called a permtation amuy if each row of A
Transcription
called a permtation amuy if each row of A
Annals of Discrete Mathematics 30 (1986) 185-202 0 Elsevier Science Publishers B.V. (North.Holland) 185 ON PERMUTATION ARRAYS, TRANSVERSAL SEMINETS AND RELATED STRUCTURES M i c h e l Deza and Thomas I h r i n g e r U n i v e r s i t i ! P a r i s V I I , U.E.R. de Math., P a r i s , France Technische Hochschule, Fachbereich Mathematik, Darmstadt, Federal R e p u b l i c o f Germany E x p l o i t i n g some i d e a s o f C41, t h i s paper i s focused on t h e e q u i valence between s e t s o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s and a s p e c i a l c l a s s o f seminets ( t h e s o - c a l l e d t r a n s v e r s a l s e m i n e t s ) . Besides t h i s e q u i v a l e n c e , S e c t i o n 2 c o n t a i n s a c o n s t r u c t i o n method f o r t r a n s v e r s a l seminets u s i n g groups. Nonsolvable p e r m u t a t i o n groups o f p r i m e degree and t h e p r o j e c t i v e s p e c i a l l i n e a r groups PSL(2,Zm) y i e l d examples f o r t h i s method. I n S e c t i o n 3 some upper bounds a r e p r o v e d f o r t h e number o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s , depending on t h e i n t e r s e c t i o n s t r u c t u r e o f t h e s e a r r a y s . With t h e r e s u l t s o f S e c t i o n s 4 i t i s shown t h a t a l l examples o f Section 2 are row-extendible. Section 5 deals w i t h several i n c i dence s t r u c t u r e s a s s o c i a t e d t o t r a n s v e r s a l seminets. The consequences a r e i n v e s t i g a t e d when t h e s e i n c i d e n c e s t r u c t u r e s have s p e c i a l p r o p e r t i e s ( f o r i n s t a n c e , when t h e y a r e p a i r w i s e balanced d e s i g n s ) . S e c t i o n 6 d i s c u s s e s b r i e f l y t h e r e l a t i o n s o f t r a n s v e r s a l seminets w i t h o t h e r mathematical s t r u c t u r e s , e.g. w i t h t r a n s v e r s a l p a c k i n g s , g e n e r a l i z e d o r t h o g o n a l a r r a y s , and s e t s o f m u t u a l l y o r t h o g o n a l p a r t i a l quasigroups. 1. INTRODUCTION A v x r m a t r i x A = ( a . . ) w i t h e n t r i e s a . . f r o m t h e s e t I1,2 ,...,r l i s 1J 1J c a l l e d a p e r m t a t i o n amuy i f each row o f A c o n t a i n s each o f t h e elements 1,2, . . . ,r e x a c t l y once, i . e . i f t h e rows o f r l . The i n t e r s e c t i o n s tr u c tu r e o f w i t h F. .,(A):= t j I A A represent permutations o f i s d e f i n e d as t h e vxv m a t r i x lsjsr, a..=a. if, f o r a l l aij A and and bij B ,..., F(A) = 1 . The v x r p e r m u t a t i o n a r r a y s i'j (Fi i , ( A ) ) 1 1 IJ A = ( a . . ) and B = ( b . . ) a r e c a l l e d e i r n . L Z a i * i f F ( A ) = F(B). C l e a r l y , 1J 1J a r e s i m i l a r i f and o n l y i f , f o r a l l i n d i c e s i , i ' , j , The p e r m u t a t i o n a r r a y s {l,Z A and B a r e c a l l e d orthogonu2 i f t h e y a r e s i m i l a r and i,i',j,j', = ai,j, = bi ,j, ==3 j = j ' . T h i s concept o f o r t h o g o n a l i t y g e n e r a l i z e s t h e well-known i d e a o f o r t h o g o n a l l a t i n r e c t a n g l e s . I t has been d e f i n e d and i n v e s t i g a t e d by B o n i s o l i and Deza i n C41. M. Deza arzd T. lhringer 186 (See a l s o 1 7 3 f o r c l o s e l y r e l a t e d c o n s i d e r a t i o n s . ) S i m i l a r l y as f o r l a t i n r e c t a n g l e s and l a t i n squares, one w i l l be i n t e r e s t e d i n sets 4= {A1,A 2,...,At} of mutually orthogonal permutation arrays, w i t h t p o s s i b l y g r e a t e r t h a n 2 . I n t h i s case t h e i n t e r s e c t i o n s tr uc tur e F(A) = t (Fi ,i(f)i ) o f A i s d e f i n e d as t h e common i n t e r s e c t i o n s t r u c t u r e o f t h e A k' i . e . F(&):= F(A1) = F(A2) = = F(At). A p e r m u t a t i o n a r r a y A = ( a . .) i s c a l l e d standardized i f alj = j f o r a l l j 1J ... . Without loss of generality, i t w i l l be assumed i n t h i s paper t h a t each permut a t i o n array is standardized, and t h a t i t s a t i s f i e s the following n o n t r i v i a l i t y conditions (CII and ( C 2 ) . (C,) The p e r m u t a t i o n a r r a y A A has no c o n s t a n t column, i . e . each column o f c o n t a i n > a t l e a s t two d i s t i n c t values, any two rows o f (C,) X Let A are d i s t i n c t . be a nonempty s e t , and l e t d i s j o i n t s e t s o f nonempty subsets o f Lo,L1, ...,L t (with X. The elements o f tzl) X u,,,,, points and t h e elements o f ,..,, Lk Zines. Then i s c a l l e d a seminet o r (more p r e c i s e l y ) a ( t t 1 ) - s e m i n e t i f (S1) any two d i s t i n c t l i n e s i n t e r s e c t i n a t most one p o i n t , (S,) each c l a s s Li partitions the point set be m u t u a l l y w i l l be c a l l e d 3 :=(X;Lo,L1 ,...,L t ) X. C o n d i t i o n (S2) j u s t i f i e s t h e t e r m p a r a l l e l c l a s s f o r each o f t h e l i n e s Li. The n o t i o n o f a seminet g e n e r a l i z e s such well-known s t r u c t u r e s l i k e a f f i n e p l a n e s , n e t s and (more g e n e r a l l y ) t h e p a r a l l e l s t r u c t u r e s o f Andre 121. A subset o f c a l l e d a transi.arsa2 o f t h e seminet 5 e x a c t l y one p o i n t . I f p a r a l l e l class Li 3 has a t r a n s v e r s a l c o n s i s t i n g o f contains e x a c t l y r o f t h e seminet c o n s i s t s a l s o o f e x a c t l y r:= 5 i f i t i n t e r s e c t s each l i n e o f r 3 X is in p o i n t s , t h e n each l i n e s ( a n d hence each f u r t h e r t r a n s v e r s a l r p o i n t s ) . I f T1,T *,...,TV are trans- versals o f then (X;Lo,L1 ,...,Lt;T1,T2 ,..., Tv) i s c a l l e d a transversa2 seminet ( o r transversal ( t t 1 , r ) - s e m i n e t i f each t r a n s v e r s a l c o n s i s t s o f r p o i n t s ) . B o n i s o l i and Deza r41 p o i n t e d o u t t h a t t h e r e i s a c l o s e r e l a t i o n s h i p b e t ween set.s o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s and o t h e r mathematical s t r u c t u r e s . F o r i n s t a n c e , t h e y proved t h a t each s e t o f p e r m u t a t i o n a r r a y s i s e q u i v a l e n t t o a 1-design w i t h number r and ttl mutually orthogonal v x r t v treatments, r e p l i c a t i o n m u t u a l l y o r t h o g o n a l r e s o l u t i o n s (see S e c t i o n 5 ) . Moreover, i t was shown t h a t any o f these a r e e q u i v a l e n t t o a t r a n s v e r s a l ( t t 1 , r ) - s c m i n e t with v t r a n s v e r s a l s . T h e r e f o r e many o f t h e examples and r e s u l t s i n t h i s paper can be t r a n s l a t e d i n t o