Airborne bacteria: names and numbers, please…
Transcription
Airborne bacteria: names and numbers, please…
Airborne bacteria: n a m e s and numbers, please… Runar Thyrhaug Dep. of Biology University of Bergen Norway [email protected] My background Microbial ecology Marine microbiology group- Bergen, Norway Focus: algae, bacteria, protozooa, virus My background Microbial ecology Marine microbiology group- Bergen, Norway Focus: algae, bacteria, protozooa, virus Methods Nutrient uptake/turnover Production rates Genetic diversity/biodiversity Viral activity Modelling (vs experiments) W h y airborne bacteria? Curiosity…new field Biodiversity and transport rates Microbial production Improved/new methods…possibilities? Bacteria in t h e air … from w h e r e? Soil (terrestrial) Sea /fresh water Bacteria Virus ~109 g-1 ~106 mL-1 ?? ~107 mL-1 Bacteria in t h e air … from w h e r e? Soil (terrestrial) Sea /fresh water Bacteria Virus ~109 g-1 ~106 mL-1 ?? ~107 mL-1 We know: Most marine bacteria are assumed to be alive Nutrient limited N , P or C <1% growing on agar plates (sea water and soil samples!) Counting airborne bacteria Liquid samples! Rain or air sampled in liquids Methods: Flow cytometry (FCM) DNA/RNA staining - fluor /scatter signals from single particles Quantitative PCR (Q-PCR) DNA staining – amount of bacterial DNA in a bulk sample Colony forming units (CFU) Bacteria willing to grow on agar plates Epifluorescense microscopy (EFM) DNA/RNA staining - fluor signals from single particles FCM plot / EFM picture s e a water examples: FCM plot / EFM picture s e a water examples: Marine bacteria FCM plot / EFM picture s e a water examples: Marine bacteria Marine viruses FCM plot / EFM picture s e a water examples: Emiliania huxleyi virus isolate (EhV) Marine bacteria Marine viruses EhV Sampling airborne bacteria Xmx-cv (Dycor) 0,7 m3 min-1 5 mL PBS Suggested max sampling time: 5 min Our max: 10 min F l o w cytometry o f air samples Fluorescence T0=Blank Scatter signal F l o w cytometry o f air samples Fluorescence T0=Blank Scatter signal Fluorescence T5~3,5m3 in 5 mL Scatter signal F l o w cytometry o f air samples Fluorescence T0=Blank Scatter signal ~103 pr m3 Fluorescence T5~3,5m3 in 5 mL Scatter signal F l o w cytometry v s QPCR 8 Q-PCR:FCM ~10 Calibration going on! Air: yellow Rain: red Sea water:blue )3 6 4 FCM (Log bact pr m 2 0 0 2 4 6 Q-PCR (Log bact pr m3) 8 F l o w cytometry v s QPCR 8 Q-PCR:FCM ~10 Calibration going on! Air: yellow Rain: red Sea water:blue )3 6 4 CFU: around 1-2% compared to FCM FCM (Log bact pr m Epifluorescence microscopy: difficult to discriminate signal/noise 2 0 0 2 4 6 Q-PCR (Log bact pr m3) 8 S n o w and r a i n samples snow ~500-104 pr mL Rain ~104 pr mL S n o w and r a i n samples snow ~500-104 pr mL Bacterial production: Addition of H3 leucine, 24 h incubation Rain ~104 pr mL S n o w and r a i n samples snow ~500-104 pr mL Rain ~104 pr mL Bacterial production: Addition of H3 leucine, 24 h incubation Result: activity pr bacteria ~ as in sea water Estimated generation time~ 1day Comparison o f 3 bioaerosol samplers Time series FCM and CFU counts Liquid loss rates Sampler 1 Xmx-cv (Dycor) 0,7 m3 min-1 5 mL Suggested max sampling time: 5 min Our sampling time 0-10 min Liquid: PBS ~10% PBS loss after 10 min Sampler 2 SKC 225-9595 (SKC) 0,0125 m3 min-1 Sampling time 0-60 min Liquid: MilliQ Refill~25% milliQ at 10 min Sampler 3 Kärcher DS 5550 Sampler 3 Kärcher DS 5550 3,3 m3 min-1 1500 mL Max sampling time: 120 min Liquid: PBS ~10% pbs loss after 120 min FCM c o u n t s - time series Black: direct counts FCM ”bacteria pr mL” Grey: estimated bacterial concentration pr m3 air White: estimated bacterial conc pr m3 air after substracting blank (T0 sample) XMX - FCM 3000 SKC - FCM 600 ) -1 2500 500 2000 400 1500 300 1000 200 500 100 Karcher - FCM 1000 800 600 400 2000 1000 0 2 4 6 Sampling time (min) 8 10 Estimated bact conc (m 0 0 40000 Bacterial concentration (mL-1) Estimated bact conc (m ) -3 no correction T0 substracted Bacterial ) -3concentration (mL Estimated bact conc (m Bacterial concentration (mL-1) ) -3 0 8000 6000 4000 200 no correction T0 substracted 20000 12000 10000 8000 6000 4000 2000 0 0 20 40 Sampling time (min) 60 80 0 60000 40000 20000 no correction T0 substracted 4000 3000 2000 1000 0 0 20 40 60 80 100 Sampling time (min) 120 140 CFU c o u n t s - time series Black: direct counts CFM ”bacteria pr mL” Grey: estimated bacterial concentration pr m3 air White: estimated bacterial conc pr m3 air after substracting blank (T0 sample) XMX - CFU 40 SKC - CFU 50 ) -1 ) -1 ) -1 50 Karcher - CFU 35 30 40 30 30 20 20 10 10 25 20 15 10 60 40 20 0 0 2 4 6 8 Sampling time (min) 10 0 3000 no correction T0 substracted 2000 1000 200 180 160 140 120 100 80 60 40 20 0 0 20 40 Sampling time (min) 60 80 Bacterial concentration (mL Bact concentration (m ) -3 no correction T0 substracted Bacterial Bact concentration (m ) -3 concentration (mL Bacterial ) -3 concentration (mLBact concentration (m 0 80 5 0 no correction T0 substracted 200 180 160 140 120 100 80 60 40 20 0 0 20 40 60 80 100 Sampling time (min) 120 140 CFU as % o f FCM sampling data CFU pr m3 FCM m3 CFU as % of FCM n FCM±std. dev4 raw data FCM±std.dev4 T0 substr FCM raw data FCM data T0 subst. 18±13 4 1800±330 1600±330 1.0 1.1 0.261 33±35 4 2500±690 1400±690 1.3 2.4 60 0.0381 67±77 4 8800±2200 4200±2200 0.8 1.6 slit sampler 60 1.82 37 1 Mas-100 20 2.02 40±14 2 Sampler time (min) volume (m3) CFU±err XMX-CV 10 1.41 Karcher 120 SKC 3 Table xx. cfu and fcm bacterial counts in samples with the highest theoretical concentration factor in this experiment. 1. estimated air volume sampled pr ml sampling liquid. 2. Air volume sampled. 3. std dev except slitsamplers, 4. std dev of 3 dilutions CFU as % o f FCM sampling data CFU pr m3 FCM m3 CFU as % of FCM n FCM±std. dev4 raw data FCM±std.dev4 T0 substr FCM raw data FCM data T0 subst. 18±13 4 1800±330 1600±330 1.0 1.1 0.261 33±35 4 2500±690 1400±690 1.3 2.4 60 0.0381 67±77 4 8800±2200 4200±2200 0.8 1.6 slit sampler 60 1.82 37 1 Mas-100 20 2.02 40±14 2 Sampler time (min) volume (m3) CFU±err XMX-CV 10 1.41 Karcher 120 SKC 3 Table xx. cfu and fcm bacterial counts in samples with the highest theoretical concentration factor in this experiment. 1. estimated air volume sampled pr ml sampling liquid. 2. Air volume sampled. 3. std dev except slitsamplers, 4. std dev of 3 dilutions CFU as % o f FCM sampling data CFU pr m3 FCM m3 CFU as % of FCM n FCM±std. dev4 raw data FCM±std.dev4 T0 substr FCM raw data FCM data T0 subst. 18±13 4 1800±330 1600±330 1.0 1.1 0.261 33±35 4 2500±690 1400±690 1.3 2.4 60 0.0381 67±77 4 8800±2200 4200±2200 0.8 1.6 slit sampler 60 1.82 37 1 Mas-100 20 2.02 40±14 2 Sampler time (min) volume (m3) CFU±err XMX-CV 10 1.41 Karcher 120 SKC 3 Table xx. cfu and fcm bacterial counts in samples with the highest theoretical concentration factor in this experiment. 1. estimated air volume sampled pr ml sampling liquid. 2. Air volume sampled. 3. std dev except slitsamplers, 4. std dev of 3 dilutions T h e d i c e is thrown… Evaluation Background noise Liquid volume Sampling volume Sampling time Sampling efficience – concentration factors Reliability T h e d i c e is thrown… XMX-CV + Robust + Low backgroud + Fast sampling - Low liquid volume T h e d i c e is thrown… XMX-CV SKC + Robust + ok background + Low backgroud -Very low efficiency + Fast sampling -Highest liquid loss rate - Low liquid volume T h e d i c e is thrown… XMX-CV SKC Kärcher + Robust + ok background + High volume rates + Low backgroud -Very low efficiency + High volumes + Fast sampling -Highest liquid loss rate - High volumes - Low liquid volume - Highest backgroud In t h e end Bacteria in air pr m3: CFU 10-50 FCM ~103 In t h e end Bacteria in air pr m3: CFU 10-50 FCM ~103 Bacteria in snow/rain pr mL: CFU 10-200 FCM ~104 Bacterial activity in snow/rain ~ SW bacteria In t h e end Bacteria in air pr m3: CFU 10-50 FCM ~103 Sampler test: 1. XMX-CV 2. Kärcher 3. SKC Bacteria in snow/rain pr mL: CFU 10-200 FCM ~104 Bacterial activity in snow/rain ~ SW bacteria Sampler test: 1. XMX-CV 2. Kärcher 3. SKC In t h e end Bacteria in air pr m3: CFU 10-50 FCM ~103 Bacteria in snow/rain pr mL: CFU 10-200 FCM ~104 Thanks to: University of Bergen, Dep Biology Jørn Einen Ruth-Anne Sandaa Gunnar Bratbak Mikal Heldal Norwegian Defence Research Establishment Janet Martha Blatny Gunnar Skogan Else-Marie Fykse Tone Aarskaug Bacterial activity in snow/rain ~ SW bacteria
Similar documents
Emergent structures in mixed lipid membranes
Lipid rafts in Cell signaling Dynamic assemblies rich in sphingomyelin, cholesterol, and saturated lipids
More information