Kn L sc
Transcription
Kn L sc
RHESSI Hard XX-ray Imaging Spectroscopy of Extended Sources and the Physical Properties of Electron Acceleration Regions in Solar Flares Yan Xu1, A. Gordon Emslie1, and Gordon J. Hurford2 Physics, Oklahoma State University 1. 2. SSL, University of California at Berkeley November 6 – 8, 2006 2 • Ten Extended HXR sources were selected close to the limb; • Visibilities + Forward Fit (Curved Elliptical Gaussian) Seven parameters + UNCERNTAINTIES! 3. Longitudinal one-sided emission centroid ∞ ∞ 0 0 v.s. sc (ε ) = ∫ sI (ε , s )ds / ∫ I (ε , s )ds = 2 / π σ (ε ) November 6 – 8, 2006 E 3 November 6 – 8, 2006 4 August 23, 2005 Forward Fit Maps CLEAN 10-15 keV November 6 – 8, 2006 5 Other Nine Events (Images) C => Clean Images F => Forward Fit Maps C F C F 12-Apr-2002 15-Apr-2002 17-Apr-2002 17-Jun-2003 10-Jul-2003 02-Dec-2003 21-May-2004 31-Aug-2004 01-Jun-2005 November 6 – 8, 2006 6 Thermal Non-Thermal November 6 – 8, 2006 7 Theoretical Predictions for Sc v.s. E Thermal Source size should decrease with energy T = T0 e − s I= 2 / 2σ 2 1 −ε / KT e εT 1 / 2 z = d ln s/d ln ε ~ - 0.5 November 6 – 8, 2006 8 Theoretical Predictions for Sc v.s. E Non-Thermal (Point-Source-Injection) - dE KE α −1 =− ds Eα S c (ε ;α ) = ε α +1 2(δ − 2) × 2 KE- α −1 (δ − α − 2)(δ − α − 3) z = d ln s / d ln ε = α + 1 α: single parameter α=1: Coulomb collisions z=2! November 6 – 8, 2006 9 August 23, 2005 Mariska et al. 1989 November 6 – 8, 2006 10 Other Nine Events (Sc v.s. E) November 6 – 8, 2006 11 Other Nine Events (Distribution of Slope) November 6 – 8, 2006 12 Other Nine Events (Density profiles n(s) required by point-injection) November 6 – 8, 2006 13 Non-Thermal Thermal November 6 – 8, 2006 14 Theoretical Predictions for Sc v.s. E Non-Thermal (Extended Acceleration [Tenuous Tenuous]/TEAR) sc (ε ) = L + ε2 (δ − 2) Kn (δ − 3)(δ − 4) × ε << KnL ⇒ ζ = 0 ε >> KnL ⇒ ζ = 2 S c ∝ L + bn −1ε 2 November 6 – 8, 2006 15 Theoretical Predictions for Sc v.s. E Non-Thermal (Extended Acceleration [Dense Dense]/DEAR) E0 = ( E 2 + 2 Kn s − x )1/ 2 I (ε , s ) = Γn ∫ L −L dx ∫ ∞ ε dE ( E + 2 Kn s − x ) (δ +1) / 2 2 ∞ ∞ dE ∫ sI (ε , s)ds = 0 − L ε ( E + 2Kn s − x )(δ +1) / 2 S c (ε ) = 0 ∞ ∞ L ∞ dE ∫0 I (ε , s)ds ∫0 ds ∫− L dx ∫ε ( E 2 + 2 Kn s − x )(δ +1) / 2 ∞ ß 1 2 Lε ∫ L sds ∫ dx ∫ 2 November 6 – 8, 2006 16 Theoretical Predictions for Sc v.s. E Non-Thermal (DEAR continued) November 6 – 8, 2006 17 Theoretical Predictions for Sc v.s. E Non-Thermal (DEAR continued) How to do the numerical fitting: 1. Make a guess according to P16 for L and n 2. Use the guess of L and n as the mean value to generate an NxM array for several L and n 3. For each pair of L and n, calculate the Maximum Likelihood: 1 −( S −S )2 /σ 2 p=Π e c _ act c _ exp ected i 2π σ i 4. 