analogous statements on c o m b i n a t o r i a l designs w i t h m u t u a l l y ortogonal resolutions. Oil Pennutatioii Arrays 187 2. AN EQUIVALENCE AND A CONSTRUCTION METHOD J := Let 1 2 {lo,l o,...,lL). (X;Lo,L1,.. . ,Lt;T1,T2,. .. ,Tv) Lo:= be a t r a n s v e r s a l seminet w i t h ( I n f a c t , t h r o u g h o u t t h i s paper t h e s e t o f p a r a l l e l c l a s s e s , t h e Lo o f any t r a n s v e r s a l seminet a r e s e t o f t r a n s v e r s a l s and t h e s e t o f l i n e s of assumed t o be l i n e a r l y ordered, by t h e numbering o f t h e i r elements.) One can now k d e f i n e t m u t u a l l y o r t h o g o n a l v x r p e r m u t a t i o n a r r a y s Ak = ( a . . ) , k=1,2, ...,t, 1J i n t h e f o l l o w i n g way: F o r i E I 1 , 2 ,... ? v 1 , j E I 1 , 2 ,...,r l , k < I1,2 ,...,t ) l e t Ti n l;, and l e t be t h e unique p o i n t . c o n t a i n e d i n x x. L e t be t h e u n i q u e p o i n t w i t h y t h r o u g h y. F i n a l l y , d e f i n e a:j:= be t h e 1; L k - l i n e through be t h e Lo-line c . From t h e p r o p e r t i e s o f t r a n s v e r s a l seminets &J):=IA1,A2, . . . ,A t ) one can conclude t h a t 1 y c T 1 n 1, and l e t i s , i n fact, a s e t o f mutually orthogonal permutation arrays. The c o n d i t i o n s (C,) o f S e c t i o n 1 can be paraphrased i n terms o f and (C,) t r a n s v e r s a l seminets as f o l l o w s : There i s no p o i n t o f t h e seminet w h i c h i s c o n t a i n e d i n a l l t r a n s v e r s a l s , (D1) ..., . = ni=1,2, v Ti 1 , a n d v.2.) 1.‘. line (D2) 0. Any two t r a n s v e r s a l s a r e d i s t i n c t , i . e . Ti i J?-(r) only I n t h e c o n s t r u c t i o n procedure f o r T those p o i n t s o f Ti. r e s t r i c t o n e s e l f t o t h e reduced t r a n s v e r s a l seminet ( X ’ ;LA,Li,. d e f i n e d by X have been T h e r e f o r e one can always , . ,LC;T1,T2,. . . , L k’ : = ( 1 n X ’ j l c L k I . Ti’ ui=1,2,...,v XI:= f o r each iz j . for j used which a r e c o n t a i n e d i n one o f t h e t r a n s v e r s a l s Tv) I1 I t 2 (This implies, i n particular, I n t h e r e s t of this paper a l l transoersa2 seminets are assumed t o be reduced arid t o s u t i s f g the ron,Zitions (0,) m d (DJ. Y The process of c o n s t r u c t i n g m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s f r o m t r a n s v e r s a l seminets can be r e v e r s e d : L e t k p e r m u t a t i o n a r r a y s Ak = ( a . . ) , k=1,2, 1J + r ; , and l e t & be ...,t . a set of Define be t h e e q u i v a l e n c e r e l a t i o n on o n l y if j = j ’ and Y t Y:= with j i Fi i ,(A). Define the p o i n t s e t X 9, i . e . X:= Y / $ = “(i,j)llb set o f equivalence classes o f . 1 , 2 ,.... r {I (i,j)ldj ~ ..., ..., ( i , j ) $ ( i ’ , j ’ ) i f and o f t h e seminet as t h e 1 (i,j)t:YI. For and k = 1,2,, .,t l e t lo:= (I ( i , j ) l $ I j = c , i=1,2,...,v) and 1 2 k 1 2 ,...,1 L I . a . . = c l , and d e f i n e L o : = {lo,lo ,..., lor}, L k : = Ilk,lk Finally, l e t (X;Lo,L1,.. mutually orthogonal v x r {1,2. v) x {l,Z, 1J T.:= 1 .,Lt;Tl,T2,, = A .Summarizing, ’,r (i,j)l$ .. C 1 j = 1 , 2 , . ..,rI, i = 1 , 2 ,...,v . Then J(R):= ,Tv) i s a (reduced) t r a n s v e r s a l seminet w i t h one o b t a i n s c = C lk:= &(T(R)) M. Deza arid T. Ihririger 188 The existence of a s e t 2.1. PROPOSITION. 01 t mutually orthogonal v x r perm- tation arrays i s equivaZent t o the existence of a transversal (t+l,r)-seminet with v transversals. T h i s e q u i v a l e n c e was a l r e a d y observed i n 141. One can show even a l i t t l e more. Let . . ,Lt;T1,T2,.. = (X;Lo,L1.. .,Tv) be reduced t r a n s v e r s a l seminets w i t h . and ‘U = (Y;Mo,M1,. ..,Mt;U1,U2,. .,Uv) 1 2 ,...,1 L I and Mo 1 2 ,..., Imo,mo Lo = ilo,lo m i l , and assume R(’3’)= A(%). D e f i n e a mapping $ : X 4 Y as f o l l o w s . F o r X E Ti n 1: l e t $ ( x ) be t h e unique element c o n t a i n e d i n Ui nm:. Then 0 i s an and U , i . e . isomorphism o f 0 i s a b i j e c t i o n which maps p a r a l l e l l i n e s i i 0 s a t i s f i e s $Li = Mi, $Ti = Ui and $lo = mo onto p a r a l l e l l i n e s ( i n f a c t , for all 2.2. i ) . This y i e l d s PROPOSITION. If J , ( J )= L ( U ) then y &(J) = T. nT. = 0 1 are reduced transversa2 seminets with are isomorphic. . IA1,A 2,...,Atl for a l l J u . = ( X;Lo,Ll,. .,Lt;T1,T2,. .,Tv) corresponds t o a o f m u t u a l l y o r t h o g o n a l Zatin rectanglos e x a c t l y i f The t r a n s v e r s a l seminet set and and i,j, i z j . The a r r a y s A1,A 2,...,At form a s e t o f m u t u a l l y o r t h o g o n a l Zatin squares i f and o n l y i f (X;Lo,L1,, ..,Lt,Lt+l), w i t h Lt+l:= I n o t h e r words, t h e e q u i v a l e n c e o f P r o p o s i t i o n 2.1 i s a net. tT1,T2,,..,Tv\, s p e c i a l i z e s t o t h e c l a s s i c a l correspondence o f m u t u a l l y o r t h o g o n a l l a t i n squares w i t h nets. The f o l l o w i n g theorem p r o v i d e s a c o n s t r u c t i o n method o f s e t s o f m u t u a l l y o r t h o gonal p e r m u t a t i o n a r r a y s v i a seminets, u s i n g groups. 2.3. THEOREM. G he a f i n i t e group with neutral eZement e . Let Let t and be p o s i t i v e integers, and Zet So,S1,.. .,St and F1,F2,.. .,F be nontrivial S subgroups of G such that the foZZowing conditions are s a t i s f i e d f c r aZl i , j E S 10,1, ..., tl, k,l E 11,2 ,..., ~ 4 Si n S j (2) i j (2) S. O F = {el, (3) k * 1 =$ Fk z F,, (41 l F k I = CG:Sil. i = (el, k Then there e x i s t s a s e t o f S r : = I F I and v:= -./GI . 1 r Proof. i.e. 1 : F o r each Li = {Sig 1 t i E (O,l, geG1. Then mutualZy orthogonal v x r p e r m t a t i o n arrays, with ...,t l let (G;Lo,L l,...,Lt) Li c o n s i s t o f the r i g h t cosets o f i s a (tt1)-seminet: Si, C o n d i t i o n (S1) On Permu tutiori Arru-vs 189 i s t r i v i a l l y s a t i s f i e d w h i l e ( S 2 ) i s a consequence o f ( 1 ) . Each r i g h t c o s e t Fkh i s a t r a n s v e r s a l o f (G;Lo,L1, ..., L t ) : I t has t o be Fk n F k h l = 1 f o r a l l g,hsG. As a consequence o f ( 2 ) one o b t a i n s o f one o f t h e subgroups show that lSig 1S.g n F k h l i 1. Assumption ( 4 ) then i m p l i e s u f C F k S i f = G, and hence 1 lSig n F k h l 2 1. Each t r a n s v e r s a l has d i s t i n c t r i g h t c o s e t s . Thus t h e r e a r e form Fkh, w i t h (D1) and k t t1,2, ...,s l and r = lFll elements, and each v = :*IGI Fk IGI has d i s t i n c t transversals o f the h e G. Finally, the n o n t r i v i a l i t y conditions ( D p ) a r e a consequence o f t h e n o n t r i v i a l i t y o f t h e subGroups Fk and o f (3), r e s p e c t i v e l y . By P r o p