P. Urquijo*, L. Pesantez, L. Spiller The University of Melbourne
Transcription
P. Urquijo*, L. Pesantez, L. Spiller The University of Melbourne
Global analysis of CKM data P. Urquijo*, L. Pesantez, L. Spiller The University of Melbourne *ARC Future Fellow, CKMFitter Group & Heavy Flavour Averaging Group AIP Congress ANU, December 2014 C41,1-131 (2005). 4 free parameters, A, , and ameterisation with Jarlskog like phase invariants as in Charles et al. EPJ V V CP Violation & the Unitarity Triangle , A and i and 4 free parameters, A, , taken as: V V V V us 2 ud cb 2 2 2 us 2 ud us Vus Vubnuclea |Vud The SM describes the mixing of quarks of is* measured from |Vud| andV us| in superallowed Vcb A is determined from |Vcb| and . V V 2 ud ub VCKM fromVangles Vcssides measureme Vcb , Adifferent generations through and the i weak force.i* is, with to be determined and cd 2 2 Vcd Vcb Vud Vus V V V Bd Unitarity Triangle (UT) td ts tb Generations, 1 Phase: single source -decays and (semi)leptonic ( , ) |Vud| 3 and |Vus| in superallowed nuclear K decays, re V V CPV in . the SM. m |Vcbof | and R V V R V V V V ined from angles and sides measurements of the Bd unitarity triangle. u Wolfenstein parameterisation: Phase invariant, conserving CKM matrix ngle unitarity (UT) at any order in λ. * ud ub * cd cb td t cd (0,0) * tb * cb (1,0) Angles ) 4 free parameters relating the 9 CKM elements (magnitude & phase) * * V V V V td tb cd cb VtdVtb* arg , arg , * * Rt V V V V * ud ub td tb ⇤ 2 2 V V V V |Vus |Vcb | cd| cb ud ub 2 2 4 ⌘ |Vud |2 + |Vus |2 A AIP 2014, Global CKM Analysis ⌘ |Vud |2 * + |Vus ud ub * cd cb arg V V V V |2 Phillip URQUIJO , ⇢¯ + i¯ ⌘= arg s 2 *⇤ V V Vcd V cb cs cb Vts Vtb* ecays worth combining Important Decays in the Combination A handle on these parameters d ! u: Nuclear physics (superallowed dec s ! u: Kaon physics (KLOE, KTeV, NA62) ertainties Th. uncertainties ⇢ ↵ B → ππ, ρρ B(b) ! D(c)`⌫ |Vcb | lvs d,|Vs:cbCharm physics (CLEO-c, | via Form factor / OPE BESIII) α B→D ν /form b → factor c l cν !(OPE) B(b) ! D(c)`⌫ |Vcb | vs form factor b !(OPE) u, c and t ! d, s: B physics (Babar, Bel (*) (*) B→π ν / fbM → u l tν ! b:|V B → D K M ! `⌫(γ ) ub| via Form factor / OPE |VUD |l vs Top physics (CDF/DØ, ATLAS, CMS) Ks ✏K (¯ ⇢, ⌘¯) vs BK |VUD⌦ | vQCD ia Decay constant fM β M → l ν (γ) data = weak B → J/ψ Ks =) Need for had M , M |V V | vs B s s d tb td,s B and dec (¯ ⇢B, ⌘s¯ )→ J/ψ Φ B ! `+ ` βs |V | vs f εK td,s (ρ, η ) via BK B Genon (LPT-Orsay) CKM fits and lattice K → π ν anti-‐ν ρ, η Δmd, Δms 15/09/10 6 (LPT-Orsay) Sébastien Descotes-Genon |Vtb Vt{d,s}| via Bag factor BB B(s) → µ+ µ-‐ AIP 2014, Global CKM Analysis CKM fits and lattice |Vt{d,s}| via Decay constant fB Phillip URQUIJO 3 Input 2014 0.05 Data = weak ⊗ QCD → need hadronic inputs; often LQCD with our own Rfit-‐ based averaging scheme. CP Phase Mixing Modulus & Sides CKM |Vud| β decays PRC 055502 (2009) |Vus| Kl3 (Flavianet) f+(0)=0.9641±0.0015±0.0045 K → l ν , τ → K ν 0.00MeV fK= (155.2±0.2±0.6) |Vus/Vud| K→lν / π→lν , τ→Kν / τ→πν 0.50 fK/fπ = 1.1942±0.0009±0.0030 |Vub| Inclusive & Exclusive (3.70±0.12±0.26) 10-‐3 B → τ ν (1.14 ± 0.22) 10-‐4 fBs/fBd = 1.205 ± 0.004 ± 0.007 fBs = (225.6±1.1±5.4) MeV |Vcb| Inclusive & Exclusive (41.00±0.33±0.74) 10-‐3 Δ md Bd mixing BBs/BBd = 1.023 ± 0.013 ± 0.014 Δ ms Bs mixing BBs = 1.320±0.017±0.030 εK PDG BK = 0.7615±0.0027±0.0137 β / Φ1 J/ψ K(*) WA 0.682±0.018 α / Φ2 π π , ρ π, ρ ρ WA Isospin γ / Φ3 B → D(*) K(*) AIP 2014, Global CKM Analysis fitter Winter 14 0.55 GLW/ADS/GGSZ : large improvements Phillip URQUIJO 4 0.6 Two ecades of ofCKM Two d decades CKM [LEP, KTeV, NA48, Babar, Belle, CDF, DØ, LHCb, CMS. . . ] [LEP, KTeV, NA48, Babar, Belle, CDF, DØ, LHCb, CMS. . . ] 1.5 1.5 excluded area has CL > 0.95 md 1.0 1.5 excluded area has CL > 0.95 excluded area has CL > 0.95 md 1.0 md & ms md & ms sin 2 0.5 0.5 K K K 0.0 0.0 -1.0 -0.5 -0.5 -1.0 CKM fitter CKM fitter 1995 Summer 2001 K -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.5 -1.0 2004 -0.5 0.0 1.5 -1.5 -1.0 2.0 L> 0.9 5 0.5 ∆md εK η α Vub Vub -1.0 K fitter 2006 0.5 1.0 1.5 -1.5 -1.0 -0.5 CKM sol. w/ cos 2 < 0 (excl. at CL > 0.95) 2009 0.0 0.5 1.0 1.5 εK -1.0 K CKM fitter 2.0 α -0.5 -0.5 sol. w/ cos 2 < 0 (excl. at CL > 0.95) β γ 0.0 α Vub CKM ∆md & ∆ms sin 2β 0.0 -0.5 2.0 at C md & ms K K 1.5 ed γ 1.0 0.5 0.0 1.0 lud md 0.5 excluded area has CL > 0.95 sin 2 0.0 0.0 1.5 .95 md & ms 0.5 -0.5 -0.5 2004 >0 1.0 sin 2 -1.5 -1.0 1.0 exc excluded area has CL > 0.95 .95 md 0.5 1.5 >0 1.0 K fitter t CL da lude exc excluded area has CL > 0.95 CKM 2001 t CL da lude exc 1.5 -1.0 K 1995 -1.0 Vub Vub Vub -0.5 md & ms sin 2 0.5 0.0 md 1.0 fitter γ sol. w/ cos 2β < 0 (excl. at CL > 0.95) Winter 14 2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 ρ 2006 S. Descotes-Genon (LPT-Orsay) AIP 2014, Global CKM Analysis 2009 CKMfitter Phillip URQUIJO 2014 5 CKM14 - 11/09/14 6 Global Fit ed md & ms 0 .9 5 sin 2 1 0.5 md K ms 2 0.0 Vub 2 1 -0.5 3 -1.0 A = 0.812+0.015 0.022 A = 0.813+0.015 0.027 = 0.2254+0.0006 0.0010 = 0.2255+0.00068 0.00035 ⇢¯ = 0.145 ± 0.027 ⌘¯ = 0.343 ± 0.015 ⇢¯ = 0.1489+0.0158 0.0084 ⌘¯ = 0.342+0.013 0.011 AIP 2014, Global CKM Analysis SL Vub 2 K CKM Winter 14 2014 1 3 fitter 2012 L> 1.0 B ! ⌧⌫ 2, at C 3 |Vcb |, |Vub |SL ✏K , sin 2 lu d excluded area has CL > 0.95 |Vud |, |Vus | md , exc 1.5 -1.5 -1.0 -0.5 sol. w/ cos 2 3 <0 (excl. at CL > 0.95) 0.0 0.5 68% CL Phillip URQUIJO 1 6 1.0 1.5 2.0 Validity of KM picture of CP violation 0.7 0.4 md md & ms CKM fitter 0.6 Winter 14 0.5 0.4 0.3 excluded area has CL > 0.95 0.5 excluded area has CL > 0.95 0.6 0.7 3 sin 2 1 sol. w/ cos 2 2 K 2 Vub 0.1 1 3 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0.0 -0.4 1.0 -0.2 0.0 0.2 0.7 fitter 0.6 Winter 14 3 0.5 0.4 0.3 excluded area has CL > 0.95 0.7 excluded area has CL > 0.95 CP violating only CKM 1 3 2 CP allowed only 0.4 md sin 2 0.6 md & ms 0.8 1.0 CKM K fitter Winter 14 1 sol. w/ cos 2 1 <0 (excl. at CL > 0.95) 0.3 K 2 2 0.2 0.2 Vub 0.1 0.1 1 3 0.0 -0.4 <0 0.2 0.1 0.4 1 (excl. at CL > 0.95) 2 0.5 fitter Winter 14 0.3 0.2 0.6 CKM K -0.2 0.0 0.2 0.4 0.6 1 3 0.8 1.0 0.0 -0.4 Tree only -0.2 0.0 0.2 0.4 Loop only Validity of Kobayashi-‐Maskawa picture of CP violavon AIP 2014, Global CKM Analysis Phillip URQUIJO 7 0.6 0.8 1.0 semileptonic |Vub| Inclusive and Exclusive ays of getting |Vub |: 3 Approaches to determine |Vub| (HFAG Semileptonic) clusive : b ! u`⌫ + Operator Product Expansion • Inclusive: b → u l ν + OPE / Heavy quark symmetry clusive : B B! factors • Exclusive: → ⇡`⌫ π l ν + + FForm orm factors (LCSR@low q2, LQCD@high q2) e = 3.28 ± 0.15 ± 0.26 CKM Winter 14 |Vub |Inc. = 4.36 ± 0.18 ± 0.44 |Exc. = ± 0.15 ± 0.26 =|Vub3.70 ±3.28 0.12 ± 0.25 |Vub |Ave. = 3.70 ± 0.12 ± 0.26 values ⇥10 3 |Vub |Lept. = 4.29 ± 0.43 ± 0.11 FAG, with theory errors ded linearly stematics combined ing Educated Rfit AIP 2014, Global CKM Analysis semilept. aver. excl. incl. fitter w/o |Vub| 1.0 0.8 p-value c = 4.36 ± 0.18 ± 0.44 [x10-3] c • Leptonic: B → τ ν + Decay constant (LQCD) *Separate, not in |Vub| average 0.6 0.4 0.2 0.0 0.0025 0.0030 0.0035 0.0040 |V | ub Phillip URQUIJO 8 0.0045 0.0050 0.0055 |Vcb| Inclusive and Exclusive ys of getting |Vcb |: |Vcb|, :2 b approaches by up Product