphosis High Energy Ring Accelerator (HERA) at DESY (H-Magnet) |Btot| (T) 2.65 2.50 2.35 2.21 2.06 1.91 1.77 1.62 1.47 1.32 1.18 1.03 0.88 0.74 0.59 0.44 0.29 0.15 0.10 - 2.8 2.65 2.50 2.35 2.21 2.06 1.91 1.77 1.62 1.47 1.32 1.18 1.03 0.88 0.74 0.59 0.44 0.29 0.15 N ⋅ I = 24000 A B1 = 0.3 T Bs = 0.065 T Fill.fac. 0.98 Magnet Metamorphosis Magnet Metamorphosis (Cryogenic or Super-Ferric Magnet) (C- Core, LEP Dipole) |Btot| (T) |Btot| (T) 2.65 2.50 2.36 2.21 2.06 1.92 1.77 1.62 1.47 1.33 1.18 1.03 0.88 0.73 0.59 0.44 0.29 0.15 0.00 - 2.8 2.65 2.50 2.36 2.21 2.06 1.92 1.77 1.62 1.47 1.33 1.18 1.03 0.88 0.73 0.59 0.44 0.29 0.15 N ⋅ I = 4480 A 2.65 2.50 2.36 2.21 2.06 1.91 1.77 1.62 1.47 1.33 1.18 1.03 0.88 0.74 0.58 0.44 0.29 0.14 0.37 B1 = 0.13 T Bs = 0.042 T Fill.fac. 0.27 - 2.8 2.65 2.50 2.36 2.21 2.06 1.91 1.77 1.62 1.47 1.33 1.18 1.03 0.88 0.74 0.58 0.44 0.29 0.14 N ⋅ I = 96000 A B1 = 1.18 T Bs = 0.26 T Magnet Metamorphosis Magnet Metamorphosis (Window Frame Dipole) (LHC Coil-Test Facility |Btot| (T) |Btot| (T) 2.652 - 2.8 2.505 - 2.652 2.357 - 2.505 2.210 - 2.357 2.063 - 2.210 1.915 - 2.063 1.768 - 1.915 1.621 - 1.768 1.473 - 1.621 1.326 - 1.473 1.178 - 1.326 1.031 - 1.178 0.884 - 1.031 0.736 - 0.884 0.589 - 0.736 0.442 - 0.589 0.294 - 0.442 0.147 - 0.294 0. 0.147 - 2.65 2.50 2.36 2.21 2.06 1.91 1.77 1.62 1.47 1.32 1.18 1.03 0.88 0.74 0.59 0.44 0.29 0.15 0.00 N ⋅ I = 360000 A B1 = 2.08 T - 2.8 2.65 2.50 2.36 2.21 2.06 1.91 1.77 1.62 1.47 1.32 1.18 1.03 0.88 0.74 0.59 0.44 0.29 0.15 N ⋅ I = 960000 A Bs = 1.04 T B1 = 8.33 T Bs = 7.77 T Magnet Metamorphosis Magnet Metamorphosis (Tevatron Dipole) (LHC Main Dipole) |Btot| (T) |Btot| (T) 2.652 - 2.8 2.652 - 2.8 2.505 - 2.652 2.505 - 2.652 2.357 - 2.505 2.357 - 2.505 2.210 - 2.357 2.210 - 2.357 2.063 - 2.210 2.063 - 2.210 1.915 - 2.063 1.915 - 2.063 1.768 - 1.915 1.768 - 1.915 1.621 - 1.768 1.621 - 1.768 1.473 - 1.621 1.473 - 1.621 1.326 - 1.473 1.326 - 1.473 1.178 - 1.326 1.178 - 1.326 1.031 - 1.178 1.031 - 1.178 0.884 - 1.031 0.884 - 1.031 0.736 - 0.884 0.736 - 0.884 0.589 - 0.736 0.589 - 0.736 0.442 - 0.589 0.442 - 0.589 0.294 - 0.442 0.294 - 0.442 0.147 - 0.294 0.147 - 0.294 0. 0.147 0. 0.147 - N ⋅ I = 471000 A 0 21 B1 = 4.16 T 42 63 84 105 126 147 168 189 Bs = 3.39 T 210 - N ⋅ I = 2x944000 A B1 = 8.32 T Bs = 7.44 T LHC Main Dipol Cross-Section Maxwell’s Equations in Integral Form ∂D ) ⋅ dA (J + A ∂t ⋅ d s = − ∂ ⋅ dA E B ∂ t A ⋅ dA = 0 B A ⋅ dA = ρdV D ⋅ d s = H A V Constitutive Equations + M) = µ0(H = µH B D = ε E = ε0(E + P) + Jimp. J = κ E 1. Heat exchanger, 2. Bus bar, 3. Superconducting coil, 4. Vacuum Pipe und Beam-screen, 5. Cryostat, 6. Thermal shield (55- 75 K), 7. Helium-Tank, 8. Super-Insulation, 9. Collars, 10. Yoke Overview 1D Field Calculation for a Conventional Dipole Maxwell’s equations in integral form