o s i t i o n 2.1, t h e p r o o f i s complete. The seminet seminet, i . e . n ,,..., (G;Lo.L L t ) o f t h e above p r o o f i s , i n f a c t , a transZation i t has a t r a n s l a t i o n group o p e r a t i n g r e g u l a r l y on i t s p o i n t s : I n t h e r i g h t r e g u l a r represeritation o f G each maoping XH xg, g r G , maps e v e r y l i n e o n t o a p a r a l l e l l i n e . On t h e o t h e r hand, each t r a n s l a t i o n seminet can be o b t a i n e d i n t h i s way f r o m a group G and subgroups So,S l....,St satisfying condition (1). Analogous group t h e o r e t i c c h a r a c t e r i z a t i o n s have been given, f o r i n s t a n c e , f o r t r a n s l a t i o n planes, t r a n s l a t i o n n e t s , t r a n s l a t i o n s t r u c t u r e s and t r a n s l a t i o n group d i v i s i b l e designs ( s e e e.g. rll, 1151. C221, [31 and 1201). Marchi r181 uses s i m i l a r i d e a s f o r his c h a r a c t e r i z a t i o n o f r e g u l a r a f f i n e p a r a l l e l s t r u c t u r e s by p a r t i t i o n l o o p s . P r o b a b l y one can f o r m u l a t e an analogue o f Theorem 2.3 u s i n g l o o p s i n s t a e d of groups. The problem would be t o f i n d examples f o r such a g e n e r a l i z a t i o n . The r e s t o f t h i s s e c t i o n y i e l d s two c l a s s e s o f examples f o r Theorem 2.3. C f . Huppert 1141 and W i e l a n d t 1241 f o r t h e group t h e o r e t i c n o t a t i o n s . L e t G be a n o n s o l v a b l e t r a n s i t i v e p e r m u t a t i o n group o f p r i m e degree p . L e t v:= p 2 , r:=-I,G I and l e t d be the p o s i t i v e i n t e g e r w i t h d < p - 1 P and d = r (mod p ) . Then one can c o n s t r u c t a s e t o f t : = 1 mutually orthogonal 2.4. EXAMPLE. i- v * r p e r m u t a t i o n a r r a y s : Assume tl,Z, . . . , p 1 define FkzF, k z for So,S l,...,St, 1 Fk since G t o o p e r a t e on *,.... a P I . ial,a t o be t h e s t a b i l i z e r o f 6 F o r each k 6 ak i n G, i . e . Fk:= Ga Then k' i s d o u b l y t r a n s i t i v e ( c f . Theorem 11.7 o f r 2 4 1 ) . L e t be t h e Sylow p-subgroups o f G (with t ' 1 1 because G i s non- s o l v a b l e ) . O b v i o u s l y , these subgroups s a t i s f y t h e assumptions o f Theorem 2.3. m u t u a l l y o r t h o g o n a l v x r p e r m u t a t i o n a r r a y s . I t remains t o r t ' = t o r , e q u i v a l e n t l y , t h a t G has e x a c t l y Sylow p-subgroups. L e t Hence t h e r e a r e show P t' a be a Sylow p-siibgroup o f P of d"p-1 is P i t s e l f . Hence G. The o n l y Sylow p-subgroup o f t h e n o r m a l i s e r NG(P) i s s o l v a b l e and t h u s o f o r d e r pad' NG(P) with ( c f . r141, Satz 1 1 . 3 . 6 ) . T h e r e f o r e t h e number n o f Sylow p-subgroups G r n=[G:N ( P ) l = p . d ' = a T . From n = l (mod p ) one o b t a i n s d ' = r (mod p ) , G r d = d ' and n = satisfies i.e. a. The n o n s o l v a b l e t r a n s i t i v e p e r m u t a t i o n groups o f p r i m e degree have been comp l e t e l y determined, due t o t h e c l a s s i f i c a t i o n o f f i n i t e s i m p l e qroups ( s e e M. Deza Q 190 I I T. ~ Ihringer C o r o l l a r y 4.2 o f F e i t C111). N o t i c e t h a t solvabZe t r a n s i t i v e p e r m u t a t i o n groups o f p r i m e degree o cannot be used i n t h e above c o n s t r u c t i o n : These groups have e x a c t l y one Sylow p-subgroup, which would i m p l y 2.5. EXAMPLE. t = 0. F o r each i n t e g e r mr2 one can c o n s t r u c t a s e t o f t m u t u a l l y m-1 rn ( 2 - 1 ) - 1 9 v : = (2m+1)2 and r : = m 2m(2m-l): Regard t h e p r o j e c t i v e s p e c i a l l i n e a r group G = PSL(2,q), w i t h q = 2 , orthogonal v x r permutation arrays, w i t h t:= 2 as a p e r m u t a t i o n group o p e r a t i n g c a n o n i c a l l y on t h e q+l o f t h e p r o j e c t i v e l i n e o v e r t h e q-element f i e l d . F o r each define Fk t o be t h e s t a b i l i z e r o f ak in G, i . e . be t h e ( m u t u a l l y c o n j u g a t e ) c y c l i c subgroups o f = =-, t' o f conjugates o f ttl, i.e. k t ..,aq+l) . . ,q+11 {al,a2,. {1,2,. Fk:= G L e t So,S l,...,Stl ak' q + l . By t h e r e s u l t s o f order t h e s e subgroups s a t i s f y t h e assumptions o f Theorem 2.3. i n 1141, pp. 191-193, t h e number G points one o b t a i n s So For t ' + l= C G : N G ( S o ) l = w t ' = t. i n o r d e r t o conN o t i c e t h a t Hartman [121 used some o f t h e groups PSL(2,q) s t r u c t designs w i t h m u t u a l l y o r t h o g o n a l r e s o l u t i o n s . F o r i n s t a n c e , f o r each q E {19,31,431 t i o n s and there e x i s t s a design w i t h v=qtl t r e a t m e n t s , r =? replica- t+l=q mutually orthogonal resolutions. 3. BOUNDS FOR THE NUMBER OF MUTUALLY ORTHOGONAL PERMUTATION ARRAYS . o f m u t u a l l y orthogonal p e r m u t a t i o n a r r a y s i s c a l l e d {A1,A2,. . ,At) maxima2 i f t h e r e e x i s t s no p e r m u t a t i o n a r r a y which i s o r t h o g o n a l t o a l l Attl Ak, k = 1,2 ,..., t. A t r a n s v e r s a l seminet (X;L0,L1, Lt;T1,T2 ,Tv) i s c a l l e d L-mo.ximaZ i f t h e r e e x i s t s no a d d i t i o n a l p a r a l l e l c l a s s Lt+l such t h a t (X;Lo,L1, A set ..., .. .,Lt,Lttl;T1,T2,. obvious. 3.1. LEMMA. . .,Tv) i s a g a i n a t r a n s v e r s a l seminet. The f o l l o w i n g lemma i s of mutually orthogond permutation arraps is maximal A set i f mid only if the associated transversal seminet 3.2. PROPOSITIOM. ,... J (A)is L-maximal. of rnintualZy orthogoxu2 permutation arrays of Eaeh s e t Example 2 . 5 is maximal. Proof. Let G = PSL(2,2m) a s s o c i a t e d t r a n s v e r s a l seminet be t h e group used f o r t h e c o n s t r u c t i o n of 7 has G as p o i n t s e t . The subgroups ...,St a r e e x a c t l y t h e l i n e s t h r o u g h t h e n e u t r a l element groups F1,F2,. . .,Fq+l e are e x a c t l y the transversals through of e A.The SO'S1, G, and t h e sub( c f . the proof 191 Oir Permu tation Arrays G. Hence o f Theorem 2 . 3 ) . By Satz 11.8.5 o f Huppert L141, t h e s e subgroups c o v e r t h e r e cannot be any a d d i t i o n a l l i n e through e, and i s t h e r e f o r e L-maximal. J 2 J(&). By Lemma 3 . 1 t h e p r o o f i s complete, s i n c e P r o p o s i t i o n 2.2 y i e l d s 0 A c t u a l l y , t h e a s s e r t i o n o f Propos t i o n 3 . 