to 3σ(if thy. Expansion errors added in quadrature) clusive ! c`⌫ +disagree Operator for moments • Inclusive: b→c l ν ⇤+ OPE / Heavy quark symmetry clusive : B ! D( )`⌫ + Form factors * = 42.42 ± 0.44 ± 0.74 = 38.99 ± 0.49 ± 1.17 CKM fitter |Vcb |Inc. = 42.42 ± 0.44 ± 0.74 Winter 14 |Vcb |Exc. = 38.99 ± 0.49 ± 1.17 =|Vcb41.00 ± 0.33 ± 0.74 |Ave. = 41.00 ± 0.33 ± 0.74 values ⇥10 3 FAG, with theory errors ded linearly stematics combined ing Educated Rfit AIP 2014, Global CKM Analysis semilept. aver. excl. incl. w/o |Vcb| 1.0 0.8 p-value [x10-3] e • Exclusive: B→D l ν + Form factors (LQCD) we add individual theory errors linearly. 0.6 0.4 0.2 0.0 0.036 0.037 0.038 0.039 0.040 0.041 0.042 |V | cb Phillip URQUIJO 9 0.043 0.044 0.045 0.046 0.05 0.15 CK M Leptonic: Bu→τν 0.00 0.5 0.6 $ md 0.1 fitter FPCP 10 0.7 0.8 0.9 1.0 0.0 0.10 0.10 0.15 0.20 0.25 0.30 fBd × Sqrt[B ] (GeV) sin 2! Bd Issue notin only the value of fBBdu→τν sinceh2.6 from Previous tensions global fit from ave discrepancy reduced due to Belle’s result. B(B ! ⌧ ⌫) 3⇡ m⌧2 ⌧B = 2 ⌘ S[x ] md 4 mW t B 0.20 ×10 -3 Sébastien Descotes-Genon (LPT-Orsay) 1 m⌧2 mB2 !2 sin2 1 sin2 (↵ + ) |Vud |2 BBd p-value 0.40 1.0 CKM fits and lattice 15/09/10 27 CKM fitter 0.9 Winter 14 0.35 0.8 0.15 0.6 0.5 0.10 0.4 Belle 2014 0.05 0.3 0.30 f Bd (GeV) WA ) BR(B 0.7 All 0.25 B 0.20 LQCD 0.2 0.15 CKM 0.1 fitter md Winter 14 0.00 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 sin 2 0.0 0.10 0.10 0.15 0.20 0.25 f Bd × Sqrt[BB ] (GeV) d However, B→D(*)τν almost 5 σ away from the SM. AIP 2014, Global CKM Analysis Phillip URQUIJO 10 0.30 Figure 7: Combined constraints on 2HDM Type II parameter space (mH + , tan β) from purely leptonic decays of K, D and B mesons. The different sets of observables are defined in the left Figure. Darker to lighter shades of colours correspond to (Kℓ2 /πℓ2 + τ → Kν), (D → µν), (B → τ ν) and (Ds → ℓν) individual constraints. The complementary area of the colored region is excluded at 95% CL. For the sake of clarity, the figure on the right displays the combined constraint alone at 95% CL. The dark green line defines the 1σ confidence area. Ongoing Work (Melbourne) : Flavour + LHC Analysis of leptonic, semileptonic and radiative meson decays & direct searches to search for charged Higgs and right handed charged currents. B→Dτν Kµ2 / πµ2 B→τν CKM fitter 2HDM All 1.0 1 - CL 0.8 0.6 0.4 0.2 0.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Log [ M + / tan(β) / GeV ] 10 H 3.0 Figure 8: Combined constraints on the ratio mH + / tan β derived from leptonic and semileptonic decays All H Log10[ m + / GeV ] of K, D and B mesons, in the large tan β limit. b→sγ 2.5 19 2.0 ∆ Mq + Z→ bb M→ l ν + M→ X l ν 1.5 LEP CKM fitter 2HDM excluded area has CL > 0.95 1.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Log [ tan(β) ] 10 AIP 2014, Global CKM Analysis Phillip URQUIJO 11 Figure 11: Global constraints on 2HDM parameters mH + and tan β from all analysed observables. Each color corresponds to a different set of observables, as quoted in the Figure. The complementary area of the colored one is excluded at 95% CL. The horizontal black line indicates the 95% CL limit from Leptonic: Bs→ + – µµ Prediction Br(Bs→μ+ μ–)=3.65 [+0.18-‐0.30]x10-‐9, (Winter 2014) Dominated by the indirect determination of fBs through the global fit (specifically Δms). Prediction w/o ms Prediction w/o f Bs Prediction CKM fitter FPCP 13 LHCb+CMS 1.0 p-value 0.8 0.6 0.4 0.2 0.0 1.5 2.0 2.5 3.0 3.5 4.0 -9 Br(Bs µµ) [10 ] AIP 2014, Global CKM Analysis Phillip URQUIJO 12 4.5 |Vcd| & |Vcs|: Leptonic Charm • Indirect constraints (from b and s transitions) are related to |Vcd| and |Vcs| through unitarity. 