One-dimensional field calculation for conventional magnets Maxwell’s equations in differential form The solution of Laplace’s equation Harmonic fields Complex Potentials Ideal pole shapes of conventional magnets Feed down ⋅ d s = H J ⋅ d A A Solution of Poisson’s equation The field of line currents Generation of pure multipole fields Sensitivity to manufacturing errors Numerical field computation Saturation of the iron yoke Superconducting filament magnetization 1 1 Biron siron + Bgap sgap = N I µ0 µr µ0 µ NI µr 1 Bgap = 0 sgap Hiron siron + Hgap sgap = Warning 1: Check that the magnetic circuit contains no flux concentration which increases the magnetic flux density above 1 T, as in this case fringe fields can no longer be neglected. 1D Field Calculation for a Conventional Quadrupole Field Quality in the Dipole Aperture 2 1 ⋅ d s = H Bx = gy 1 ⋅ d s + H 1 By = gx 2 3 ⋅ d s + H 2 3 g H= µ0 ⇒ g r0 g r02 =NI Hdr = rdr = µ0 0 µ0 2 0 r 0 ⋅ d s = N I H 3 x2 + y2 = ⇒ LEP Dipole and Quadrupole g= g r µ0 2µ0NI r02 Field Quality in the Dipole Aperture B y | |1 − B nom y A (Tm) |Btot| (T) 0.039 - 0.041 1.969 - 2.078 0.037 - 0.039 1.859 - 1.969 0.034 - 0.037 1.750 - 1.859 0.032 - 0.034 1.641 - 1.750 0.030 - 0.032 1.531 - 1.641 0.028 - 0.030 1.422 - 1.531 0.025 - 0.028 1.313 - 1.422 0.023 - 0.025 1.203 - 1.313 0.021 - 0.023 1.094 - 1.203 0.018 - 0.021 0.984 - 1.094 0.016 - 0.018 0.875 - 0.984 0.014 - 0.016 0.766 - 0.875 0.012 - 0.014 0.656 - 0.766 0.009 - 0.012 0.547 - 0.656 0.007 - 0.009 0.438 - 0.547 0.005 - 0.007 0.328 - 0.438 0.003 - 0.005 0.219 - 0.328 0.864 - 0.003 0.110 - 0.219 -0.13 - 0.864 0.664 - 0.110 Definition of Field Quality in Accelerator Magnets Maxwell’s Equations in Differential Form Fourier-series expansion of the radial component of the magnetic flux density on a reference radius inside the aperture Br (r0 , ϕ ) = ∞ (Bn (r0 ) sin nϕ + An (r0) cos nϕ ) n=1 = BN (r0 ) ∞ (bn (r0 ) sin nϕ + an (r0) cos nϕ ) n=1 An (r0) ≈ 2P−1 1 Br (r0, ϕk ) cos nϕk , P k =0 Bn (r0) ≈ 2P−1 1 Br (r0, ϕk ) sin nϕk . P k =0 Remark 3: This definition is perfectly in line with magnetic field measurements using “harmonic coils” where the periodic flux variation in tangential rotating coils is analyzed with a FFT. = J + ∂ D curlH ∂t = −∂ B curlE ∂t div B = 0 = ρ div D Constitutive Equations + M) = µ (H = µH B 0 + P) = ε (E = εE D 0 +J J = κ E imp. Rotating Coil Measurement Setup at BNL (Brookhaven) Lemmata of Poincaré The curl of an arbitrary vector field is source free div curlg = 0 An arbitrary gradient field is curl free curl gradφ = 0 (div B = 0) A source free field B, in the form can be expressed through a vector potential A B = curlA. (curlH = 0) A curl free field H, = −gradΦm . can be expressed through a scalar potential φ in the form H Remark 4: The field in the aperture of accelerator magnets