2 depends o n l y on t h e i n t e r s e c t i o n F(&) structure of a:L e t 3 ,..., B t , I B1,B2 F(JJ ) = F ( & ) . gonal p e r m u t a t i o n a r r a y s w i t h S e c t i o n 2 shows t h a t t h e t r a n s v e r s a l seminets p o i n t s e t s and t h e same t r a n s v e r s a l s n p o i n t s , and y @ ) As . for u s e s oF1s S E S ~ w, i t h number Y e 7113) 7 G. T h e r e f o r e each l i n e o f T(&)t h r o u g h x have t h e same o f the proof contains e x a c t l y J(&) t h a t t h e same i s t r u e f o r a consequence, t h e r e i s a p o i n t through and pairwise d i s j o i n t transversals 0 = 7 7(A)i m p l i e s t'+l of lines o f lines o f ')'(a) The t r a n s v e r s a l seminet n:= I S I = CG:F1l o f Proposition 3.2 contains F1s, be a s e t o f m u t u a l l y o r t h o - The c o n s t r u c t i o n procedure o f x of J ( 3 ) such and a l s o t h a t the c a n n o t exceed t h e number ( i n f a c t , t h i s i s t r u e f o r each p o i n t x t+l o f y(2)) . of T h e r e f o r e P r o p o s i t i o n 3.2 can be improved as f o l l o w s . 3.3. PROPOSITION. Get a ={A1,A 2,...,Atl be one of t h e s e t s ofmutuaZZy 3 orthogonal permutation arrays of Exnmple 2 . 5 . Let = IB1,B2,. of mutually orthogonal permutation arrays with F ( B ) = F(&). . . ,Bt, Then be a s e t 1 t' 5 C.. The n e x t lemma g i v e s an upper bound f o r t h e number o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s depending on t h e i n t e r s e c t i o n s t r u c t u r e of t h e a r r a y s . The p r o o f o f t h i s lemma i s a u n i f i e d v e r s i o n o f t h e p r o o f s o f s e v e r a l r e l a t e d r e s u l t s i n '41 and 171. 3.4. LEMMA. Let A =IA1,A2 ,..., At] I pemutatioil arrays, and l e t ..., r l j o <{ l , Z , { l , Z ,..., v}, i o c 1 1 , 2 ,..., vl, J 5 {1,2,...,rI, satisfg II, al I bi t"il,i2t I: ai 'JiE I : j o d F .1 i, (A), dl V j c J 3i.I: j + F i i f be a s e t of mutualZy orthogonu2 v x r j O c Fil12' (A), 0 (a. I"he1i t ' r - ! J I - 1 . - P r o o f . L e t A = ( a . . ) be a v r p e r m u t a t i o n a r r a y w i t h F(A) = F ( & . 'J t h e r e e x i s t s an element i l k I . Define c:= a i . From b ) one o b t a i n s 1" 0 f o r a l l i I , and c ) i m p l i e s aio,of c. F o r each j c J t h e r e e x i s t s an witn ai OJ = a i j , by d ) . Thus jLj0 and aijza.. 'JO = c . Hence aioj By a ) "jd ic I c . There- 192 M . Deza arid T. Iliringer fore aioj = c f o r e x a c t l y one element . . . ,rl \ (J A, with c kt+ j, t J?- mapping {1,2, o f the (r-iJl-l)-element set j I n p a r t i c u l a r , t h i s i s t r u e f o r each o f t h e p e r m u t a t i o n a r r a y s {j,}). IJ and j r e p l a c e d by ck and j, . By o r t h o g o n a l i t y , t s r - IJI i s i n j e c t i v e . This implies - 1. the 0 The f o l l o w i n g c o r o l l a r y t r a n s l a t e s Lemma 3.4 i n t o t h e language o f t r a n s v e r s a l seminets. N o t i c e t h a t t h i s c o r o l l a r y c o u l d have been used i n o r d e r t o prove t h e P r o p o s i t i o n s 3.2 and 3.3. COROLLARY. 3.5. seminet, and 7.et I al b) ,Lt;T1,T2,. io c {1,2¶, ,vl . ., v l , .. ..,Tv) and b e a transversa2 x satisfy X E 6, mi,, T ~ , Ti x el Then f .. = (X;Lo,L1,. Lat I c {1,2,. t sr-6 0 - . 1, w i t h 3.6. COROLLARY. Let r : = ITl] and A={A1,A21...,A uerrnutation arrays, and l e t p: = ITi n (uicI 6:: max { I Fi 0 t Ti) I . 1 be a s e t of rnutuaZZy orthogonal v x r , (A) I I i ,i'=1,2,. . . ,v, i*i' I . Then t i r - U - 1 . ~ Proof. Choose . i,iot.il,2 ,..., v l and j o t {112] ..., r I 1 w i t h j o & F i i (A)D e f i n e I : = t i 1 and J : = F i l o ( & ) 0 s a t i s f y t h e assumptions of Lemma 3.4. 1-1 and 3.7. COROLLARY. Let pervnitution a r r a y s . Let T'hen t s r Proof. -A-2 . Choose A=IAl,A2, ...,A t 1 h:= min { I F . #(.+?-)I li . Then IFi io(sZ)I = IJ I , io, J , jo be a s e t of mutzia1Zy orthogonal v x r 1 i,i'=1,2,..,,v), io,i1,iz8 i 1 , 2 ,...,v l , il*i2$ and joF11,2 and assume ,..., r l X z l . with jo' (A) (A). Fili2(&), j o ~ F i l i o ( ~ ) and j o & F '2'0 . . D e f i n e I : = {ilyi21, J : = F.'1'0. IJ F . (f-). T h e n I , io, J , j o s a t i s f y t h e assumptions o f Lemma 3.4. Hence t h e 12iO proof i s complete i n t h e case IJI -Xtl. Assume now I J I = A . Then X = IF. (&)I A 1 l i O IFi i (&)I = IJ u tjo)l = X t l . T h e r e f o r e t h e case 1210 1 2 i s s e t t l e d by C o r o l l a r y 3.6. U = IF. . (&)I, and t h u s The C o r o l l a r i e s 3.5, IJI = 3.6 and 3.7 y i e l d s l i g h t g e n e r a l i z a t i o n s for some o f t h e r e s u l t s i n L41, 171 and r 1 7 1 (which a r e f o r m u l a t e d i n terms o f designs w i t h mutually orthogonal r e s o l u t i o n s ) . A v x r p e r m u t a t i o n a r r a y A i s c a l l e d row-transitive i f t h e rows o f s e t o f p e r m u t a t i o n s o p e r a t i n g t r a n s i t i v e l y on t h e s e t { l Y 2 , . ..,rl. A form a 193 Oil Permutatioii Arraj's 3.8. PROPOSITION. A =IA1,A2, ...,At] Let be a s e t of mutuully orthogonal v' r p e r m t a t i o n arrays. Assume one of these arrays (and hence a l l of them) t o be Then t c min Ir-1 , m t l } orti?ogonal Latin squares of order r . row-transitive. Proof. R o w - t r a n s i t i v i t y i m p l i e s each l i n e o f t h e a s s o c i a t e d t r a n s v e r s a l semi- T(&) = net line 1 cLi, , with m t h e largest number of rm*tualZy (X;Lo,L1 ,..., Lt;T1,T2 ,...,T v ) i > l , i n t e r s e c t s each l i n e o f t o have e x a c t l y Lo r p o i n t s , s i n c e any e x a c t l y once. Thus (X;Lo,L l,..., i s a ( t - 1 ) - n e t o f o r d e r r . The e x i s t e n c e o f such a n e t i s e q u i v a l e n t t o t h e Lt) e x i s t e n c e o f t - 1 m u t u a l l y o r t h o g o n a l l a t i n squares o f o r d e r r Hence t - l s m . . A complete ( t t 1 ) - n e t o f o r d e r r has e x a c t l y rtl w i t h a t r a n s v e r s a l cannot be complete. T h e r e f o r e p a r a l l e l classes. But a n e t t + l c rtl. U 4. EXTENSION BY ROWS A set J1= IA1,A2,. . .,At} o f mutually orthogonal v x r permutation arrays i s c a l l e d row-ertercdible i f i t i s p o s s i b l e t o a d j o i n a new row t o each o f t h e a r r a y s such t h a t t h e r e s u l t i n g ( v t 1 ) x r p e r m u t a t i o n a r r a y s a r e a g a i n m u t u a l l y o r t h o g o n a l . A t r a n s v e r s a l seminet (X;Lo,L1, ...,Lt;TI,T2, ...,T V ) i s c a l l e d zrwsversal- estendibZe i f t h e r e e x i s t s a t r a n s v e r s a l seminet (Y;Mo,M 1,...,Mt;T1,T2,...,TV, Tvtl) w i t h Y 2 X and Li = I m n X 1 m c M i l . As transversal-extendibility i s t h e obvious t r a n s l a t i o n o f r o w - e x t e n d a b i l i t y i n t o t h e language o f t r a n s v e r s a l semin e t s , one o b t a i n s 4.1. LEMMA. o f inutun1L;j orthogonaz permutation arrays i s A set extendible ij' and only i f t h e associated transversal seminet J (&) TOW- i s transver- sa 1-e.