1.00 B physics Indirect Direct 0.95 • Direct constraints combine leptonic and semileptonic D and Ds decays & neutrino-‐nucleon Direct: Leptonic decays scattering. semileptonic D & |Vcs| 0.90 0.85 Nucleon & Kaon 0.80 Ds CKM fitter Winter 14 0.75 0.18 0.19 • Test o f L QCD p redictions f or l eptonic d ecays. Use the global fit to predict the values of decay csts using also excluded area has CL > 0.95 0.20 0.21 0.22 0.23 0.24 |V | 0.25 0.26 cd 1.00 B physics GF2 mM m`2 B[M ! `⌫` ] = 8⇡ Indirect Direct 0.95 |Vcs| 0.90 0.85 Direct: Leptonic D & Ds Nucleon & Kaon 0.80 CKM fitter Winter 14 0.75 0.18 0.19 excluded area has CL > 0.95 0.20 0.21 0.22 |V | cd 0.23 0.24 0.25 0.26 1 m`2 2 mM !2 |Vqu qd |2 fM2 ⌧M (1 + M`2 em ) Quantity Process Global fit Input TheoryK /⇡ Expt.(1%) fK /f 1.14+0.006 ⇡ µ2 µ2 0.008 fK K ! `⌫` , ⌧ ! K ⌫⌧ 155+12 (1%) |Vcd|: fD = 249.2±1.2±4.5 MeV (1.9%) +11Br ~ 4.5% fD D ! `⌫` 206 11 (6%) fDs Ds ! `⌫` 261+77 % |Vcs|: fDs/fD = 1.185±0.005±0.010 (0.9%) +10Br ~ 3(3%) fB B ! ⌧⌫ 197 9 (5%) Phillip URQUIJO AIP 2014, Global CKM Analysis =)To be compared with your favourite 13 determination of decay cs |Vud| & |Vus| 0.230 Combined constraints from leptonic and semileptonic K decays. K l2 and ->K All, yellow Direct, light green 0.225 Direct constraints are in good agreement with indirect observables (β, εK). Recently improvements to τ precision. |Vus| K l3 0.220 K l2/ l2 and ->K / -> Lepton universality / radiative corrections in check. decays 0.215 Indirect CKM fitter Winter 14 excluded area has CL > 0.95 1.0 0.9 0.970 0.975 0.980 0.985 0.645 0.990 |V | ud +0.015 A = 0.813 0.027 = 0.2255+0.00068 0.00035 +0.0158 Phillip URQUIJO AIP 2014, Global⇢ CKM Analysis ¯ = 0.1489 0.0084 µ ) 0.960 0.965 BR(K 0.210 0.950 0.955 p-value 0.650 0.8 0.7 0.640 0.6 0.5 0.635 0.4 0.630 0.3 0.2 0.625 CKM 0.1 fitter FPCP 13 0.620 1.50 1.55 1.60 BR(K 14 e ) 105 1.65 1.70 0.0 Pulls Bs → μ μ φs γ α sin 2β εK Δms Δmd B(B→τν ) |V | ub semilep |V cb|semilep B(D→μ ν ) B(Ds→μ ν ) B(Ds→τ ν ) B(D→Kν ) B(D→ πlν ) |V cs|not lattice |V cd|not lattice B(τK2) B(K ) μ2 B(K ) e2 B(Ke3) |V | ud 0.00 0.26 0.41 1.56 1.96 0.00 1.25 1.66 1.51 0.00 0.00 0.56 0.94 1.15 0.00 0.00 0.00 0.42 1.77 0.56 1.39 0.00 0.00 CKM fitter Winter 14 Pulls for various inputs or parameters involved in the global fit. ( √ of difference between χ2min obtained including or not including direct information on the quantity. ) The plateau in the Rfit model for theoretical uncertainties sometimes leads to a vanishing pull. → No signs of NP within the CKM global fit paradigm analysis. 0 0.5 1 1.5 2 2.5 3 3.5 Pull (σ) AIP 2014, Global CKM Analysis Phillip URQUIJO 15 New Physics in mixing: past & future data Neutral-B mixing • Meson mixing, d ⇣ |Bq (t)i ⌘ ⇣ q i q ⌘⇣ |Bq (t)i ⌘ i = M Mixing observables |B̄q (t)i dt |B̄q (t)i 2in SM M and hermitian: mixing due bto off-diagonal terms s b u,c,t s q M12 i q 12 /2 2 • SM: C /m SM W q q W =)Diagonalisation: physical |BH,L i of masses MH,L , widths qH,L W 2 • NP: C NP/Λ [Beneke et al 96 s q ,| In terms of M12 b s and = arg u,c,t q 12 | q ⇣ b q M12 q 12 ⌘ Nierste and Lenz [small in SM] •Effective What is tHamiltonian he scale Λq ? approach How different is CNP from CSM ? q q Mass • difference Mfqrom = MSHM sM 2|M q 12 | L =→ If deviation een u pper b ound o n Λ M dominated by dispersive part of top boxes q q q 12 Width difference = 2| 12 | cos( q ) q = H µ L involve one operator at LO: Q = q̄ (1 )b q̄ (1 5 5 )b • Assume NP from Trees in q negligible, test q qµ + | 12 | (B̄ (t)!` ⌫X ) (B (t)!