slides
Transcription
slides
Kadanoff Sand Pile Model Avalanches and Fixed Point. Kévin Perrot and Eric Rémila Université de Lyon Laboratoire de l’Informatique du Paralléllisme umr 5668 CNRS - ENS de Lyon - Université Lyon 1 DISCO - Valparaiso, 2011.11 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 fixed point KSPM - Definition Suggested by L. Kadanoff et al (1989). . A parameter D . An initial configuration (N, 0, 0, ...) . One transition rule ≥D D=3 N = 24 Remark : KSPM(2)=SPM fixed point Motivations Why studying sand piles ? Motivations Why studying sand piles ? . From local rules to global behavior : Emergence. Motivations Why studying sand piles ? . From local rules to global behavior : Emergence. . Sand piles are at the edge between discrete and continuous phenomena. Motivations Why studying sand piles ? . From local rules to global behavior : Emergence. . Sand piles are at the edge between discrete and continuous phenomena. . They emphasize Self-Organized Criticality. Bak, Tang, Wiesenfeld (1987) . Property of dynamical systems which have critical attractors. . A small disturbance can involve a deep reorganization. Motivations Why studying sand piles ? . From local rules to global behavior : Emergence. . Sand piles are at the edge between discrete and continuous phenomena. . They emphasize Self-Organized Criticality. Bak, Tang, Wiesenfeld (1987) . Property of dynamical systems which have critical attractors. . A small disturbance can involve a deep reorganization. Adding a single grain can create an unbounded avalanche ! KSPM - Representation . sequence of height differences ( 4 , 2 , 5 , 0 , 1 , 0ω ) KSPM - Representation . sequence of height differences . rule application ⇒ a column gives some height difference ( 4 , 2 , 5 , 0 , 1 , 0ω ) KSPM - Representation . sequence of height differences . rule application ⇒ a column gives some height difference ( 4 , 2 , 5 , 0 , 1 , 0ω ) . KSPM is a Linear Chip Firing Game. s 4 2 5 0 1 0 KSPM - Known Results Goles, Morvan, Phan (2002) D = 3 and N = 24 (24, 0ω ) 0 (21, 0, 1, 0ω ) 0 (18, 0, 2, 0ω ) 0 (15, 0, 3, 0ω ) 0 (12, 0, 4, 0ω ) 0 (9, 0, 5, 0ω ) 0 (6, 0, 6, 0ω ) 0 (3, 0, 7, 0ω ) (0, 0, 8, 0ω ) ω (0, 2, 5, 0, 1, 0 ) ω 2 (15, 2, 0, 0, 1, 0 ) (12, 2, 1, 0, 1, 0ω ) 0 (9, 2, 2, 0, 1, 0ω ) 0 ω 2 (6, 2, 3, 0, 1, 0 ) 2 (3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω ) 2 (3,04, 1, 0, 2, 1 0ω ) (8, 1, 0, 1, 2, 0ω ) (0, 4, 2, 0, 2, 1 0ω ) (5,01, 1, 1, 2, 0ω ) (2, 1, 2, 1, 2, 0ω ) KSPM - Known Results Goles, Morvan, Phan (2002) D = 3 and N = 24 (24, 0ω ) 0 (21, 0, 1, 0ω ) 0 (18, 0, 2, 0ω ) 0 (15, 0, 3, 0ω ) 0 (12, 0, 4, 0ω ) 0 (9, 0, 5, 0ω ) 0 (6, 0, 6, 0ω ) 0 (3, 0, 7, 0ω ) (0, 0, 8, 0ω ) ω (0, 2, 5, 0, 1, 0 ) . (KSPM(D, N), →) is a lattice. ω 2 (15, 2, 0, 0, 1, 0 ) (12, 2, 1, 0, 1, 0ω ) 0 (9, 2, 2, 0, 1, 0ω ) 0 ω 2 (6, 2, 3, 0, 1, 0 ) 2 (3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω ) 2 (3,04, 1, 0, 2, 1 0ω ) (8, 1, 0, 1, 2, 0ω ) (0, 4, 2, 0, 2, 1 0ω ) (5,01, 1, 1, 2, 0ω ) (2, 1, 2, 1, 2, 0ω ) KSPM - Known