slides

Transcription

slides
Kadanoff Sand Pile Model
Avalanches and Fixed Point.
Kévin Perrot and Eric Rémila
Université de Lyon
Laboratoire de l’Informatique du Paralléllisme
umr 5668 CNRS - ENS de Lyon - Université Lyon 1
DISCO - Valparaiso,
2011.11
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
fixed point
KSPM - Definition
Suggested by L. Kadanoff et al (1989).
. A parameter D
. An initial configuration
(N, 0, 0, ...)
. One transition rule
≥D
D=3
N = 24
Remark : KSPM(2)=SPM
fixed point
Motivations
Why studying sand piles ?
Motivations
Why studying sand piles ?
. From local rules to global behavior : Emergence.
Motivations
Why studying sand piles ?
. From local rules to global behavior : Emergence.
. Sand piles are at the edge between discrete and continuous
phenomena.
Motivations
Why studying sand piles ?
. From local rules to global behavior : Emergence.
. Sand piles are at the edge between discrete and continuous
phenomena.
. They emphasize Self-Organized Criticality.
Bak, Tang, Wiesenfeld (1987)
. Property of dynamical systems which have critical attractors.
. A small disturbance can involve a deep reorganization.
Motivations
Why studying sand piles ?
. From local rules to global behavior : Emergence.
. Sand piles are at the edge between discrete and continuous
phenomena.
. They emphasize Self-Organized Criticality.
Bak, Tang, Wiesenfeld (1987)
. Property of dynamical systems which have critical attractors.
. A small disturbance can involve a deep reorganization.
Adding a single grain can create an unbounded avalanche !
KSPM - Representation
. sequence of height differences
( 4 , 2 , 5 , 0 , 1 , 0ω )
KSPM - Representation
. sequence of height differences
. rule application ⇒ a column gives some height difference
( 4 , 2 , 5 , 0 , 1 , 0ω )
KSPM - Representation
. sequence of height differences
. rule application ⇒ a column gives some height difference
( 4 , 2 , 5 , 0 , 1 , 0ω )
. KSPM is a Linear Chip Firing Game.
s
4
2
5
0
1
0
KSPM - Known Results
Goles, Morvan, Phan (2002)
D = 3 and N = 24
(24, 0ω )
0
(21, 0, 1, 0ω )
0
(18, 0, 2, 0ω )
0
(15, 0, 3, 0ω )
0
(12, 0, 4, 0ω )
0
(9, 0, 5, 0ω )
0
(6, 0, 6, 0ω )
0
(3, 0, 7, 0ω )
(0, 0, 8, 0ω )
ω
(0, 2, 5, 0, 1, 0 )
ω
2 (15, 2, 0, 0, 1, 0 )
(12, 2, 1, 0, 1, 0ω )
0
(9, 2, 2, 0, 1, 0ω )
0
ω
2 (6, 2, 3, 0, 1, 0 ) 2
(3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω )
2
(3,04, 1, 0, 2, 1
0ω )
(8, 1, 0, 1, 2, 0ω )
(0, 4, 2, 0, 2, 1
0ω )
(5,01, 1, 1, 2, 0ω )
(2, 1, 2, 1, 2, 0ω )
KSPM - Known Results
Goles, Morvan, Phan (2002)
D = 3 and N = 24
(24, 0ω )
0
(21, 0, 1, 0ω )
0
(18, 0, 2, 0ω )
0
(15, 0, 3, 0ω )
0
(12, 0, 4, 0ω )
0
(9, 0, 5, 0ω )
0
(6, 0, 6, 0ω )
0
(3, 0, 7, 0ω )
(0, 0, 8, 0ω )
ω
(0, 2, 5, 0, 1, 0 )
. (KSPM(D, N), →) is a lattice.
ω
2 (15, 2, 0, 0, 1, 0 )
(12, 2, 1, 0, 1, 0ω )
0
(9, 2, 2, 0, 1, 0ω )
0
ω
2 (6, 2, 3, 0, 1, 0 ) 2
(3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω )
2
(3,04, 1, 0, 2, 1
0ω )
(8, 1, 0, 1, 2, 0ω )
(0, 4, 2, 0, 2, 1
0ω )
(5,01, 1, 1, 2, 0ω )
(2, 1, 2, 1, 2, 0ω )
KSPM - Known Results
Goles, Morvan, Phan (2002)
D = 3 and N = 24
(24, 0ω )
0
(21, 0, 1, 0ω )
0
(18, 0, 2, 0ω )
0
(15, 0, 3, 0ω )
0
(12, 0, 4, 0ω )
0
(9, 0, 5, 0ω )
0
(6, 0, 6, 0ω )
0
(3, 0, 7, 0ω )
(0, 0, 8, 0ω )
ω
(0, 2, 5, 0, 1, 0 )
. (KSPM(D, N), →) is a lattice.