` ⌫X ) q Asymmetry aoSLnly =-‐ i.e. = of sin qboxes qcharm dominated absorptive part for NP in loops ew P hysics qN +by q (t)!` ⌫X ( B̄ (t)!` ⌫X )+ (B ) |M | 12 12 only enters M12, the real part contribution, of the non local expressed as SM expansion in 1/m2i b M = M ⇥ 1 + he 12decays 12 p/q mixing from mixing in time-dependent analysis of B Hamiltonian. involve two operators at LO: Q and Q̃S = q̄↵⇣(1 q+ ⌘5 )b q̄ (1 + | 12 | q⇤ Q, taming right set for 12 , depending mainly on ”phase” Mq ' arg(M12 ) + O |M q |1/mb -correctio 12 • 3 x 3 CKM matrix is unitary. pow , B, B̃S ; µ, mb Phillip URQUIJO AIP 2014, Global CKM Analysis = f [f bastien Descotes-Genon (LPT-Orsay) CKM s fits and latticeBs 15/09/10 31 ,B . . .] 1/m 16 b NP in B{d,s} & K mixing: Input • Observables not affected by NP first used to constrain CKM: |Vud|,|Vus|, |Vcb|, |Vub|, Φ3 and Φ2=π−Φ3−Φ1eff((c anti-‐c)K) • NP impact estimated from Meson mixing Δms, Δmd, |εK|, Lifetime difference ΔΓs, & semileptonic asymmetry ASL, Time dep. CP asymmetries βs, Φ1, and Φ2 (decay-‐mixing interference) 2003 2013 1.5 LHCb Upg.+ Belle II 1.5 1.5 excluded area has CL > 0.95 excluded area has CL > 0.95 CKM fitter 1.0 0.5 Vub 0.0 -0.5 -0.5 -1.0 -1.0 -0.5 0.0 0.5 1.0 1.5 fitter 2.0 Stage II 2013 ( ) 1.0 0.0 -1.5 -1.0 CKM fitter 2003 0.5 excluded area has CL > 0.95 CKM ( ) 1.0 0.5 Vub Vub 0.0 -1.5 -1.0 ( ) -0.5 & ( ) & Vub -0.5 & ( ) & Vub ( ) -1.0 0.0 0.5 1.0 1.5 2.0 -1.5 -1.0 -0.5 • Qualitative change after 2003: first Φ3 and Φ2 constraints AIP 2014, Global CKM Analysis Phillip URQUIJO 17 0.0 0.5 1.0 1.5 2.0 NP in Bd mixing: Fit results 2003 2013 CKM 3.0 excluded area has CL > 0.95 CKM 2003 2013 2.0 0.5 1.5 0.5 0.5 2.0 2.5 3.0 0.5 1.5 0.4 0.3 0.2 0.5 0.1 0.1 0.1 1.5 0.6 0.3 0.2 0.2 1.0 2.0 1.0 1.0 0.3 0.5 0.7 0.4 0.4 0.0 0.0 0.8 2.5 d d d 0.5 1.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.0 0.0 0.1 0.2 0.3 0.4 hd hd hd • at 95% NP≲(many × SM) ⟹ NP≲(0.3 × SM) ⟹ NP≲(0.05 × SM) 2 2 0.9 0.6 0.6 1.5 CKM fitter 0.7 0.7 2.0 excluded area has CL > 0.95 Stage II 0.8 2.5 0.8 2.5 3.0 0.9 fitter 0.9 fitter 1.0 1.0 1.0 excluded area has CL > 0.95 p-value p-value p-value 3.0 LHCb Upg.+ Belle II 2 |Cij | (4⇡) |Cij | h ' 1.5 t 2 ' t 2 2 | ij | GF ⇤ | ij | ✓ 4.5 TeV ⇤ = arg(Cij ◆2 t⇤ ij ) By Stage II, Λ ~ 20 TeV (tree) Λ ~ 2 TeV (loop) • Stage II: similar sensitivity to gluino masses explored at LHC 14TeV AIP 2014, Global CKM Analysis Phillip URQUIJO 18 0.5 0.0 Summary CKM global analysis finds that most constraints are in very good agreement. … but some inputs are not so well resolved yet e.g. |Vqb| The KM mechanism is obviously at work at O(10%) but there is still room for New Physics, particularly in the mixing of mesons. Multi TeV scale can be probed in loops. 2 Major Reference Publications out very soon … 1. Heavy Flavour Averaging Group, Publication in PLB, (Preprint available in Dec 2014) 2. CKMFitter Analysis of 10 years of CKM measurements to be submitted to PRD (Jan 2015). Many more for the future… Sensitivity studies and impact on global New Physics analyses the “Belle II Theory Interface Platform” report (2016). Eagerly awaiting LHC run-‐2 (ATLAS) and Belle II. AIP 2014, Global CKM Analysis Phillip URQUIJO 19 Backup The CKMfitter group More results on http://ckmfitter.in2p3.fr Jérôme Charles Olivier Deschamps Sébastien Descotes-Genon Ryosuke Itoh Heiko Lacker Evan Machefer Andreas Menzel Stéphane Monteil Valentin Niess José Ocariz Jean Orloff Alejandro Perez Wenbin Qian Vincent Tisserand Karim Trabelsi PU Luiz Vale Silva AIP 2014, Global CKM Analysis Phillip URQUIJO Theory CPT Marseille (FR) LHCb LPC Clermont-Ferrand (FR) Theory LPT Orsay (FR) Belle/Belle