Results Goles, Morvan, Phan (2002) D = 3 and N = 24 (24, 0ω ) 0 (21, 0, 1, 0ω ) 0 (18, 0, 2, 0ω ) 0 (15, 0, 3, 0ω ) 0 (12, 0, 4, 0ω ) 0 (9, 0, 5, 0ω ) 0 (6, 0, 6, 0ω ) 0 (3, 0, 7, 0ω ) (0, 0, 8, 0ω ) ω (0, 2, 5, 0, 1, 0 ) . (KSPM(D, N), →) is a lattice. . A unique fixed point π(n). ω 2 (15, 2, 0, 0, 1, 0 ) (12, 2, 1, 0, 1, 0ω ) 0 (9, 2, 2, 0, 1, 0ω ) 0 ω 2 (6, 2, 3, 0, 1, 0 ) 2 (3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω ) 2 (3,04, 1, 0, 2, 1 0ω ) (8, 1, 0, 1, 2, 0ω ) (0, 4, 2, 0, 2, 1 0ω ) (5,01, 1, 1, 2, 0ω ) (2, 1, 2, 1, 2, 0ω ) KSPM - Known Results Goles, Morvan, Phan (2002) D = 3 and N = 24 (24, 0ω ) 0 (21, 0, 1, 0ω ) 0 (18, 0, 2, 0ω ) 0 (15, 0, 3, 0ω ) 0 (12, 0, 4, 0ω ) 0 (9, 0, 5, 0ω ) 0 (6, 0, 6, 0ω ) 0 (3, 0, 7, 0ω ) (0, 0, 8, 0ω ) ω (0, 2, 5, 0, 1, 0 ) . (KSPM(D, N), →) is a lattice. . A unique fixed point π(n). ω 2 (15, 2, 0, 0, 1, 0 ) (12, 2, 1, 0, 1, 0ω ) 0 (9, 2, 2, 0, 1, 0ω ) 0 ω 2 (6, 2, 3, 0, 1, 0 ) 2 . All paths are equivalent : same fired columns, with same occurrences. (3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω ) 2 (3,04, 1, 0, 2, 1 0ω ) (8, 1, 0, 1, 2, 0ω ) (0, 4, 2, 0, 2, 1 0ω ) (5,01, 1, 1, 2, 0ω ) (2, 1, 2, 1, 2, 0ω ) KSPM - Known Results Goles, Morvan, Phan (2002) D = 3 and N = 24 (24, 0ω ) 0 (21, 0, 1, 0ω ) 0 (18, 0, 2, 0ω ) 0 (15, 0, 3, 0ω ) 0 (12, 0, 4, 0ω ) 0 (9, 0, 5, 0ω ) 0 (6, 0, 6, 0ω ) 0 (3, 0, 7, 0ω ) (0, 0, 8, 0ω ) ω (0, 2, 5, 0, 1, 0 ) . (KSPM(D, N), →) is a lattice. . A unique fixed point π(n). ω 2 (15, 2, 0, 0, 1, 0 ) (12, 2, 1, 0, 1, 0ω ) 0 (9, 2, 2, 0, 1, 0ω ) 0 ω 2 (6, 2, 3, 0, 1, 0 ) 2 . All paths are equivalent : same fired columns, with same occurrences. . Fixed point shape ? (3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω ) 2 (3,04, 1, 0, 2, 1 0ω ) (8, 1, 0, 1, 2, 0ω ) (0, 4, 2, 0, 2, 1 0ω ) (5,01, 1, 1, 2, 0ω ) (2, 1, 2, 1, 2, 0ω ) KSPM - Known Results Goles, Morvan, Phan (2002) D = 3 and N = 24 (24, 0ω ) 0 (21, 0, 1, 0ω ) 0 (18, 0, 2, 0ω ) 0 (15, 0, 3, 0ω ) 0 (12, 0, 4, 0ω ) 0 (9, 0, 5, 0ω ) 0 (6, 0, 6, 0ω ) 0 (3, 0, 7, 0ω ) (0, 0, 8, 0ω ) (0, 2, 5, 0, 1, 0ω ) . (KSPM(D, N), →) is a lattice. . A unique fixed point π(n). ω 2 (15, 2, 0, 0, 1, 0 ) (12, 2, 1, 0, 1, 0ω ) 0 (9, 2, 2, 0, 1, 0ω ) 0 ω 2 (6, 2, 3, 0, 1, 0 ) 2 . All paths are equivalent : same fired columns, with same occurrences. . Fixed point shape ? . Small perturbation effect ? (3, 2, 4, 0, 1, 0ω ) 0 (6, 4, 0, 0, 2, 0ω ) 2 (3,04, 1, 0, 2, 1 0ω ) (8, 1, 0, 1, 2, 0ω ) (0, 4, 2, 0, 2, 1 0ω ) (5,01, 1, 1, 2, 0ω ) (2, 1, 2, 1, 2, 0ω ) Inductive Approach - Avalanches 1. Start from the fixed point : π(k − 1) Inductive Approach - Avalanches 1. Start from the fixed point : π(k − 1) 2. Add a single grain of column 0 : π(k − 1)↓0 Inductive Approach - Avalanches 1. Start from the fixed point : π(k − 1) 2. Add a single grain of column 0 : π(k − 1)↓0 3. Fire, until reaching a fixed point : π(π(k − 1)↓0 ) Inductive Approach - Avalanches 1. Start from the fixed point : π(k − 1) 2. Add a single grain of column 0 : π(k − 1)↓0 3. Fire, until reaching