. A unique fixed point π(n).
ω
2 (15, 2, 0, 0, 1, 0 )
(12, 2, 1, 0, 1, 0ω )
0
(9, 2, 2, 0, 1, 0ω )
0
ω
2 (6, 2, 3, 0, 1, 0 ) 2
(3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω )
2
(3,04, 1, 0, 2, 1
0ω )
(8, 1, 0, 1, 2, 0ω )
(0, 4, 2, 0, 2, 1
0ω )
(5,01, 1, 1, 2, 0ω )
(2, 1, 2, 1, 2, 0ω )
KSPM - Known Results
Goles, Morvan, Phan (2002)
D = 3 and N = 24
(24, 0ω )
0
(21, 0, 1, 0ω )
0
(18, 0, 2, 0ω )
0
(15, 0, 3, 0ω )
0
(12, 0, 4, 0ω )
0
(9, 0, 5, 0ω )
0
(6, 0, 6, 0ω )
0
(3, 0, 7, 0ω )
(0, 0, 8, 0ω )
ω
(0, 2, 5, 0, 1, 0 )
. (KSPM(D, N), →) is a lattice.
. A unique fixed point π(n).
ω
2 (15, 2, 0, 0, 1, 0 )
(12, 2, 1, 0, 1, 0ω )
0
(9, 2, 2, 0, 1, 0ω )
0
ω
2 (6, 2, 3, 0, 1, 0 ) 2
. All paths are equivalent : same
fired columns, with same
occurrences.
(3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω )
2
(3,04, 1, 0, 2, 1
0ω )
(8, 1, 0, 1, 2, 0ω )
(0, 4, 2, 0, 2, 1
0ω )
(5,01, 1, 1, 2, 0ω )
(2, 1, 2, 1, 2, 0ω )
KSPM - Known Results
Goles, Morvan, Phan (2002)
D = 3 and N = 24
(24, 0ω )
0
(21, 0, 1, 0ω )
0
(18, 0, 2, 0ω )
0
(15, 0, 3, 0ω )
0
(12, 0, 4, 0ω )
0
(9, 0, 5, 0ω )
0
(6, 0, 6, 0ω )
0
(3, 0, 7, 0ω )
(0, 0, 8, 0ω )
ω
(0, 2, 5, 0, 1, 0 )
. (KSPM(D, N), →) is a lattice.
. A unique fixed point π(n).
ω
2 (15, 2, 0, 0, 1, 0 )
(12, 2, 1, 0, 1, 0ω )
0
(9, 2, 2, 0, 1, 0ω )
0
ω
2 (6, 2, 3, 0, 1, 0 ) 2
. All paths are equivalent : same
fired columns, with same
occurrences.
. Fixed point shape ?
(3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω )
2
(3,04, 1, 0, 2, 1
0ω )
(8, 1, 0, 1, 2, 0ω )
(0, 4, 2, 0, 2, 1
0ω )
(5,01, 1, 1, 2, 0ω )
(2, 1, 2, 1, 2, 0ω )
KSPM - Known Results
Goles, Morvan, Phan (2002)
D = 3 and N = 24
(24, 0ω )
0
(21, 0, 1, 0ω )
0
(18, 0, 2, 0ω )
0
(15, 0, 3, 0ω )
0
(12, 0, 4, 0ω )
0
(9, 0, 5, 0ω )
0
(6, 0, 6, 0ω )
0
(3, 0, 7, 0ω )
(0, 0, 8, 0ω )
(0, 2, 5, 0, 1, 0ω )
. (KSPM(D, N), →) is a lattice.
. A unique fixed point π(n).
ω
2 (15, 2, 0, 0, 1, 0 )
(12, 2, 1, 0, 1, 0ω )
0
(9, 2, 2, 0, 1, 0ω )
0
ω
2 (6, 2, 3, 0, 1, 0 ) 2
. All paths are equivalent : same
fired columns, with same
occurrences.
. Fixed point shape ?
. Small perturbation effect ?
