Modelling saccades slides
Transcription
Modelling saccades slides
Introduction Why move the eyes? What we see What we think we see Lena, Playboy centerfold, Nov 1972 (standard test image in the field of image processing since 1973) 2 CoSMo 2016 - G. Blohm Aug 3, 2016 Introduction Why move the eyes? Functional role of eye movements: optimize visual processing! Image stabilization Image exploration Saccades re-orient gaze Resulting constraints for the controller(s) 3 Smooth pursuit of moving objects (low-pass) Vestibulo-ocular reflex (VOR) compensates for head movements (high-pass) Opto-kinetic nystagmus (OKN) stabilizes wide-field motion Minimize retinal error (position) Minimize retinal image slip (velocity) Be as fast and accurate as possible (role of predictions/anticipations…) CoSMo 2016 - G. Blohm Aug 3, 2016 Introduction Example: saccade model Alfred Yarbus, 1967 Adapted from: Jürgens et al. 1981 Scudder 1988 4 CoSMo 2016 - G. Blohm Aug 3, 2016 Where to start? 2 potential approaches Blind approach Informed approach 5 Straight use of systems identification tools Model the system based on the measured input-output relationship = Engineering approach Model systems components (not the system as a whole) Incorporate detailed knowledge about physiology, biomechanics etc = Neuroscience approach CoSMo 2016 - G. Blohm Aug 3, 2016 Eye/head plants Eye and neck muscles properties Damped spring-mass system equivalent Equation of motion of eye ball: 𝑑2𝜃 𝐽 ∙ 2 + 𝐹𝑝 = 𝐹𝑚 𝑑𝑡 Muscle force applied: 𝑑𝑑 𝑅𝑚 𝑑𝐹𝑚 𝐹𝑚 = 𝐹0 − 𝑅𝑚 ∙ − ∙ 𝑑𝑑 𝐾𝑠𝑠 𝑑𝑑 6 Robinson (1964), Scudder (2009) J: moment of inertia Fp: passive force (muscle tissue) Fm: active muscle force Passive muscle/tissue force: 𝑑𝐹𝑝 𝑑2𝜃 𝑑𝑑 𝑅1 𝑅2 ∙ 2 + 𝑅1 𝐾2 + 𝑅2 𝐾1 ∙ + 𝐾1 𝐾2 ∙ 𝜃 − 𝑅1 + 𝑅2 ∙ 𝑑𝑑 𝑑𝑑 𝑑𝑡 𝐹𝑝 = 𝐾1 + 𝐾2 CoSMo 2016 - G. Blohm Aug 3, 2016 Modelling the eye Low inertia Viscous muscles (like elastic bands) second-order linear system approximation x(t ) h1 (τ ) h2 (τ ) y (t ) (leads to terrible expressions!) 7 T1 = 175ms, T2 = 13ms T1: viscosity of the plant T2: inertial properties of eye y (t ) = h1 (t ) ∗ h2 (t ) ∗ x(t ) CoSMo 2016 - G. Blohm 1 (T1s + 1) ⋅ (T2 s + 1) Aug 3, 2016 Modelling the eye Testing the model’s impulse response 1 (T1s + 1) ⋅ (T2 s + 1) angular position (deg) 20 15 10 5 angular velocity (deg/s) 0 8 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1 0.6 0.5 time (s) 0.7 0.8 0.9 1 0.5 1000 500 0 -500 CoSMo 2016 - G. Blohm Aug 3, 2016 Moving the eyes We need a motor command (phasic) to move the eyes Eye moves, but gaze cannot be held angular position (deg) 20 15 10 5 angular velocity (deg/s) 0 9 1 (T1s + 1) ⋅ (T2 s + 1) T1 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1 0.5 0.6 time (s) 0.7 0.8 0.9 1 0.5 200 100 0 -100 A tonic activation needed to maintain gaze CoSMo 2016 - G. Blohm Aug 3, 2016 Gaze holding: the neural integrator How do we get the tonic portion? Neural integrator 1 angular position (deg) 20 + 1 (T1s + 1) ⋅ (T2 s + 1) 15 10 5 0 10 s T1 25 angular velocity (deg/s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.4 0.3 time (s) 0.5 0.6 0.7 200 150 100 50 0 CoSMo 2016 - G. Blohm Aug 3, 2016 Motor command generation Problem: movement is not monitored... angular position (deg) 2500 2000 1500 1000 500 0 angular velocity (deg/s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0 0.05 0.1 0.15 0.2 time (s) 0.25 0.3 0.35 0.4 15000 10000 5000 1 ∆G 11 PG E * s T1 + 1 (T1s + 1) ⋅ (T2 s + 1) CoSMo 2016 - G. Blohm Aug 3, 2016 Motor command generation Solution: resettable integrator angular position (deg) Only remaining error e drives the eyes 15 10 5 0 angular