a fixed point : π(π(k − 1)↓0 ) π(k) = π(π(k − 1)↓0 ) This allows an inductive way for computing π(k). Inductive Approach - Avalanches 1. Start from the fixed point : π(k − 1) 2. Add a single grain of column 0 : π(k − 1)↓0 3. Fire, until reaching a fixed point : π(π(k − 1)↓0 ) π(k) = π(π(k − 1)↓0 ) This allows an inductive way for computing π(k). The k th avalanche : the set of fired columns in step 3. Inductive Approach - Avalanches 1. Start from the fixed point : π(k − 1) 2. Add a single grain of column 0 : π(k − 1)↓0 3. Fire, until reaching a fixed point : π(π(k − 1)↓0 ) π(k) = π(π(k − 1)↓0 ) This allows an inductive way for computing π(k). The k th avalanche : the set of fired columns in step 3. 1 Each column is fired at most once in an avalanche Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Illustration on examples ∗ ∗ ∗ ∗ π(103)↓0 → π(104)↓0 → π(105)↓0 → π(106)↓0 → π(107) D=3 Avalanches ←→ SOC First Avalanches N=98 N=97 N=96 N=93 N=90 N=87 N=86 N=85 N=82 N=79 N=76 N=75 N=74 N=71 N=68 N=65 N=64 N=63 N=60 N=57 N=54 N=53 N=52 N=49 N=46 N=43 N=42 N=39 N=36 N=35 N=32 N=29 N=26 N=25 N=22 N=19 N=18 N=15 N=12 N=9 N=6 N=3 N=192 N=189 N=186 N=183 N=180 N=179 N=178 N=175 N=172 N=169 N=168 N=165 N=162 N=161 N=158 N=157 N=156 N=153 N=152 N=151 N=148 N=145 N=142 N=141 N=140 N=137 N=134 N=131 N=130 N=129 N=126 N=123 N=120 N=117 N=114 N=113 N=112 N=109 N=108 N=107 N=104 N=101 N=278 N=275 N=272 N=271 N=270 N=267 N=266 N=265 N=262 N=261 N=260 N=257 N=254 N=251 N=250 N=249 N=246 N=245 N=242 N=239 N=238 N=235 N=232 N=229 N=228 N=227 N=224 N=221 N=218 N=217 N=216 N=213 N=210 N=207 N=206 N=205 N=202 N=201 N=200 N=197 N=196 N=195 Holes Positions on Avalanches, . Hole : an unfired column, such that there exists a fired column with largest rank. Holes Positions on Avalanches, . Hole : an unfired column, such that there exists a fired column with largest rank. . The BIG conjecture : Let L(D, N) be the largest hole of the N th avalanche 2 L(D, N) is in O(log N) . Holes Positions on Avalanches, . Hole : an unfired column, such that there exists a fired column with largest rank. . The BIG conjecture : Let L(D, N) be the largest hole of the N th avalanche 2 L(D, N) is in O(log N) . . Only proved for D = 3, unfortunately. Holes Positions on Avalanches, . Hole : an unfired column, such that there exists a fired column with largest rank. . The BIG conjecture : Let L(D, N) be the largest hole of the N th avalanche 2 L(D, N) is in O(log N) . . Only proved for D = 3, unfortunately. . Consequence : except for leftmost columns, we do not care about holes √ (since the support of the sand pile π(N) is in Θ( N)). Beyond the Holes : Long Avalanches . Peak : column whose height difference is D −1. . Peaks are masters of long avalanches. ≥D D π(N) peak (D −1) Beyond the Holes : Long Avalanches . Peak : column whose height difference is D −1. . Peaks are masters of long avalanches. ≥D D π(N) peak (D −1) Beyond the Holes : Long Avalanches . Peak : column whose height difference is D −1. . Peaks are masters