II KEK Tsukuba (JP) ATLAS/BABAR Humboldt-Universität Berlin (DE) LHCb LPC Clermont-Ferrand (FR) ATLAS Humboldt-Universität Berlin (DE) LHCb LPC Clermont-Ferrand (FR) LHCb LPC Clermont-Ferrand (FR) ATLAS/BABAR LPNHE Paris (FR) Theory LPC Clermont-Ferrand (FR) BABAR IPHC Strasbourg (FR) LHCb LAPP Annecy-Le-Vieux (FR) LHCb/BABAR LAPP Annecy-Le-Vieux (FR) Belle/Belle II KEK Tsukuba (JP) Belle/Belle II The University of Melbourne (AU) Theory LPT Orsay (FR) 21 corresponding likelihood L = exp( 2 /2) CKMfitter M ethodology all values within range of syst treated on the same footing Statistical framework Methodology Global parameters q = (A, f,it ⇢¯,t⌘¯o . C . .)KM to be determined q = (A,λ,ρ ̄,η ̄...) Oexp experimental values of the observables OthF(q) theoretical description in model ■ Global fit to CKMto parameters • Use requentist approach bauild (p-‐value) functions c2 + o Use Frequentist Hypothesis testing to and 2 In the case f Gaussian (Experimental) uncertainties In •case of experimental (Gaussian) uncertainties, likelihoods build statistical significance (p-value) 8 ✓ ◆2 Y functions from which estimates X Oth (q) O and exp 2 L(q) = LO (q) (q) = 2 ln L(q) = O confidence intervals are 6 obtained; testO O statistic = Maximum Likelihood Ratio = 2. 4 2 (q̂) = 2 (q) • Estimator ˆ m aximum l ikelihood: Estimator + q̂qmaximum likelood: min q Dedicated RFit scheme for the treatment 2(q) for a given qsystematics. for qTheoretical = q0 ) obtained from •Confidence χ2(qˆ) = ofmlevel intheoretical 0 (p-value q χ 2 2 (q ) = 2 (q ) 2 (q) (distributed like 2 law of dim(q)) min q 0 0 systematics considered as additional • Confidence level for are a given q0 obtained from ∆χ2(q0) parameters-5 . 5 = χ2(q0) −nuisance minq χ2(q) What to do in the case of systematic uncertainties, which stand out of this picture ? Illustrative Rfit example black: Gaussian+flat pdf for syst, red: RFit = weak for QCD need for hadronic • Dedicated ■Rdata Fit scheme the treatment of Sébastien (LPT-Orsay) fits and8 lattice inputs; oftenDescotes-Genon LQCD with our own averaging CKM Sébastien Descotes-Genon CKM fits and lattice theoretical s(LPT-Orsay) ystematics. Theoretical systematics are 15/09/10 scheme (OOA), following an algorithmic x considered as additional nuisance parameters. scheme with an ‘Educated RFit’ approach. N [0,1] Observation Gaussian Systematic stat. error bounded in [- ; ] Parameter AIP 2014, Global CKM Analysis Phillip URQUIJO x 22 Inputs to the Standard CKM fit Parameter |Vud | (nuclei) |Vus | (K`3 ) |Vcd | (⌫N ) |Vcs | (W ! cs̄) |Vub | |Vcb | B(B ! ⌧ B(Ds ! µ B(Ds ! ⌧ B(D ! µ B(K ! e B(K ! µ B(⌧ ! K B(K ! µ B(⌧ ! K ⌫⌧ ) ⌫µ) ⌫⌧ ) ⌫µ) ⌫e) ⌫µ) ⌫⌧ ) ⌫ µ )/B(⇡ ! µ ⌫ µ ) ⌫ ⌧ )/B(⌧ ! ⇡ ⌫ ⌧ ) D!⇡ |Vcd |f+ (0) D!K |Vcs |f+ (0) |"K | md ms sin(2 )[cc̄] ( s )J/ + + 00 S⇡⇡ , C⇡⇡ , C⇡⇡ ,B⇡⇡ all charges + + 00 00 S⇢⇢,L , C⇢⇢,L , S⇢⇢ , C⇢⇢ ,B⇢⇢,L all charges 0 0 B ! (⇢⇡) ! 3⇡ B B B ! D(⇤) K (⇤) ! D(⇤) K (⇤) ! D(⇤) K (⇤) AIP 2014, Global CKM Analysis Errors GS TH Value ± Error(s) Reference 0.97425 ± 0 ± 0.00022 0.2247 ± 0.0006 ± 0.0011 0.230 ± 0.011 0.94+0.32 0.26 ± 0.13 (3.70 ± 0.12 ± 0.26) ⇥ 10 3 (41.00 ± 0.33 ± 0.74) ⇥ 10 3 [1] [4, 3] [4] [4] [5, 6] [5] ? ? ? ? ? ? ? ? ? ? (1.14 ± 0.22) ⇥ 10 4 (5.54 ± 0.24) ⇥ 10 3 (5.44 ± 0.22) ⇥ 10 2 (3.74 ± 0.17) ⇥ 10 4 (1.581 ± 0.008) ⇥ 10 5 0.6355 ± 0.0011 (0.700 ± 0.010) ⇥ 10 3 1.344 ± 0.0041 (6.53 ± 0.11) ⇥ 10 2 [7, 5] [5] [5] [8, 9] [4] [2] [4] [2] [10] ? ? ? ? ? ? ? ? ? ? - 0.148 ± 0.004 0.712 ± 0.007 [11] [11, 12] ? ? - (2.228 ± 0.011) ⇥ 10 3 (0.507 ± 0.004) ps 1 (17.762 ± 0.023) ps 1 0.682 ± 0.018 0.013+0.083 0.090 [4] [5] [13, 