-cteadib l e . The above d e f i n i t i o n o f r o w - e x t e n d a b i l i t y i s s t r i c t l y s t r o n g e r t h a n t h e one g i v e n i n r 4 1 where t h e r e s u l t i n g a r r a y s were o n l y assumed t o be s i m i l a r . Both def i n i t i o n s coincide i f Y = X i n t h e t r a n s v e r s a l seminets used i n t h e d e f i n i t i o n o f transversal-extendibility. I n p a r t i c u l a r , t h e d e f i n i t i o n s c o i n c i d e i f (X;Lo,L1, i s a n e t ( c f . P r o p o s i t i o n 4.4 o f r 4 1 ) . I n t h e case o f m u t u a l l y o r t h o g o n a l ...,L t ) l a t i n squares, r o w - e x t e n d i b i l i t y i s e q u i v a l e n t t o t h e e x i s t e n c e o f a common colLumz-tj.ans?~ersaZ ( i .e. a u s u a l t r a n s v e r s a l o f l a t i n squares w i t h t h e c o n d i t i o n "no two c e l l s a r e on t h e same row" r e p l a c e d by t h e weaker c o n d i t i o n " n o t a l l c e l l s a r e on t h e same r o w " ) ; see 141, P r o p o s i t i o n 4.2. Tv) Let ,..., (X;Lo,L1,...,Lt;T1,T2 be t h e t r a n s v e r s a l seminet a s s o c i a t e d t o t h e l a t i n squares A1,A2,. ..,At. 194 M . Dezu urid T. Ilrringer C l e a r l y , t h e l a t i n squares have a common column-transversal e x a c t l y i f t h e r e Tvtl e x i s t s a transversal .. ,Lt) (X;Lo,L1,. with a Lt+l:= Tv+l tT1,T2,. I n g e n e r a l , i t i s an open q u e s t i o n whether such a t r a n s v e r s a l e x i s t s i f ...,Lttl) .., Tv+l A1,A 2,...,At if (i.e. of i f t h e n e t (X;Lo,L1,...,Lt,Lt+l) i s an a f f i n e p l a n e f o r m a complete s e t o f m u t u a l l y o r t h o g o n a l l a t i n s q u a r e s ) . T v I . There i s no such (X;Lo,L1, i s a transversal-free n e t i n t h e sense o f Dow C101. A l t h o u g h t h e n e x t p r o p o s i t i o n i s easy t o prove, t h e r e s u l t i s q u i t e s u r p r i s i n q . a 4.2. PROPOSITION. 411 s e t s of muti*aZZy o?thogonaZ permutation arrays 0.7 the Examples 2.4 and 2.5 are row-extendible. Proof. G Let JL, and of let associated t o be t h e group used i n Example 2.4 o r 2.5 f o r t h e c o n s t r u c t i o n r = (X;Lo,L1 ,...,Lt;TI,T2 G and t h e subgroups ,...,T v ) ,..., S t So,S1 X = G, R e c a l l f r o m t h e p r o o f o f Theorem 2.3 t h a t i E {O,l, for all ...,tl, 4 . 1 and because o f IT1,T2 r ( R ) ,i t J ,...,T v } and ,...,F, F1,F2 of G. I gcG1 = Isif( f t F 1 } k=1,2 ,...,s } . By Lemma Li = ISig = IFkg 1 gcG, i s s u f f i c i e n t t o show t h a t t h e t r a n s v e r s a l i s transversal-extendible. seminet with and be t h e t r a n s v e r s a l seminet Let Fl {flfcF1) = b e a copy o f F1 F1OX=O, and d e f i n e Y : = X u F 1 . A s a l l subgroups Si, ao,al, Mi:= {Siaifut-f} and d e f i n e and Li 2 tmnX iaifl=Siaif2. S o n F1 fore I feF1}, I mcMi}. I n o r d e r t o show Then le} ...,t, i=O,l, (a.S 1 0ay1)aifl 1 one o b t a i n s Li = I m n X i mcMil. i=O,l,...,t, are -1 w i t h S. = a . S a , L e t 1 i o i Tv+l:= F1. T r i v i a l l y t h e n Y g X ...,at E G c o n j u g a t e t o each o t h e r , t h e r e e x i s t Li = ImnX = (a.S 1 0ar1)aif2 1 fl = f2. T h i s i m p l i e s I mcMi}, assume and t h u s lLi I = ltmnX The same argument i m p l i e s c o n d i t i o n ...,Mt). I t remains t o show (S1). satisfy iz j, x r y and x,y 6 Let (Siaifl i,j u E {O,l, Ifl}) ...,t } , n (S.a.f 3 5 2 fl,f2 E I mcMi} F 1 and From flf;'cSo. I, and t h e r e - (S2) f o r (Y;Mo,M1, fl,f2 IJ IT2}). E F1 and As x , y ~X (X;Lo,Ll,~.., X. Assume y k X. Then y=Tfl=f2 and x c S . a . f n S . a . f = (a.S aT1)a.f n (a.S aT1)a.f = aiSoflnajSofl. 1 1 1 J J 2 1 0 1 1 1 J O J J 1 and thus Si = S contraHence aiSo = a.S T h i s i m p l i e s xf;' E a.S n a.S 1 0 JO' J O j' d i c t i n g i* j . 17 Lt) i s a seminet, e i t h e r The a l t e r n a t i n g group p r e c e d i n g s e c t i o n s . Since x or y cannot be c o n t a i n e d i n f o r some o f t h e r e s u l t s o f t h e A 5 y i e l d s an example 2 A 5 and PSL(2,2 ) a r e isomorphic as p e r m u t a t i o n groups, b o t h o f t h e Examples 2.4 and 2.5 i m p l y t h e e x i s t e n c e o f a s e t of 5 m u t u a l l y o r t h o g o n a l 25x12 p e r m u t a t i o n a r r a y s . By P r o p o s i t i o n 3.2, t h e s e t 59, is maximal, and by P r o p o s i t i o n 4.2 -9: of 5 i s row-extendible, i . e . there e x i s t s a s e t m u t u a l l y o r t h o g o n a l 2 6 x 1 2 p e r m u t a t i o n a r r a y s . I t i s unknown whether i s row-extendible o r not. 195 Oit Pcrniutatiori Arra),s 5. TRANSVERSAL SEMINETS CARRYING DESIGNS The concept o f t r a n s v e r s a l seminets comprises a l a r g e v a r i e t y o f d i f f e r e n t mathematical s t r u c t u r e s . F o r d e t a i l e d i n v e s t i g a t i o n s one has t h e r e f o r e t o add f u r t h e r r e s t r i c t i o n s . S e c t i o n s 2 and 4 and p a r t s o f S e c t i o n 3 t r e a t e d t r a n s v e r s a l seminets w i t h a group o f t r a n s l a t i o n s o p e r a t i n g r e g u l a r l y on t h e p o i n t s . I n t h i s s e c t i o n a d d i t i o n a l assumptions w i l l be imposed on t h e f o l l o w i n g i n c i d e n c e s t r u c = (X;Lo,L1,. t u r e s which a r e a s s o c i a t e d t o each t r a n s v e r s a l seminet T2,...,TV) (let o f l i n e s and - I(X,L) I(T,X) - I(X,LUT) LouL1u ... uLt L:= and T:= IT1,T2, the s e t o f transversals o f T J ): i.e. L 'j', blocks a r e the l i n e s o f t h e t r e a t m e n t s a r e t h e t r a n s v e r s a l s and t h e b l o c k s a r e t h e p o i n t s J, of t h e t r e a t m e n t s a r e t h e p o i n t s and t h e b l o c k s a r e t h e l i n e s arid The i n c i d e n c e s t r u c t u r e J. I(T,X) exactly i f J.I n i s e s s e n t i a l l y t h e seminet o f I(X,L cases t h e in c i dence i s d e f ined n a t u r a l l y . For example, I(T,X) x r T.. 1 x E and X x,yt X x,y E or 1 . are i n - a r e d e f i n e d t o be p a r a l l e l i n t h e i t h p a r a l l e l c l a s s i f and o n l y i f t h e r e e x i s t s a l i n e I(T,X) a l l three Ti ,- T i s the design w i t h mutually ortho- gonal r e s o l u t i o n s mentioned i n S e c t i o n 1: The b l o c k s with i s the set t h e t r e a t m e n t s o f t h i s i n c i d e n c e s t r u c t u r e a r e t h e p o i n t s and t h e the transversa s o f cident i n . . . ,T V l , . . ,L t '- T 1' 1 t Li Two i n t e r e s t i n g cases d i s c u s s e d l a t e r i n t h i s s e c t i o n o c c u r when I(X,LuT) a r e PBD's ( p a i r w i s e balanced d e s i g n s ) . F o r i n s t a n c e , has t h i s p r o p e r t y i f t h e a s s o c i a t e d s e t o f p e r m u t a t i o n a r r a y s i s a com- I(X,LuT) p l e t e s e t of m u t u a l l y o r t h o g o n a l l a t i n r e c t a f i g l e s ( t h e examples a f t e r P r o p o s i t i o n 5 . 