of long avalanches. ≥D D π(N) peak (D −1) Beyond the Holes : Long Avalanches . Peak : column whose height difference is D −1. . Peaks are masters of long avalanches. ≥D D π(N) peak (D −1) Beyond the Holes : Long Avalanches . Peak : column whose height difference is D −1. . Peaks are masters of long avalanches. ≥D D π(N) peak (D −1) ≥D D π(N) peak (D −1) Beyond the Holes : Long Avalanches . Peak : column whose height difference is D −1. . Peaks are masters of long avalanches. ≥D D π(N) peak (D −1) ≥D D π(N) 0 +1+1+1+1+1 peak (D −1) Avalanche effect : . the last reached peak := 0, . the D − 1 columns just after the last reached peak : + 1, . other columns : unchanged. 3 The avalanche effect is easily computable beyond the holes Transduction Governing peak : rightmost peak before the interval 5 4 2 5 1 Transduction Governing peak : rightmost peak before the interval ... 5 4 2 0 2 ... 5 4 2 5 1 Transduction Governing peak : rightmost peak before the interval ... 0 5 3 1 3 ... ... 5 4 2 0 2 ... 5 4 2 5 1 Transduction Governing peak : rightmost peak before the interval ... 0 0 4 2 4 ... ... 0 5 3 1 3 ... ... 5 4 2 0 2 ... 5 4 2 5 1 Transduction Governing peak : rightmost peak before the interval ... 1 1 5 2 4 ... ... 0 0 4 2 4 ... ... 0 5 3 1 3 ... ... 5 4 2 0 2 ... 5 4 2 5 1 The governing peak really governs the evolution of the interval Transduction Governing peak : rightmost peak before the interval ... ... ... ... 1 1 5 2 4 ... 0 0 4 2 4 ... 1 0 5 3 1 3 ... 0 5 4 2 0 2 ... 3 5 4 2 5 1 output 2|301 54251 11524 Transduction input The governing peak really governs the evolution of the interval Wave Pattern - Example for D = 3 1|01 21 11 0|∅ 1|∅ 10 00 1|∅ 0|∅ 0|∅ 0|∅ 1|1 20 0|0 0|10 1|∅ 1|∅ 0|∅ 12 22 1|10 t(0100001) = 01001 Wave Pattern - Example for D = 3 1|01 21 11 0|∅ 1|∅ 10 00 1|∅ 0|∅ 0|∅ 0|∅ 1|1 20 0|0 0|10 1|∅ 1|∅ 0|∅ 12 22 1|10 t(0100001) = 01001 ∀u ∈ {0, 1}∗ , ∃n in 0(log |u|) such that t n (u) is a prefix of (01)ω Wave Pattern - Example for D = 3 1|01 21 11 0|∅ 1|∅ 10 00 1|∅ 0|∅ 0|∅ 0|∅ 1|1 20 0|0 0|10 1|∅ 1|∅ 0|∅ 12 22 1|10 t(0100001) = 01001 ∀u ∈ {0, 1}∗ , ∃n in 0(log |u|) such that t n (u) is a prefix of (01)ω Starting from a prefix of (01)ω , the sand pile becomes a wave Wave Pattern - Example for D = 3 1|01 21 11 0|∅ 1|∅ 10 00 1|∅ 0|∅ 0|∅ 0|∅ 20 0|0 0|10 1|∅ 1|∅ D −1 0|∅ 12 22 1|10 t(0100001) = 01001 ... 1|1 2 1 Wave (D − 1, ..., 1)k ∀u ∈ {0, 1}∗ , ∃n in 0(log |u|) such that t n (u) is a prefix of (01)ω Starting from a prefix of (01)ω , the sand pile becomes a wave Conclusion N O(log N) 1 2 3 π(N) √ Θ( N) O(log N) 4 columns D=3 1 2 3 4 emergent density on avalanches density used to built a transducer transducer iteration involves a balanced evolution balanced evolution involves the wave pattern general D Thank you for Sandpiling, Mister Goles
Similar documents
The Deconstruction and Rebuilding of 740 Rue Bel
Action Plan 2000 on Climate Change FACILITATING GREATER REUSE AND RECYCLING OF STRUCTURAL STEEL IN THE CONSTRUCTION AND DEMOLITION PROCESS
More information