is curl and source free Warning 2: The Lemmata of Poincaré hold only for simply connected domains with connected boundaries. Maxwell’s “House” d t General Solution of the Laplace Equation 0 q f k E D e ∞ c u r l m B c u r l n=1 J A - g r a d ∞ (En r n + Fn r −n )(Gn sin nϕ + Hn cos nϕ ) Az (r , ϕ ) = d iv 1 ∂ Az n−1 = nr (C n sin nϕ + Dn cos nϕ ) Br (r , ϕ ) = r ∂ϕ H n=1 nr n−1Cn = Bn - g r a d d iv ∞ ∂ Az =− Bϕ (r , ϕ ) = − nr n−1(Dn sin nϕ − Cn cos nϕ ) ∂r f m 0 nr n−1Dn = An n=1 -d t Warning 3: Only for sub-domains with continuous material parameters. Maxwell’s “Facade” 1 = J curl curlA µ 1 =0 curl curlA µ0 − grad div A =0 ∇2 A J A c u r l m H d iv - g r a d f m 0 div µ gradΦm = 0 r2 µ0 div gradΦm = 0 ∂ 2 Az ∂ Az ∂ 2 Az + + r =0 ∂r2 ∂r ∂ϕ 2 Br = C1 cos ϕ + D1 sin ϕ Bϕ = −C1 sin ϕ + D1 cos ϕ Bx = Br cos ϕ − Bϕ sin ϕ By = Br sin ϕ + Bϕ cos ϕ Bx = C 1 c u r l B Normal (Skew) Dipole (n=1) ∇ 2 Az = 0 ∇2Φm = 0 By = D 1 Normal (Skew) Quadrupole (n=2) Br Bϕ Bx By = = = = 2C2r cos 2ϕ + 2D2r sin 2ϕ −2C2r sin 2ϕ + 2D2r cos 2ϕ 2C2x + 2D2y −2C2y + 2D2x Analytical Field Computation for Superconducting Magnets Special solution of the inhomogeneous (Poisson) differential equation = J ∇2A Fundamental solution of the Laplace Operator ∇2 (Green’s Function) 1 ln |r − r | 2π 1 1 G = 4π |r − r | (2D) G = (3D) Vector potential of a line current (2D) µ I |r − r | Az = − 0 ln( ) 2π a Remark 5: Notice that we have not yet addressed the problem of how to create such field distributions. Normal (Skew) Sextupole (n=3) Br Bϕ Bx By = = = = The Field of Line Currents (2D) 3C3r 2 cos 3ϕ + 3D3r 2 sin 3ϕ −3C3r 2 sin 3ϕ + 3D3r 2 cos 3ϕ 3C3(x 2 − y 2) + 6D3xy −6C3xy + 3D3(x 2 − y 2) y r0 < ri Az R = |r − r | r = (r0, ϕ ) ϕ Iz r = (ri , Θ) Θ z x Az = − µ0I |r − r | ) ln( 2π a ∞ Br == − Remark 6: The treatment of each harmonic separately is a mathematical abstraction. In practical situations many harmonics will be present (to be minimized). µ0I r0n−1 ( n )(sin nϕ cos nΘ − cos nϕ sin nΘ) 2π ri n=1 Bn (r0 ) = − µ0I r0n−1 cos nΘ 2π rin An (r0 ) = µ0I r0n−1 sin nΘ 2π rin Ideal (cos n θ ) Current Distribution The Imaging Method Coil in non-saturated yoke Imaged coil Bn (r0 ) = − ns i=1 ro ri 2π 0 Dipole 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 µ0J0 cos mΘ r0n−1 µr − 1 ri 2n ( ) 1 + cos nΘi r dΘdr 2π rin µr + 1 RYoke Quadrupole 160 Field Harmonics in SC Magnet Ideal Current Distribution Approximated with Coil-Blocks ns µ0Ii r0n−1 µr − 1 ri 2n Bn (r0) = − ( 1+ cos nΘi ) 2π rin µr + 1 RYoke i=1 Scaling laws Bn (r1) = (r1/r0)n−1Bn (r0) Influence of the iron yoke (non-saturated) ri = 43.5 mm, RYoke = 89 mm: B1 - 19% , B5 - 0.07% Remark 7: Analytical field optimization can be used for higher order harmonics, finite element calculations (for the estimation of saturation effects in the iron yoke) only needed