3 show t h a t t h e converse o f t h i s s t a t e m e n t i s n o t t r u e ) . B e f o r e g o i n g i n t o det a i l , some d e f i n i t i o n s a r e necessary. The seminet 3= n ILi I = r f o r a l l i ), and has ..., L t ) (X;Lo,L1, exactly 's p o i n t s . I n t h i s case 5 i s c a l l e d n - r e p Z a r i f each l i n e c o n t a i n s i s a (tt1,r)-seniinet i s a l s o c a l l e d an ( r , n ) - h n o n s r, w i t h e q u a l i t y i f and o n l y i f 3 with r = IXl/n (i.e. c o z f i p i m t i o z . One i s a net or, equivalently, i f the a s s o c i a t e d p e r m u t a t i o n a r r a y s a r e r o w - t r a n s i t i v e (see S e c t i o n 3 ) . An n - r e g u l a r t r a n s v e r s a l seminet s a t i s f i e s n 5 v w i t h e q u a l i t y i f and o n l y i f t h e T i ' s rv = C. ITiI 2 1x1 = r n ) , 1=1,2, . . . ,v are pairwise d i s j o i n t . I n t h i s s i t u a t i o n (because t h e s e t o f t r a n s v e r s a l s can be c o n s i d e r e d as a new p a r a l l e l c l a s s Lt+l, associated permutation arrays are l a t i n rectangles. Therefore, i f n = r = v, then I(X,LIJT) i s a (t+2,r)-net, squares, The t r a n s v e r s a l seminet and t h e and t h e a s s o c i a t e d p e r m u t a t i o n a r r a y s a r e l a t i n r= (X;Lo,L1 ,..., Lt;T1,T *,.. .,Tv) i s called 196 M . Deza and T, lhririger q- uniform i f each p o i n t i s c o n t a i n e d i n e x a c t l y q t r a n s v e r s a l s . A q - u n i f o r m t r a n s v e r s a l seminet i s n - r e g u l a r w i t h n = v/q. Each column o f each o f t h e assoc i a t e d p e r m u t a t i o n a r r a y s c o n t a i n s each element i e ..., r l {1,2, either q or 0 t i m e s . An example o f an n - r e g u l a r ( w i t h n=4) b u t not q - u n i f o r m t r a n s v e r s a l seminet i s p r o v i d e d by t h e o r t h o g o n a l p e r m u t a t i o n a r r a y s (The s e t IA1,A21 i s a row-extension o f two o r t h o g o n a l l a t i n squares. I t i s easy t o check t h a t A1,A2 have no o r t h o g o n a l mate.) For each p o i n t x t r a n s v e r s a l s through o f a t r a n s v e r s a l seminet, l e t x, and d e f i n e the incidence s t r u c t u r e treatments I(T,X) i : ={: I i s a 1-design i s incident w i t h exactly TicT r treatments. Notice t h a t incident with E ; The b l o c k s o f I(T,X) have ttl Y denote t h e number o f X E X I . F o r each t r a n s v e r s a l seminet Sr(l,i,v), i . e . each o f t h e b l o c k s , and each b l o c k I(T,X) x v is may have repeated b l o c k s . m u t u a l l y o r t h o g o n a l r e s o l u t i o n s ( i . e . any two p a r a l l e l c l a s s e s o f d i s t i n c t r e s o l u t i o n s c o i n c i d e i n a t most one b l o c k ) . The r e s o Lo,L1 ,...,Lt. I f t h e r e i s a nonnegative i n t e g e r l u t i o n s a r e g i v e n by i j A with ITinTT.l J ( i . e . i f t h e t r a n s v e r s a l s f o r m an ( r , h ) - e q u i d i s t a n t f = A for all code), t h e n PBD w i t h any two d i s t i n c t t r e a t m e n t s c o n t a i n e d i n e x a c t l y becomes a i,j with I(T,X) A blocks. E q u i v a l e n t l y , t h e a s s o c i a t e d p e r m u t a t i o n a r r a y s a r e equidistant w i t h Hammingdistance r-A, 1 . e . any two rows o f each o f t h e p e r m u t a t i o n a r r a y s c o i n c i d e i n exactly I(T,X) p o s i t i o n s . I f , moreover, t h e t r a n s v e r s a l seminet i s q-uniform, A i s a 2-design if I ( T , X ) i s an case, any A' t' S,(2,q,v). SA,(t',q,v), As a consequence, with t ' 22, then then r ( q - 1 ) = A ( V - 1 ) . Analogously, (:,--\) r (?,--ll) = h' . I n this d i s t i n c t rows o f each o f t h e p e r m u t a t i o n a r r a y s c o i n c i d e i n e x a c t l y positions. The t r a n s v e r s a l seminets c o n s t r u c t e d i n t h e p r o o f o f Theorem 2.3 a r e n - r e g u l a r and q-uniform, w i t h n = -I G I and q = s . F o r none o f these examples I ( T , X ) i s a r PBD. Many examples o f t r a n s v e r s a l seminets a r e g i v e n i n r171, w i t h I(T,X) an o r a g r o u p - d i v i s i b l e d e s i g n ( i n t h i s case ITi n T . 1 < 1 f o r a l l d i s J t i n c t i , j ) . For i n s t a n c e , by Theorem 1 . 5 o f r171 t h e r e i s a p o s i t i v e i n t e g e r v1 SA,(t',q,v) such t h a t , f o r v z vl, the condition tence o f a t r a n s v e r s a l seminet S(2,3,v). with v = 3 (mod 12) t 2 i s equivalent t o the exis- and t h e p r o p e r t y t h a t I(T,X) i s an There a r e s i m i l a r r e s u l t s o f o t h e r a u t h o r s ; some o f them a r e l i s t e d here: I97 On Pwmictation Arrays 1) D i n i t z l81. F o r each p r i m e power o f t h e f o r m a positive c > l an odd i n t e g e r , t h e r e e x i s t s a t r a n s v e r s a l seminet such t h a t t=c-1 I(T,X) and I(T,X) 3) k i n t e g e r and i s an Kramer e t a l . C161. 2) k q = 2 c t 1, w i t h i s an S(2,2,qtl). There e x i s t s a t r a n s v e r s a l semient such t h a t t = 12 and 5(5,8,24). Hartman C121. There e x i s t t r a n s v e r s a l seminets such t h a t S(3,4,v) ( v , t ) = (20,3),(32,5),(44,7). for I(T,X) i s an T r a n s v e r s a l seminets can be r e p r e s e n t e d by t h e f o l l o w i n g ( t t 1 ) - d i m e n s i o n a l array.of side r : the c e l l (io,il,. ,,,it) contains the s e t 1 ITicT xcTi} if l ~ o n l ~ l n . . . n l ~ t= { X Iand , i t i s empty o t h e r w i s e ( t h e l i n e s o f each p a r a l l e l 1 2 r Lk = {lk,l ky...,lk}). I f I(T,X) c l a s s a r e assumed t o be l i n e a r l y ordered, i . e . i s an S(2,2,v), t h e n t h i s a r r a y i s c a l l e d a Room ( t t 1 ) - c u b e o f s i d e such a r r a y i s e q u i v a l e n t t o size (v-l)x(v-l) (see 191). I f (t+l)-dimensional S(5,8,24) then i s an S,,(t',q,v), t h e n t h e above a r r a y i s a ( t + l ) - d i m e n s i o n a l Room design; f o r i n s t a n c e , I 1I Sttl(l,; I(X,L) I I(X,L) o f t h e seminet I(X,L) l c L } ,I X I ) becomes an purullel structure) i f ments o f I(T,X) y i e l d s a 13-dimensional Room d e s i g n o f s i d e 253, see [161. The i n c i d e n c e s t r u c t u r e 1-design r = v - 1 . Each p a i r w i s e o r t h o g o n a l symmetric l a t i n squares o f ttl 5 Sttl(l,n,rn). I(X,L) 3= (X;Lo,L l,...,Lt) w i t h o u t repeated blocks. I f 3 is a i s n-regular, i s c a l l e d an An&& seminet ( o r a f f i n e i s a l i n e a r space, i . e . i f any two d i s t i n c t t r e a t - a r e i n c i d e n t w i t h e x a c t l y one b l o c k . O b v i o u s l y , AndrG seminets do n o t a d m i t t r a n s v e r s a l s . A t r a n s v e r s a l seminet i s c a l