5] [5] [5] ? ? ? ? ? - Inputs to isospin analysis Inputs to isospin analysis Time-dependent Dalitz analysis [14] [15] [16] ? ? ? - Inputs to GLW analysis Inputs to ADS analysis GGSZ Dalitz analysis [17] [18] [19] ? ? ? - Phillip URQUIJO 23 Lattice Averages Educated Rfit used to combine the results, with different treatment of statistical and systematic errors • Product of (Gaussian + Rfit) likelihoods for central values • Product of Gaussian (stat) likelihoods for stat. uncertainty • Syst. uncertainty for the combination: the oen with the most precise method Conservative combinations: • the best of all estimates is the limit. (combining 2 methods with similar systematics does not reduce the intrinsic uncertainty encoded as a systematic) • best estimate should not be penalised by less precise methods. AIP 2014, Global CKM Analysis Phillip URQUIJO 24 CKMFitter Lattice Averages: E.g. B mixing 3.3 Beauty mesons fBs Reference Article ETMC13 HPQCD11 FNAL-MILC11 HPQCD12 HPQCD13 [54] [55] [51] [56] [57] Nf Mean Stat Syst 2 2+1 2+1 2+1 2+1+1 228 225.0 242.0 228.0 224.0 5 2.9 5.1 1.4 2.5 9 5.4 21.2 17.5 7.2 225.6 1.1 5.4 Our average fBs /fB Reference Article Nf Mean Stat Syst ETMC13 FNAL-MILC11 HPQCD12 HPQCD13 [54] [51] [56] [57] 2 2+1 2+1 2+1 1.206 1.229 1.188 1.205 0.010 0.013 0.012 0.004 0.026 0.046 0.025 0.007 1.205 0.003 0.007 Our average 4 Semileptonic form factors 4.1 K ! ⇡`⌫ AIP 2014, Global CKM Analysis Phillip URQUIJO 25 The Bs UT 0.10 L at C ed lud exc excluded area has CL > 0.95 K ⇢¯s = .95 >0 0.05 ⌘¯s = md & ms Bs md +0.00046 0.00797 0.00085 +0.00060 0.01832 0.00068 Vub 0.00 s s = sin 2 arg ✓ Vcs Vcb⇤ ⇤ Vts Vtb -0.05 CKM fitter s K Winter 14 -0.10 -0.10 -0.05 0.00 0.05 Bs AIP 2014, Global CKM Analysis Input −0.013+0.083-‐0.090 Indirect 0.01817 −0.00068−0.00060 0.10 Phillip URQUIJO 26 ◆ NP in B{d,s} & K mixing: Input Uncertainties expected on future measurements over the coming decade. Expecting (& need) Δ2-‐3% on |Vub|. |Vud | |Vus | (K`3 ) |✏K | md [ps 1 ] ms [ps 1 ] |Vcb | ⇥ 103 (b ! c`¯ ⌫) 3 |Vub | ⇥ 10 (b ! u`¯ ⌫) sin 2 ↵ (mod ⇡) (mod ⇡) ( s )J/ B(B ! ⌧ ⌫) ⇥ 104 B(B ! µ⌫) ⇥ 107 AdSL ⇥ 104 AsSL ⇥ 104 m̄c m̄t ↵s (mZ ) BK fBs [GeV] BBs fBs /fBd BBs /BBd B̃Bs /B̃Bd B̃Bs ⌘B ✏ 1 ⌘cc ⌘ct ⌘tt 2003 0.9738 ± 0.0004 0.2228 ± 0.0039 ± 0.0018 (2.282 ± 0.017) ⇥ 10 3 0.502 ± 0.006 > 14.5 [95% CL] 41.6 ± 0.58 ± 0.8 3.90 ± 0.08 ± 0.68 0.726 ± 0.037 — — — — — 10 ± 140 — 1.2 ± 0 ± 0.2 167.0 ± 5.0 0.1172 ± 0 ± 0.0020 0.86 ± 0.06 ± 0.14 0.217 ± 0.012 ± 0.011 1.37 ± 0.14 1.21 ± 0.05 ± 0.01 1.00 ± 0.02 — — 0.55 ± 0 ± 0.01 1 0±0±1 0.47 ± 0 ± 0.04 0.5765 ± 0 ± 0.0065 2013 0.97425 ± 0 ± 0.00022 0.2258 ± 0.0008 ± 0.0012 (2.228 ± 0.011) ⇥ 10 3 0.507 ± 0.004 17.768 ± 0.024 41.15 ± 0.33 ± 0.59 3.75 ± 0.14 ± 0.26 0.679 ± 0.020 (85.4+4.0 3.8 ) (68.0+8.0 8.5 ) +0.0450 0.0065 0.0415 1.15 ± 0.23 — 23 ± 26 22 ± 52 1.286 ± 0.013 ± 0.040 165.8 ± 0.54 ± 0.72 0.1184 ± 0 ± 0.0007 0.7615 ± 0.0026 ± 0.0137 0.2256 ± 0.0012 ± 0.0054 1.326 ± 0.016 ± 0.040 1.198 ± 0.008 ± 0.025 1.036 ± 0.013 ± 0.023 1.01 ± 0 ± 0.03 0.91 ± 0.03 ± 0.12 0.5510 ± 0 ± 0.0022 0.940 ± 0.013 ± 0.023 1.87 ± 0 ± 0.76 0.497 ± 0 ± 0.047 0.5765 ± 0 ± 0.0065 Stage I id 0.22494 ± 0.0006 id id id 42.3 ± 0.4 3.56 ± 0.10 0.679 ± 0.016 (91.5 ± 2) (67.1 ± 4) 0.0178 ± 0.012 0.83 ± 0.10 3.7 ± 0.9 7 ± 15 0.3 ± 6.0 1.286 ± 0.020 id id 0.774 ± 0.007 0.232 ± 0.002 1.214 ± 0.060 1.205 ± 0.010 1.055 ± 0.010 1.03 ± 0.02 0.87 ± 0.06 id id id id id id Stage II id id id id id 42.3 ± 0.3 3.56 ± 0.08 0.679 ± 0.008 (91.5 ± 1) (67.1 ± 1) 0.0178 ± 0.004 0.83 ± 0.05 3.7 ± 0.2 7 ± 10 0.3 ± 2.0 1.286 ± 0.010 id id 0.774 ± 0.004 0.232 ± 0.001 1.214 ± 0.010 1.205 ± 0.005 