velocity (deg/s) 20 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 time (s) 0.25 0.3 0.35 0.4 1500 1000 500 0 RI 1 ∆G _ e PG E * s T1 + 1 (T1s + 1) ⋅ (T2 s + 1) Jürgens et al. 1981 Scudder 1988 12 CoSMo 2016 - G. Blohm Aug 3, 2016 Control modes 13 CoSMo 2016 - G. Blohm Aug 3, 2016 Control modes Open-loop control models control only possible when system is well-defined, i.e. there is a precise mathematical relationship between input and output No knowledge of perturbations No learning possible Unstable! Wikipedia 14 CoSMo 2016 - G. Blohm Aug 3, 2016 Control modes Feed-forward control models (model predictive control) Uses an inverse model of the plant physics Control output only depends on internal (inverse) model of the plant physics, independently of actual plant reaction Feed-forward control without feedback = ballistic Anticipatory regulation required for optimal behaviour Based on learning Neural network analogy / implementation: Perceptron Wikipedia 15 CoSMo 2016 - G. Blohm Aug 3, 2016 Control modes Feedback control models (closed-loop) Uses output history to adjust future commands Negative feedback Helps maintaining stability in the system despite of external changes Reduction of the input that caused the output Positive feedback Amplifies the event that caused the output Auto-excitation: self-enforcing loop Wikipedia 16 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movement models 17 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Eye and neck muscles Superior and inferior recti Medical-look.com Medial and lateral recti Blohm 2004 18 Superior and inferior obliques CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Vestibulo-ocular reflex Leigh & Zee 2006 Wikipedia 19 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Vestibulo-ocular reflex Green & Angelaki 2004 20 Angular velocity from semi-circular canals: ω Linear acceleration senses by otolith organs: α VO: vestibular-only neurons EM: eye movement sensitive neurons CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Saccades: Brainstem pathways 22 MN: motoneurons AM: abducens motoneurons AI: abducens interneurons EBN: excitatory burst neurons IBN: inhibitory burst neurons OPN: omnipause neurons CoSMo 2016 - G. Blohm Ramat et al. 2005 Aug 3, 2016 Eye movements Saccades: Executive control Ballistic: Robinson model Feedback control Adapted from: Jürgens et al. 1981 Scudder 1988 Leigh & Zee 2006 23 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Saccades: Eye-head coordination: first models Galiana, Lefèvre, Guitton (1992) 24 Freedman 2001, 2008 Cannot model separate gaze and head goals CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Saccades: Eye-head coordination: new nested control model 25 Daye, Optican, Blohm, Lefèvre (2014) CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Smooth pursuit Visually-guided pursuit Blohm 2004 Adapted from Churchland et al. 2003 26 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Smooth pursuit Anticipatory pursuit Barnes & Collins 2008 27 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Smooth pursuit Stochastic pursuit model Orban de Xivry, Coppe, Blohm, Lefevre 2013 28 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Saccade-pursuit interaction De Brower et al. 2002 De Brouwer et al. 2001 29 CoSMo 2016 - G. Blohm Aug 3, 2016 Eye movements Saccade-pursuit interaction De Brower et al. 2002 30 CoSMo 2016 - G. Blohm Aug 3, 2016 Next lecture: Bayesian processes Next JC: Goossens & Van Opstal, J Neurophysiol 2006 http://www.compneurosci.com/NSCI850.html 31 CoSMo 2016 - G. Blohm Aug 3, 2016