l e d aZmost-Andr6 ( o r com- p l e t e ) i f any two d i s t i n c t p o i n t s a r e e i t h e r connected by a l i n e o r by a t r a n s v e r s a l . As each almost-Andre t r a n s v e r s a l seminet i s L-maximal, Lemma 3.1 y i e l d s 5.1, REMARK. raiatecl s e t Let t h e warisverstil seniinet r) fL( 0.fm : i t i t a be aZmost-An&&. Then. the asso- 2Zy mtho<gontrl perrrmtation arrays is mcLcima2. A c t u a l l y , P r o p o s i t i o n 3.2 was proved e s s e n t i a l l y hy showing t h a t t h e i n v o l v e d t r a n s v e r s a l seminets a r e almost-AndrG. Recall t h a t a s e t o f c a l l e d .?ompZete i f 5.2. PROPOSITISN. sols. Then t .. r-1, t mutually orthogonal l a t i n rectangles o f s i z e vxr is t = r-1. Let be a trwi?suersiiZ ( t t 1 , r ) - s e m i n s t wit;z e p n l i t y if U ~ L oxLy ! with if t h e associated s e t v trcrnsver- A(3') of pemnutation arrags is a z o ! p i e t e se% of ni!tunllLg orthogonal L i t i n r e c t a n g l e s . I n this i?me I(X,LuT) is dr: S(P,jr,v},rv) . M. Dezu and T. Iliringiv 198 Proof. The inequality t 5 r-1 i s a t r i v i a l consequence of Corollary 3.5. Assume now t =r-I. By Corollary 3.6 then u = O f o r Jt(T) o r , equivalently, & ( T ) i s a s e t o f l a t i n rectangles. The completeness of fL(J) implies 7 t o be complete, i . e . any two elements of X are connected by a b l o c k from LuT. As T i r i T . = O for a l l i , j with i t j , one obtains t h a t I ( X , L u T ) i s a n J S(Z,{r,v),rv). n Notice that complete sets of mutually orthogonal l a t i n rectangles have been constructed in Quattrocchi, Pellegrino C191 f o r a l l v n o t exceeding the smallest prime divisor of r For a transversal seminet (X;Lo,L1,.. .,Lt;T1,T2 ,...,T v ) and M c {1,2, ...,v l , M Z ~ ,l e t tM:= T ~ I, and define d : = E ~ ~ ~ , ~ ,Mz0 - ~ ,. .. ,v} Then . inicM with equality if the transversal seminet i s almost-Andr6. 5 . 3 . PROPOSITION. Let s a k . Let Thev t = w7 J be a transversaZ (ttl,r)-semiMet i i ) i t h v transuer- be n-regular, and asswne I(X,LuT) to bc an S ( 2 , { r , n l , r n ) . V 1 , anti there are eractly transversals through. each x n n- n t X, Proof. As the transversal seminet i s almost-Andr6, ( 1 ) i s valid with equality. - tli',) Since I T i nT.1 5 1 for i z j , one o b t a i n s o = El:. J '-1 I V for a l l 1 - L and 1x1 = rn, ( 1 ) turns into = v(;). With lll=n This can easily be transformed into the claimed equality for t . Let Q. be the number o f transversals through some x c X. Then v - l = r n - l = a ( r - 1 ) +( t + l ) ( n - 1 ) together with the equality j u s t proved yields Q. .=: 3 A class of examples satisfying the assumptions of Proposition 5 . 3 can be obtained as follows. Let (X;Lo.L1, ...,L r ) be an affine plane of order r . For kz2, consider the transversal seminet J = (X;Lo,L1,. . . ,Lr-k;T1,T2,. .. ,Trk) where T1 ,T2,. . . ,Trk are the lines contained in Ur-k<iir L i . Then satisfies the assumptions of Proposition 5 . 3 , with n = r and v = rk . I n t h i s s i t u a tion, Corollary 3.6 yields the bound t s r-2 (since ~ = 1 )while the exact value i s t = r-k . However, there also exist transversal seminets f o r which I ( X , L u T ) i s a linear space S ( Z , { r , n } , r n ) with r z n . I n terms of 1131 these transversal seminets correspond exactly t o the partiully resolvable 2-partitions PRP 2 - ( n , r , v ; t t l ) ' On Permurariorr A F T U ~ 199 v = n r . Together w i t h P r o p o s i t i o n 5.3, t h e w i t h the additional property that r e s u l t s o f [131 and [51 on t h e s e designs i m p l y 5.4. PROPOSITION. S (2, I r,nl, r n ) A n n - r e g u l a r transversa2 ( t + l , r ) - s e m i n e t I ( X,LuT) with an ezists a) i n t h e case n = 2, r ?3 if a n d onZy if e i h t e r t = 0, r = 3 o r t = r-1, bi in the case n = 3, r = 2 if and onZy if t = 0, ci in t h e case n=3, r = 4 if and onZy if t = O or t=3. N o t i c e t h a t a l l seminets i n t h e above p r o p o s i t i o n a r e e i t h e r complete s e t s o f m u t u a l l y o r t h o g o n a l ? a t i n r e c t a n g l e s ( t = r-1) or t r a n s v e r s a l d e s i g n s (t=O). 6. SOME STRUCTURES RELATED TO TRANSVERSAL SEMINETS I t i s well-known t h a t n e t s a r e e q u i v a l e n t t o s e t s o f m u t u a l l y o r t h o g o n a l l a t i n squares, t o t r a n s v e r s a l d e s i g n s ( v i a d u a l i t y ) , t o o r t h o g o n a l a r r a y s , t o o p t i m a l codes, e t c . P r o p o s i t i o n 2.1 i s a g e n e r a l i z a t i o n o f t h e f i r s t o f t h e s e e q u i v a l e n - ces. Next, t h e second e q u i v a l e n c e i s g e n e r a l i z e d t o t r a n s v e r s a l seminets. Each t r a n s v e r s a l s e v i n e t . . ,Lt;T1,T2,. = (X;Lo,L1,. a ~ P ~ ~ ~ ~ J C Ip aW cJk Li n g , v i a t h e i n c i d e n c e s t r u c t u r e each o f t h e gyi"7u:s t i n c t groups Li,L. L. 1 J i n e x a c t l y one t r e a t m e n t . . ,Tv) I(L,X). lcLi, i s equivalent t o Each b l o c k X C X h i t s two t r e a t m e n t s f r o m d i s - a r e j o i n e d b y a t most one b l o c k , and t h e r e i s no such b l o c k L . =L.. Moreover, t h e r e a r e a d d i t i o n a l mzin tr.eatmeurts Ti; 1 $1 t i o n s t h e treatments o f I(L,X) i n t o d i s j o i n t blocks. if and each Ti parti- ... Supoose now X and each Li t o be l i n e a r l y o r d e r e d , i . e . X = Ix1,x2, I 1 2 r Li = { l i 7 1 .,..., l j 1 . L e t t h e m a t r i x B = ( b . . ) o f s i z e ( t t 1 ) X I X I be d e f i n e d 1J 1 b . . = k :0 x. i . T h i s m a t r i x i s an OA (orthogomZ a r r a y ) i f t h e seminet 1J J i s a n e t ( s e e e.g. 191). 11.1 t h e general case, t h e s e t o f a l l 1x1 columns o f B by forms a code o f ZeilgLh t+l o v e r t h e a l p h a b e t {1,2, ...,r l with 1x1 w r d s and distance t , s i n c e any two d i s t i n c t columns c o i n c i d e i n a t most one p o s i T. corresponds t o a f a m i l y o f codewords (columns o f 6 ) J such t h a t , f o r a l l k ' 11,2 ~ ,...,r I and a l l i c [0,1, . . . ,t l , t h e r e i s e x a c t l y one codeword i n t h i s f a m i l y w i t h v a l u e k i n row i , The t r a n s v e r s a l T . can a l s o miriimaZ t i o n . Each t r a n s v e r s a l be regarded as an ii!je,:tioe , i i a g o n r l subset o f r words o f l e n g t h t + l o v e r {l,Z, ..., r ? or, equivalently, l e t Doints xcX Ti i . , T . = 0 J and o f t h e l i n e s li.Li for a l l (i21) . . . ,rIttl J ( i . e . as a s e t o f which d i f f e r i n an-y c o o r d i n a t e ; see 161). L e t the associated permutation arrays {1,2, A1,A2, ...,At now b e l a t i n r e c t a n g l e s i , j , i z j . Assume t h e numbering o f t h e now be more s p e c i a l t h a n above: L e t 2 00 M . Deza and T. Ihririger k k l = l k if lnT1zlo, andlet x=x with j = ( i - 1 ) r t k i f x c T i n l o . i j these assumptions t h e f i r s t row o f B s a t i s f i e s b = k i f j = k (mod r ) m.1, for t h e m t h row o f i.e. 