1.055 ± 0.005 id id id id id id id id • “Stage I”~2019: Belle II 5 ab-1, LHCb 8 fb-1 • “Stage II” ~2024: Belle II 50 ab-1, LHCb 50 fb-1 “id”=identical Table 1: Central valuesGlobal and uncertainties used in our analysis. When two uncertainties are27 shown, Phillip URQUIJO AIP 2014, CKM Analysis Φ3/γ Determination Theory is “pristine” in these approaches, << 1% on Φ3 Accessed via interference between B–→D0K– and B–→anti-‐D0K– 3 A∝λ Favoured 3 A∝λ 2 2 iφ 3 ρ +η e Suppressed ⇤ |Asuppressed | Vub Vcs € r € ⇥ [colour supp.] = 0.1 ⇡ B = ⇤ |Afavoured | Vcb Vus 0.2 Relative weak phase is Φ3, Relative strong phase is δR 3 D0 mode categories: • DCP, CP eigenstates [GLW] • Dsup, Doubly cabibbo suppressed [ADS] • 3-‐Body [GGSZ] AIP 2014, Global CKM Analysis 3 B modes: D*K, DK, DK* Phillip URQUIJO 28 δB and rB → Φ3 CKM rB(DK) using B fitter (*) (*) CKM D K decays Winter 14 0.6 0.6 p-value p-value 0.8 0.4 DK 0.0 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 20 40 60 80 100 120 140 D*K 0.120+0.018-‐0.020 -‐50+13-‐15° DK* 0.137+0.045-‐0.047 107+35-‐42° 180 LHCb GLW+ADS LHCb GGSZ LHCb Combined CKM fitter Winter 14 1.0 0.8 0.8 0.6 0.6 p-value 1.0 0.4 0.2 0.0 160 Belle GLW+ADS Belle GGSZ Belle Combined Winter 14 121.1+8.2-‐9.3° strong phase δR RB Ratio fitter 0.0972+0.0063-‐0.0064 (DK) B rB(DK) CKM δB 0.4 0.2 0.2 RB Full Frequentist treatment on MC basis 1.0 0.8 p-value (*) (*) D K decays Winter 14 Full Frequentist treatment on MC basis 1.0 (DK) using B B fitter 0.4 0.2 0 20 40 60 80 100 120 140 160 AIP 2014, Global CKM Analysis 180 0.0 0 20 40 Phillip URQUIJO 60 80 29 100 120 140 160 180 Φ3/γ Results Impact of LHCb is striking, with massive improvements since 2010. GLW+ADS GGSZ Combined CKM fitter fitter Winter 14 1.0 1.0 0.8 0.8 0.6 0.6 p-value p-value Winter 14 0.4 0.2 0.0 Belle LHCb BaBar CKM Combined 0.4 0.2 0 20 40 60 80 2010 [comb] [fit] = 100 120 140 160 180 0.0 0 20 2012 = (71+21 25 ) (67.2+3.9 3.9 ) [comb] [fit] = AIP 2014, Global CKM Analysis 40 60 80 100 120 140 160 2014 = (66+12 12 ) (67.1+4.3 4.3 ) Phillip URQUIJO [comb] = (66+89 ) [fit] = (66.4+1.2 3.3 ) 30 180 NP in Bs mixing: Fit results 2003 2013 LHCb Upg.+ Belle II p-value p-value 1.0 excluded area has CL > 0.95 3.0 CKM excluded area has CL > 0.95 2003 0.8 2.0 0.5 1.5 0.4 1.0 0.3 0.2 0.5 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.7 2.0 0.6 0.5 1.5 0.4 0.4 1.0 0.3 0.2 0.5 1.0 0.3 0.2 0.5 0.1 0.1 0.1 0.0 0.0 0.8 2.5 0.6 s s 0.5 0.9 fitter 0.7 0.6 1.5 CKM Stage II 0.8 2.5 0.7 2.0 excluded area has CL > 0.95 0.9 fitter 2013 2.5 1.0 3.0 CKM 0.9 fitter p-value 1.0 s 3.0 0.0 0.0 hs 0.1 0.2 0.3 0.4 0.5 0.0 0.0 0.0 0.1 0.2 0.3 0.4 hs hs • At 95% NP≲(many × SM) ⟹ NP≲(0.3 × SM) ⟹ NP≲(0.05 × SM) • Sensitivity now similar to that of Bd mixing, with precision to exceed Bd in the future → due to Δms. Further model dependent studies are presented in the paper. AIP 2014, Global CKM Analysis Phillip URQUIJO 31 0.5 0.0 Semileptonic Decays Indirect Input |Vus| 0.224488+0.001909-‐0.000066 (0.4%) 0.2247±0.0006±0.0011 (0.5%) |Vcb| (41.4+2.4-‐1.4)10-‐3 (4.6%) (41.00±0.33±0.74)10-‐3 (2.0%) |Vub| (3.43+0.25-‐0.08)10-‐3 (5.0%) (3.70±0.12±0.26)10-‐3 (7.7%) |Vcb| direct input driven Powerful predictions to be compared to semileptonic charm. Expt. |Vcq|×f(0) LQCD fD→π/K(0) |Vcd| 0.22537+0.00068-‐0.0003 (0.3%) 0.148±0.004(2.7%) 0.666±0.020±0.048 (7.8%) |Vcs| 0.973395+0.000095−0.000176 (0.01%) 0.712±0.007(1.0%) 0.747±0.011±0.034 (4.8%) AIP 2014, Global CKM Analysis Phillip URQUIJO Indirect 32
Similar documents
Die BUCHSTAVIER - Das Dosierte Leben
Das Dosierte Leben Das Avant-Avantgarde-Magazin 16. Jahrgang
More information