(3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω )
2
(3,04, 1, 0, 2, 1
0ω )
(8, 1, 0, 1, 2, 0ω )
(0, 4, 2, 0, 2, 1
0ω )
(5,01, 1, 1, 2, 0ω )
(2, 1, 2, 1, 2, 0ω )
Inductive Approach - Avalanches
1. Start from the fixed point : π(k − 1)
Inductive Approach - Avalanches
1. Start from the fixed point : π(k − 1)
2. Add a single grain of column 0 : π(k − 1)↓0
Inductive Approach - Avalanches
1. Start from the fixed point : π(k − 1)
2. Add a single grain of column 0 : π(k − 1)↓0
3. Fire, until reaching a fixed point : π(π(k − 1)↓0 )
Inductive Approach - Avalanches
1. Start from the fixed point : π(k − 1)
2. Add a single grain of column 0 : π(k − 1)↓0
3. Fire, until reaching a fixed point : π(π(k − 1)↓0 )
π(k) = π(π(k − 1)↓0 )
This allows an inductive way for computing π(k).
Inductive Approach - Avalanches
1. Start from the fixed point : π(k − 1)
2. Add a single grain of column 0 : π(k − 1)↓0
3. Fire, until reaching a fixed point : π(π(k − 1)↓0 )
π(k) = π(π(k − 1)↓0 )
This allows an inductive way for computing π(k).
The k th avalanche : the set of fired columns in step 3.
Inductive Approach - Avalanches
1. Start from the fixed point : π(k − 1)
2. Add a single grain of column 0 : π(k − 1)↓0
3. Fire, until reaching a fixed point : π(π(k − 1)↓0 )
π(k) = π(π(k − 1)↓0 )
This allows an inductive way for computing π(k).
The k th avalanche : the set of fired columns in step 3.
1 Each column is fired at most once in an avalanche
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Illustration on examples
∗
∗
∗
∗
π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107)
D=3
Avalanches ←→ SOC
First Avalanches
N=98
N=97
N=96
N=93
N=90
N=87
N=86
N=85
N=82
N=79
N=76
N=75
N=74
N=71
N=68
N=65
N=64
N=63
N=60
N=57
N=54
N=53
N=52
N=49
N=46
N=43
N=42
N=39
N=36
N=35
N=32
N=29
N=26
N=25
N=22
N=19
N=18
N=15
N=12
N=9
N=6
N=3
N=192
N=189
N=186
N=183
N=180
N=179
N=178
N=175
N=172
N=169
N=168
N=165
N=162
N=161
N=158
N=157
N=156
N=153
N=152
N=151
N=148
N=145
N=142
N=141
N=140
N=137
N=134
N=131
N=130
N=129
N=126
N=123
N=120
N=117
N=114
N=113
N=112
N=109
N=108
N=107
N=104
N=101
N=278
N=275
N=272
N=271
N=270
N=267
N=266
N=265
N=262
N=261
N=260
N=257
N=254
N=251
N=250
N=249
N=246
N=245
N=242
N=239
N=238
N=235
N=232
N=229
N=228
N=227
N=224
N=221
N=218
N=217
N=216
N=213
N=210
N=207
N=206
N=205
N=202
N=201
N=200
N=197
N=196
N=195
Holes Positions on Avalanches,
. Hole : an unfired column, such that there exists a fired
column with largest rank.
Holes Positions on Avalanches,
. Hole : an unfired column, such that there exists a fired
column with largest rank.
. The BIG conjecture : Let L(D, N) be the largest hole of the
N th avalanche
2 L(D, N) is in O(log N) .
Holes Positions on Avalanches,
. Hole : an unfired column, such that there exists a fired
column with largest rank.
. The BIG conjecture : Let L(D, N) be the largest hole of the
N th avalanche
2 L(D, N) is in O(log N) .
. Only proved for D = 3, unfortunately.
Holes Positions on Avalanches,
. Hole : an unfired column, such that there exists a fired
column with largest rank.
. The BIG conjecture : Let L(D, N) be the largest hole of the
N th avalanche
2 L(D, N) is in O(log N) .
. Only proved for D = 3, unfortunately.
. Consequence : except for leftmost columns,
we do not care about holes
√
(since the support of the sand pile π(N) is in Θ( N)).
Beyond the Holes : Long Avalanches
. Peak : column whose height difference is D −1.
. Peaks are masters of long avalanches.
≥D
D
π(N)
peak (D −1)
Beyond the Holes : Long Avalanches
. Peak : column whose height difference is D −1.
. Peaks are masters of long avalanches.