'm-19 (bm,(i-l)r+l 9 bm,(i-1)r+2 .. . , i r (i :;) of Q(A,A') of A 3.. , A and A' bm,ir) i s t h e i t h row o f Am-l. (i-l)r+l , a r e s i m i l a r e x a c t l y i f , f o r a l l j , column can be o b t a i n e d f r o m column A' 3 corresponds now t o t h e s e t o f columns Ti o f B . F o r example, c o n s i d e r i n g t h e s i m p l e complete s e t A1 = 1 2 3 2) o f m u t u a l l y o r t h o g o n a l l a t i n r e c t a n g l e s , one o b t a i n s A2 = (3 The p e r m u t a t i o n a r r a y s j becomes a " l i n e a r i z a t i o n " o f t h e l a t i n r e c t a n g l e B Notice t h a t the transversal (i-l)rt2, U Under and, be t h e become Q( r x r k's matrix (q..) i n column [; :;)' (; 'J J :23) j of d e f i n e d by of = A ' , and A by renaming t h e symbols. L e t q i j = k i f t h e i ' s i n column j qij=* o t h e r w i s e . For example, (; ;:). * 1 3 As a l l p e r m u t a t i o n a r r a y s a r e assumed t o be s t a n d a r d i z e d , qii =i for all Q ( A , A ' ) . I n no column o f t h i s m a t r i x a symbol a p e a r s t w i c e . T h e r e f o r e i in Q(A,A') can be c o n s i d e r e d as ( t h e m u l t i p l i c a t i o n t a b l e o f ) a p a r t i a l l e f t - c a n c e l l a t i v e g r o u p o i d d e f i n e d on {1,2, ..., r l . The p e r m u t a t i o n a r r a y s A,A' are orthogonal i f and o n l y i f t h i s g r o u p o i d d l s o i s r i g h t - c a n c e l l a t i v e , and a p a r t i a l quasigroup. Moreover, Q(A,A') the permutation arrays are row-transitive. Q ( A , A ' ) t h e n becomes i s a complete quasigroup i f and o n l y i f Let A1,A2¶. . . ,At be s i m i l a r permuta- t i o n a r r a y s . By P r o p o s i t i o n 1.2 o f 141, these a r r a y s a r e m u t u a l l y o r t h o g o n a l exactly i f Q(A1,A2j, Q(A1,A3), . .. , Q(A1,At) are mutually orthogonal p a r t i a l quasigroups. N o t i c e t h a t t h e a s s o c i a t e d t r a n s v e r s a l seminet i s n - r e g u l a r i f and o n l y i f each Q(Ai,A.), i z j , has t h e f o l l o w i n g p r o p e r t i e s : Each i E (1,2, ...,r } J n times, and t h e r e a r e e x a c t l y n d i s t i n c t symbols i n each rcw appears e x a c t l y and i n each column. There a r e many i n c i d e n c e s t r u c t u r e s b u i l t f r o m n e t s . Examples a r e t r a n s v e r s a l geometries 161, d-dimensional n e t s 1211, and e x t e n s i o n s o f d u a l a f f i n e planes C231. I t w i l l be i n t e r e s t i n g t o s t u d y s i m i l a r s t r u c t u r e s w i t h n e t s r e p l a c e d by t r a n s v e r s a l seminets. On Permutation Arrays 101 REFERENCES [I1 J. Andre, Uber nicht-Desarguessche Ebenen m i t t r a n s i t i v e r T r a n s l a t i o n s gruppe. k t h . %. 60 (1954) 156-186. r21 J. Andrii, u b e r P a r a l l e l s t r u k t u r e n . T e i l I: G r u n d b e g r i f f e . E4ath. 2. 76 (1961) 85- 102. 131 J. Andr'e, u b e r P a r a l l e l s t r u k t u r e n . T e i l 11: T r a n s l a t i o n s s t r u k t u r e n . Math. 2. 76 (1961) 155-163. 141 A. B o n i s o l i and M. Deza, Orthogonal p e r m u t a t i o n a r r a y s and r e l a t e d s t r u c t u r e s . Acta U ~ i u .CuroZirzue 24 (1983) 23-38. 151 A.E. Brouwer, A. S c h r i j v e r and 1-1. Hanani, Group d i v i s i b l e d e s i g n s w i t h b l o c k s i z e few. Discrete ?.k&zerriatks 20 (1977) 1-10. I61 M. Deza and P. F r a n k l , I n j e c t i o n geometries. J . Comb. Theory (B) 37 (1984) 31-40. I71 M. Deza, R.C. M u l l i n and S.A. (1978) 322-330. 181 J . D i n i t z , New l o w e r bounds f o r t h e number o f p a i r w i s e o r t h o g o n a l symmetric l a t i n squares. Cong~essus1"hmercmtium 22 (1979) 393-398. 191 J . D i n i t z and D.R. S t i n s o n , The spectrum o f Room cubes. E d r o p . J . Combinatorics 2 (1981) 221-230. r 101 S . Dow, T r a n s v e r s a l - f r e e n e t s o f s m a l l d e f i c i e n c y . A w h . Math. 41 (1983) 472-474. Vanstone, Orthogonal systems. ileq. r b t h . 17 I 1 1 1 W . F e i t , Some consequences o f t h e c l a s s i f i c a t i o n of f i n i t e s i m p l e groups. Pruiteedin2s of i'ymposic; ix Fur-e kfu.athematics 37 ( 1980) 175-181. r 122 A. Hartman, Doubly and o r t h o g o n a l l y r e s o l v a b l e q u a d r u p l e systems. I n : R.W. Robinson e t a l . ( e d s . ) , i,'~~!t,i,zat.jr?:uZ M~ithe.oiaticsVII. L e c t u r e Notes i n Mathematics 829 ( S p r i n g e r , B e r l i n H e i d e l b e r g New York, 1980). r 131 Ch. Huang, E. Mendelsohn and A. Rosa, On p a r t i a l l y r e s o l v a b l e L - p a r t i t i o n s . AvnuZs of iiiscrele k t h e m c t i c s 12 (1982) 169-183. 1141 B. Huppert, E r d l i z h e CY14pp?7! T ( S p r i n g e r , B e r l i n H e i d e l b e r g New York, 1967). r 151 D. J u n g n i c k e l , E x i s t e n c e r e s u l t s f o r t r a n s l a t i o n n e t s . I n : P.J. Cameron e t a1 , (eds . ) , Ipinitc geonetries uid d e s i g i i s . L e c t u r e Notes London Math. SOC. 49 (Cambridge U n i v e r s i t i y Press, Cambridge New York, 1981). r 161 E.S. Kramer, S.S. M a g l i v e r a s and D.M. J . Comb, Theory ( A ) 29 (1980) 166-173. Mesner. Some r e s o l u t i o n s o f S(5,8,24). l17J E.R. Lamken and S.A. Vanstone, Designs w i t h m u t u a l l y o r t h o g o n a l r e s o l u t i o n s . Ezirop. J . Curnbimtorics ( t o a p p e a r ) . r 181 M. Marchi, P a r t i t i o n loops and a f f i n e geometries. I n : P.J. Cameron e t a l . (eds ) , Finite 2eometr.ies m i designs. L e c t u r e Notes London Math. SOC , 49 (Cambridge U n i v e r s i t y Press, Cambridge New Y G r k , 1981). 119J P. Q u a t t r o c c h i and C. P e l l e g r i n o , R e t t a n g o l i l a t i n i e " t r a n s v e r s a l d e s i g n s " ~ 2 t .pis. G .io. :.;s,?e?~: 28 (1980), 441-449. con p a r a l l e l i s m o . A t l i i'e~~. 1201 . R. H. Schulz, On t h e c l a s s i f i c a t i o n o f t r a n s l a t i o n group d i v i s i b l e designs. J . Co/?iZ;lii;LZt,s.&?s ( t o appear). .'~!WO!J. Sprague, I n c i d e n c e S t r u c t u r e s whose p l a n e s a r e n e t s . !?':crop. d . Corribinut ~ P i i ?2 ~(1981) 193-204. c211 A.P. c 221 A.P. Sprague, T r a n s l a t i o n n e t s . ~ i t c .,..,th. [231 A.P. Sprague, Extended dual a f f i n e p l a n e s , C e m . T)edz:c. 16 (1984) 107-124. C 241 H. Wielandt, Finite perriutatio?; groups (Academic Press, New York London, second p r i n t i n g 1968). Sem. Giei3etz 157( 1982) 46-68.