for the lower order harmonics. Dipole Quadrupole Coil Winding B3 and B5 Contribution of Strand Current µ0Ii r0n−1 µr − 1 ri 2n ( Bn (r0) = − ) 1+ cos nΘi 2π rin µr + 1 RYoke B3 CONTR. (T) B5 CONTR. (T) (*E-3) (*E-3) 0.892 - 0.998 0.317 - 0.354 0.786 - 0.892 0.279 - 0.317 0.680 - 0.786 0.242 - 0.279 0.574 - 0.680 0.204 - 0.242 0.468 - 0.574 0.166 - 0.204 0.362 - 0.468 0.129 - 0.166 0.257 - 0.362 0.091 - 0.129 0.151 - 0.257 0.054 - 0.091 0.045 - 0.151 0.016 - 0.054 -0.60 - 0.045 -0.20 - 0.016 -0.16 - -0.60 -0.58 - -0.20 -0.27 - -0.16 -0.95 - -0.58 -0.37 - -0.27 -0.13 - -0.95 -0.48 - -0.37 -0.17 - -0.13 -0.59 - -0.48 -0.20 - -0.17 -0.69 - -0.59 -0.24 - -0.20 -0.80 - -0.69 -0.28 - -0.24 -0.90 - -0.80 -0.32 - -0.28 -1.01 - -0.90 -0.35 - -0.32 Sensitivity to Coil Block Displacements µ0Ii r0n−1 µr − 1 ri 2n 1+ cos nΘi ( Bn (r0) = − ) 2π rin µr + 1 RYoke ri 2n ∂ Bn (r0) µ0Ii nr0n−1 1+( sin nΘi =− ) ∂ Θi 2π rin RYoke ri 2n ∂ Bn (r0) µ0Ii nr0n−1 1−( cos nΘi = ) ∂ ri 2π rin+1 RYoke Increase of the azimuthal coil size by 0.1 mm produces (in units of 10−4): b1 = −14. b3 = 1.2 b5 = 0.03 Specified tolerances on coils: ± 0.025 mm Curing Press and Curing Mold Feed down Complex Potentials ∞ n=1 = −gradΦm = − ∂ Φm ex − ∂ Φm ey H ∂x ∂y ∂ A ∂ Az z = curlAz = ex − ey B ∂y ∂x n−1 n−1 ∞ z z cn = cn = By + i Bx r0 r0 n=1 z = z + ∆z z = x + iy k −n ∞ ∆z (k − 1)! ck cn = (k − n)! (n − 1)! r0 k =n Cauchy-Riemann DEQ ∂ Az ∂ Φm = −µ0 ∂y ∂x ∂ Az ∂ Φm = µ0 ∂x ∂y W (z) = Az (x, y) + i µ0Φm (x, y) − c2 ∂ Az ∂ Φm dW =− − i µ0 = By (x, y) + iBx (x, y) dz ∂x ∂x Cartesian Field Components By + iBx = ∞ n=1 ∞ n=1 Ideal (Iron) Pole Shapes + 3 c4 ∆z r0 2 +… • The feed down effect can be used to center the measurements coil by minimization of the b10 which can only occur as feed down from b11. • The dipole magnetic axis has to be well aligned with respect to the closed orbit: ± 0.1 mm for both ∆x and ∆y systematic and 0.5 mm for both σx and σy random (r.m.s.). • Alignment tolerances of MCS and MCDO correctors w.r.t. MB: 0.3 mm radially Mechanical Axis Measurement for Spool Piece Alignment z = x + iy z0 µ0I z0n−1 (Bn + iAn )( )n−1 = − r0 2π zn = c2 + 2 c3 ∆z r0 • Measurement of magnetic axis in dipole by powering the coil as a quadrupole. z = x + iy W (z) = Az (x, y) + i µ0Φm (x, y) |z0 | < |z| Excitation Cycle of the LHC Dipoles Saturation Effect in LHC Dipoles 1 2 0 0 0 I[A ] 8 1 0 0 0 0 B [T ] 8 0 0 0 6 R a m p -u p MUEr 6 0 0 0 4 4 0 0 0 2 2 0 0 0 0 In je c tio n 1 0 0 0 0 2 0 0 0 3 0 0 0 t[s ] 4 0 0 0 5 0 0 0 0 Field Variation with Excitation MUEr 3731. - 3938. 3731. - 3938. 3524. - 3731. 3524. - 3731. 3317. - 3524. 3317. - 3524. 3109. - 3317. 3109. - 3317. 2902. - 3109. 2902. - 3109. 2695. - 2902. 2695. - 2902. 2488. - 2695. 2488. - 2695. 2280. - 2488. 2280. - 2488. 2073. - 2280. 2073. - 2280. 1866. - 2073. 