1 0.75 P 0.5 0.25 0 Fit p[N,M] with a 2D Gaussian and find the peak L and n. 4 2 0 n -5 -2.5 -2 0 L 2.5 -4 5 November 6 – 8, 2006 18 November 6 – 8, 2006 19 Comparing Two Fittings In order to compare to kind of fits, we calculated the reduced c2: χ2 = Σ ( S c _ act − S c _ exp ected ) 2 / σ i 2 N1 − N 2 s here is the measured error of Sc ; N1 is the number of Sc ; N2 is the number of independent variables. In our case, N2 = 2 November 6 – 8, 2006 20 August 23, 2005 November 6 – 8, 2006 21 Other Nine Events (Best-fit of L and n under TEAR) November 6 – 8, 2006 22 Other Nine Events (Best-fit of L and n under DEAR) November 6 – 8, 2006 23 Distribution of Source Density n and Initial Length L for all Ten Events November 6 – 8, 2006 23 Next Step Time Dependent Variation November 6 – 8, 2006 August 23, 2005 20 s Intervals from 14:27:00 UT 25 November 6 – 8, 2006 26 August 23, 2005 20 s Intervals from 14:27:00 UT November 6 – 8, 2006 27 23-Aug-05 Time Slope L n d_slope d_L d_n 1 0.24 7.45 5.03 0.11 0.66 3.39 2 0.4 6.18 3.28 0.13 0.72 1.57 3 0.43 5.94 3.05 0.11 0.62 1.18 4 5* 6 0.38 0.06 0.4 5.86 7.15 5.74 2.91 33.63 2.59 0.04 0.14 0.16 0.06 0.66 0.69 0.1 0 0.93 7 0.52 6.29 2 0.08 0.53 0.4 8 0.2 7.41 7.24 0.14 0.72 0.67 9 0.33 6.65 3.6 0.08 0.46 1.2 10 0.3 6.9 4.39 0.12 0.68 2.64 11 0.64 5.28 1.97 0.17 0.82 0.65 12 0.42 5.65 3.34 0.14 0.68 1.46 13 0.43 6.04 2.9 0.08 0.53 0.9 14 0.25 6.62 4.49 0.08 0.41 1.67 15 0.41 5.97 3.35 0.12 0.64 1.47 STDEV 0.12 0.65 1.37 M EAN 0.36 ~ 33% 6.28 ~ 10% 3.58 ~ 38% 8 7 6 5 Slope L n 4 3 2 1 0 0 2 4 6 8 10 12 14 16 -1 November 6 – 8, 2006 April 15, 2002 20 s Intervals from 00:05:00 UT November 6 – 8, 2006 28 29 April 15, 2002 20 s Intervals from 00:05:00 UT November 6 – 8, 2006 30 15-Apr-02 Time Slope L n d_slope d_L d_n 1 0.81 2.89 2.22 0.13 0.44 0.44 2 0.57 3.33 3.43 0.08 0.32 0.77 3 0.59 3.42 3.014 0.07 0.27 0.54 4* 0.33 4.08 6.75 0.16 0.52 0 5 0.35 3.5 3.6 0.09 0.35 0.91 6 0.42 3.83 4.18 0.06 0.21 0.73 7 0.52 3.28 3.68 0.09 0.3 0.84 8 0.66 3.04 2.58 0.12 0.31 0.42 9 0.5 3.86 3.9 0.16 0.6 1.84 10 0.66 3.16 2.68 0.03 0.14 0.21 11 0.54 3.55 3.58 0.1 0.36 0.93 12 0.52 3.34 3.66 0.06 0.22 0.6 13 0.52 3.34 3.66 0.06 0.22 0.6 14 0.5 3.63 3.84 0.08 0.3 0.91 15 0.46 3.73 4.24 0.06 0.3 1.09 7 6 5 4 slope L n 3 2 1 0 0 2 4 6 8 10 12 November 6 – 8, 2006 14 16 STDEV M EAN 0. 11 0 .54 ~ 20% 0. 29 3 .42 ~ 8% 0. 60 3 .45 ~ 17% 33 Elementary Burst ? 2 s < dT < 20 s November 6 – 8, 2006 34 Sui & Holman 2003 Sui L., Holman G. D., & Dennis B. R. 2004 November 6 – 8, 2006 35 April 15, 2002 (00:00:36 UT ~ 00:15:36 UT 1 min) November 6 – 8, 2006 36 November 6 – 8, 2006 37 Sui & Holman 2003 Sui L., Holman G. D., & Dennis B. R. 2004 •Loop-top source moving upward •Higher energy Higher Altitude (But not thermal) •Moving speed ~ 8 km/s •UNCERNTAINTIES •1 minute instead of 20 second •Downward motion? November 6 – 8, 2006 November 6 – 8, 2006