≥D
D
π(N)
peak (D −1)
Beyond the Holes : Long Avalanches
. Peak : column whose height difference is D −1.
. Peaks are masters of long avalanches.
≥D
D
π(N)
peak (D −1)
Beyond the Holes : Long Avalanches
. Peak : column whose height difference is D −1.
. Peaks are masters of long avalanches.
≥D
D
π(N)
peak (D −1)
Beyond the Holes : Long Avalanches
. Peak : column whose height difference is D −1.
. Peaks are masters of long avalanches.
≥D
D
π(N)
peak (D −1)
≥D
D
π(N)
peak (D −1)
Beyond the Holes : Long Avalanches
. Peak : column whose height difference is D −1.
. Peaks are masters of long avalanches.
≥D
D
π(N)
peak (D −1)
≥D
D
π(N)
0 +1+1+1+1+1
peak (D −1)
Avalanche effect :
. the last reached peak := 0,
. the D − 1 columns just after the last reached peak : + 1,
. other columns : unchanged.
3 The avalanche effect is easily computable beyond the holes
Transduction
Governing peak : rightmost peak before the interval
5 4 2 5 1
Transduction
Governing peak : rightmost peak before the interval
...
5 4 2 0 2
...
5 4 2 5 1
Transduction
Governing peak : rightmost peak before the interval
...
0 5 3 1 3
...
...
5 4 2 0 2
...
5 4 2 5 1
Transduction
Governing peak : rightmost peak before the interval
...
0 0 4 2 4
...
...
0 5 3 1 3
...
...
5 4 2 0 2
...
5 4 2 5 1
Transduction
Governing peak : rightmost peak before the interval
...
1 1 5 2 4
...
...
0 0 4 2 4
...
...
0 5 3 1 3
...
...
5 4 2 0 2
...
5 4 2 5 1
The governing peak really governs the evolution of the interval
Transduction
Governing peak : rightmost peak before the interval
...
...
...
...
1 1 5 2 4
...
0 0 4 2 4
...
1
0 5 3 1 3
...
0
5 4 2 0 2
...
3
5 4 2 5 1
output
2|301
54251
11524
Transduction
input
The governing peak really governs the evolution of the interval
Wave Pattern - Example for D = 3
1|01
21
11
0|∅
1|∅
10
00
1|∅
0|∅
0|∅
0|∅
1|1
20
0|0
0|10
1|∅
1|∅
0|∅
12
22
1|10
t(0100001) = 01001
Wave Pattern - Example for D = 3
1|01
21
11
0|∅
1|∅
10
00
1|∅
0|∅
0|∅
0|∅
1|1
20
0|0
0|10
1|∅
1|∅
0|∅
12
22
1|10
t(0100001) = 01001
∀u ∈ {0, 1}∗ , ∃n in 0(log |u|) such that t n (u) is a prefix of (01)ω
Wave Pattern - Example for D = 3
1|01
21
11
0|∅
1|∅
10
00
1|∅
0|∅
0|∅
0|∅
1|1
20
0|0
0|10
1|∅
1|∅
0|∅
12
22
1|10
t(0100001) = 01001
∀u ∈ {0, 1}∗ , ∃n in 0(log |u|) such that t n (u) is a prefix of (01)ω
Starting from a prefix of (01)ω , the sand pile becomes a wave
Wave Pattern - Example for D = 3
1|01
21
11
0|∅
1|∅
10
00
1|∅
0|∅
0|∅
0|∅
20
0|0
0|10
1|∅
1|∅
D −1
0|∅
12
22
1|10
t(0100001) = 01001
...
1|1
2
1
Wave (D − 1, ..., 1)k
∀u ∈ {0, 1}∗ , ∃n in 0(log |u|) such that t n (u) is a prefix of (01)ω
Starting from a prefix of (01)ω , the sand pile becomes a wave
Conclusion
N
O(log N)
1 2 3
π(N)
√
Θ( N)
O(log N)
4
columns
D=3
1
2
3
4
emergent density on avalanches
density used to built a transducer
transducer iteration involves a balanced evolution
balanced evolution involves the wave pattern
general D
Thank you for Sandpiling, Mister Goles

Similar documents

The Deconstruction and Rebuilding of 740 Rue Bel

The Deconstruction and Rebuilding of 740 Rue Bel Action Plan 2000 on Climate Change FACILITATING GREATER REUSE AND RECYCLING OF STRUCTURAL STEEL IN THE CONSTRUCTION AND DEMOLITION PROCESS

More information