1866. - 2073. 1659. - 1866. 1659. - 1866. 1451. - 1659. 1451. - 1659. 1244. - 1451. 1244. - 1451. 1037. - 1244. 1037. - 1244. 830.0 - 1037. 830.0 - 1037. 622.7 - 830.0 622.7 - 830.0 415.5 - 622.7 415.5 - 622.7 208.2 - 415.5 208.2 - 415.5 1.002 - 208.2 1.002 - 208.2 Objectives for the ROXIE Development Automatic generation of coil geometry Field computation specially suited for magnet design (BEM-FEM) No meshing of the coil No artificial boundary conditions Confine numerical errors to the iron magnetization Higher-order quadrilateral finite-elements Parametric mesh generator 6 B0 x 10 0.709 -4 4 b3 2 10b4 0.708 0 0.707 -2 b2 Mathematical optimization -4 0.706 10b5 -6 CAD/CAM interfaces 0.705 0 2000 4000 6000 8000 10000 12000 I (A) 0 2000 4000 6000 8000 10000 12000 I (A) Preparation and Measurement of Collared Coils at BNN, Germany Field Computation with the BEM-FEM Coupling Method Ω1 BIRON R1 AΓ1 B FEM-domains C C C C C C IRON C R2 C y Bi BS,i BS,i C Ω2 AΓ2 BS,i Ω3 IS C C BEM-domain Calculation of Fringe Fields in a LHC Dipole Model Field Quality Calculations for Collared Coils y A (Tm) 0.211 - 0.236 0.186 - 0.211 0.161 - 0.186 0.136 - 0.161 0.111 - 0.136 0.087 - 0.111 0.062 - 0.087 0.037 - 0.062 0.012 - 0.037 -0.12 - 0.012 -0.37 - -0.12 -0.62 - -0.37 -0.87 - -0.62 -0.11 - -0.87 -0.13 - -0.11 -0.16 - -0.13 -0.18 - -0.16 -0.21 - -0.18 -0.23 - -0.21 z x b2 = −0.239 b3 = 2.742 b4 = −0.012 b5 = −0.733 Source field Reduced field Total field Field and Magnetization in the LHC Dipole Coil |B| (T) M (A/m) (*E3) 8 2 6 1.5 8 |B| |B| T 6 T T 1 4 4 |B| 0.5 2 2 1.390 - 1.466 -6.99 - -5.93 1.314 - 1.390 -8.05 - -6.99 1.238 - 1.314 -9.12 - -8.05 1.162 - 1.238 -10.1 - -9.12 1.086 - 1.162 -11.2 - -10.1 1.010 - 1.086 -12.3 - -11.2 0.934 - 1.010 -13.3 - -12.3 0.859 - 0.934 -14.4 - -13.3 0.783 - 0.859 -15.5 - -14.4 0.707 - 0.783 -16.5 - -15.5 0.631 - 0.707 -17.6 - -16.5 0.555 - 0.631 -18.7 - -17.6 0.479 - 0.555 -19.7 - -18.7 0.403 - 0.479 -20.8 - -19.7 0.328 - 0.403 -21.9 - -20.8 0.252 - 0.328 -22.9 - -21.9 0.176 - 0.252 -24.0 - -22.9 0.100 - 0.176 -25.0 - -24.0 0.024 - 0.100 -26.1 - -25.0 Bz Bx 0 Bz Bz Bx Bx 0 0 -0.5 -2 -2 By -1 -4 -4 -1.5 By -6 By -6 -2 -200 -160 -120 -80 -40 0 40 80 120 160 200 -200 -160 -120 mm -80 -40 0 40 80 120 160 200 -200 -160 -120 -80 mm -40 0 40 80 120 160 200 mm Hysteresis in Superconductor Magnetization Generated B3 Field Errors Bn (r0 ) = − 0.06 Bn (r0 ) = 0.04 0.02 B3 Contr. of Istrand (T) µ0Ii r0n−1 cos nΘ 2π rin µ0 r0n−1 n(mr sin nθ + mθ cos nθ ) 2π rin+1 B3 Contr. of Mstrand (T) µ0 Μ [Τ] (*E-3) 0.00 -0.02 strand measurement -0.04 initial state curve strand magnetization filament magnetization -0.06 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 Β [Τ] (*E-3) 0.182 - 0.204 0.058 - 0.066 0.161 - 0.182 0.050 - 0.058 0.139 - 0.161 0.043 - 0.050 0.117 - 0.139 0.035 - 0.043 0.095 - 0.117 0.027 - 0.035 0.074 - 0.095 0.019 - 0.027 0.052 - 0.074 0.011 - 0.019 0.030 - 0.052 0.003 - 0.011 0.009 - 0.030 -0.43 - 0.003 -0.12 - 0.009 -0.12 - -0.43 -0.34 - -0.12 -0.20 - -0.12 -0.55 - -0.34 -0.28 - -0.20 -0.77 - -0.55 -0.35 - -0.28 -0.99 - -0.77 -0.43 - -0.35 -0.12 - -0.99 -0.51 - -0.43 -0.14 - -0.12 -0.59 - -0.51 -0.16 - -0.14 -0.67 - -0.59 -0.18 - -0.16 -0.75 - -0.67 -0.20 - -0.18 -0.83 - -0.75 Macro-Photography of Cable and Strand Scaling Laws Hold for Integrated Multipoles ∇2Φm(x, y, z) = ∂ 2Φm(x, y, z) ∂ 2Φm(x, y, z) ∂ 2Φm(x, y, z) + + =0 ∂x2 ∂y2 ∂ z2 z0 Φm(x, y) = Φm (x, y, z)dz −z0 ∇2Φm(x, y) = ∂ 2Φm(x, y) ∂ 2Φm(x, y) + =0 ∂x2 ∂y2 Sufficient condition: Integration path is extended far enough away from (into) the magnet so that the axial component of the field has dropped to zero. Inner (outer) layer LHC dipole coil: Filament diameter 7 (6) µ m, Strand diameter 1.065 (0.825) mm ∂ 2Φm ∂ 2Φm + = ∂x2 ∂y2 z0 −z0 z0 2 ∂ 2Φm ∂ 2Φm ∂ Φm ∂ Φm z0 dz = − dz = − + = Hz |−z0 − Hz |z0 ∂x2 ∂y2 ∂ z2 ∂ z −z0 −z0 Warning 4: Scaling Laws for Multipoles are Wrong in 3 Dimensions r1 Bn (r1) = ( )n−1Bn (r0 ) r0 r1 bn (r1) = ( )n−N bn (r0) r0 References [1] M. Aleksa, S. Russenschuck and C. Völlinger Magnetic Field Calculations Including the Impact of Persistent Currents in Superconducting Filaments IEEE Trans. on Magn., vol. 38, no. 2, 2002. [2] Bossavit, A.: Computational Electromagnetism, Academic Press, 1998 [3] Beth, R. A.: An Integral Formula for Two-dimensional Fields, Journal of Applied Physics, Vol. 38, Nr. 12, 1967 [4] Binns, K.J., Lawrenson, P.J., Trowbridge, C.W.: The analytical and numerical solution of electric and magnetic fields, John Wiley & Sons, 1992 80 [5] Bryant P.J.: Basic theory of magnetic measurements, CAS, CERN Accelerator School on Magnetic Measurement and Alignment, CERN 92-05, Geneva, 1992 b3 (scaled, wrong) 60 b3 40 [6] CAS, CERN Accelerator School on Superconductivity in Particle Accelerators, Haus Rissen, Hamburg, Germany, 1995, Proceedings, CERN-96-03 20 [7] Kurz, S., Russenschuck, S.: The application of the BEM-FEM coupling method for the accurate calculation of fields in superconducting magnets, Electrical Engineering, 1999 0 -20 [8] Mess, K.H., Schmüser, P., Wolff S.: Superconducting Accelerator Magnets, World Scientific, 1996 -40 [9] M. Pekeler et al., Coupled Persistent-Current Effects in the Hera Dipoles and Beam Pipe Correction Coils, Desy Report no. 92-06, Hamburg, 1992 -60 [10] Russenschuck, S.: ROXIE: Routine for the Optimization of magnet X-sections, Inverse field calculation and coil End design, Proceedings of the First International ROXIE users meeting and workshop, CERN 99-01, ISBN 92-9083-140-5. -80 0 20 40 60 80 100 120 140 160 180 200 [11] Wilson, M.N.: Superconducting Magnets, Oxford Science Publications, 1983