P - GET
Transcription
P - GET
High-Pressure Deformation and Synchrotron Radiation, or Mantle Rheology at Mantle Pressures Paul Raterron [email protected] High-Pressure Deformation and Synchrotron Radiation: Mantle Rheology at Mantle Pressures Introduction Materials plasticity Rheological laws Notions of crystal plasticity Dislocation / Diffusion creep High-P (> 3 GPa) deformation devices & synchrotron X rays Deformation-DIA apparatus (D-DIA) In situ strain, stress & LPO measurements DT-Cup and DT-25 Rotational Drickamer apparatus (RDA) Radial diffraction in the Diamond anvil cell (DAC) Mantle rheology at mantle pressures Olivine and enstatite single-crystal rheology at high P From single crystal to aggregate plasticity 2 Paul Raterron – CNRS Lille – Fosterite 2015 Earth’s deep interior: extreme pressures and temperatures Transition zone (410 – 670 km) 24 GPa , 1700 - 2300 K Lower mantle (670 – 2900 km) 136 GPa , ~3000 K (CMB) Inner Core (> 5100 km) 365 GPa , ~6000 K 3.65 Mbar Modified from Kellogg et al., Science, 1999 Inner Core: e.g., Sun and Song, EPSL, 2008 Paul Raterron – CNRS Lille – Fosterite 2015 Extreme P , T Conditions Upper Mantle (< 410 km) P < 14 GPa , T < 1700 K 140 kbar An Earth made of rock-forming crystals Upper mantle (< 410 km) 60% olivine ~30% pyroxenes ~10% pyrope Transition zone (410 – 670 km) ringwoodite wadsleyite ~40% majorite Lower mantle (670 – 2900 km) bridgmanite + Mg-perovskite Core Fe + ~4% Ni + ~10 wt.% O, S, Si,… Paul Raterron – CNRS Lille – Fosterite 2015 ~12% Ferropericlase ~8% CaSiO3 Rocks are polycrystalline: complex rheology Disclinations (Cordier et al., 2014) Diffusion (Cobble) Dislocations (glide, cross slip) Diffusion (Nabarro-Herring) Dislocations (climb) Grain-boundary sliding (e.g., Hansen et al., 2011) 5 Paul Raterron – CNRS Lille – Fosterite 2015 Understanding Earth’s mantle dynamics 1 - Deformation data on Earth’s materials at relevant (extreme) P and T 2 - Quantification of minerals/rocks plastic responses 3 - Extrapolation to Earth’s relevant (natural) low-stress and strain-rate conditions 6 Paul Raterron – CNRS Lille – Fosterite 2015 High-Pressure Deformation and Synchrotron Radiation: Mantle Rheology at Mantle Pressures Introduction Materials plasticity Rheological laws Notions of crystal plasticity Dislocation / Diffusion creep High-P (> 3 GPa) deformation devices & synchrotron X rays Deformation-DIA apparatus (D-DIA) In situ strain, stress & LPO measurements DT-Cup and DT-25 Rotational Drickamer apparatus (RDA) Radial diffraction in the Diamond anvil cell (DAC) Mantle rheology at mantle pressures Olivine and enstatite single-crystal rheology at high P From single crystal to aggregate plasticity 7 Paul Raterron – CNRS Lille – Fosterite 2015 Notions on materials plasticity : rheological laws p E * + PV * m ε = Aσ fO 2 exp − RT d n 1 High-T power law : σ1 dε = dL L(t) L dL => Strain ε = Ln L(t ) Lo Differential stress σ = σ1 −σ 3 Viscosity η= ε = dε dt σ = Bσ 1− n ε Note: fO2 , fH2O , aSiO2 , etc. 8 Paul Raterron – CNRS Lille – Fosterite 2015 Notions on materials plasticity : dislocation creep Edge dislocation glide Dislocation slip system [uvw] (hkl) Mantle silicates dε/dt = A σ3 to 5 => η = σ-2 to -4/A Non-newtonian viscosity Glide plane (hkl) Texture (CPO, LPO) Random polycrystal Deformed polycrystal hkl Burgers vector [uvw] [uvw] Notions on materials plasticity : dislocation creep Courtesy Carlos Tomé, LANL Dislocation-creep seismological implications Texture (LPO, CPO) [100 ] [010] Seismic anisotropy [001] SC olivine Elastic anisotropy => Velocity anisotropy Vp (km/s) Vs anisotropy 220 km attenuation Vs anisotropy Ohuchi et al., EPSL, 2011 11 Gung et al., Nature, 2003 Notions on materials plasticity : diffusion creep Cobble creep (GB diffusion) dε/dt = A σ /d3 Nabarro-Herring creep (bulk) dε/dt = A σ /d2 η stress independent Newtonian viscosity No LPO / No Seismic anisotropy ? Source www (Miyazaki et al., Nature, 2013) Random lattice orientations GBS Source www 12 Notions on materials plasticity : grain boundary sliding (GBS) GBS dε/dt = A σ2/d2 dis-GBS dε/dt = A σ3/d Non-newtonian viscosity LPO / Seismic anisotropy ? Quadruple junction Accomodated by dislocation glide (dis-GBS) 13 High-Pressure Deformation and Synchrotron Radiation: Mantle Rheology at Mantle Pressures Introduction Materials plasticity Rheological laws Notions of crystal plasticity Dislocation / Diffusion creep High-P (> 3 GPa) deformation devices & synchrotron X rays Deformation-DIA apparatus (D-DIA) In situ strain, stress & LPO measurements DT-Cup and DT-25 Rotational Drickamer apparatus (RDA) Radial diffraction in the Diamond anvil cell (DAC) Mantle rheology at mantle pressures Olivine and enstatite single-crystal rheology at high P From single crystal to aggregate plasticity 14 Paul Raterron – CNRS Lille – Fosterite 2015 High-P rheology : which deformation apparatus ? Courtesy G. Shen Upper mantle + TZ (3 < P < 27 GPa) Lower mantle + Core (P > 27 GPa) => Large Volume Presse (LVP): => Diamond Anvil Cell (DAC): Deformation-DIA apparatus(D-DIA) Deformation T-Cup (DT-Cup) – DT-25 Rotational Drickamer apparatus (RDA) Radial diffraction 15 Paul Raterron – CNRS Lille – Fosterite 2015 Deformation-DIA (D-DIA) Main ram (backward) Deformation-DIA (D-DIA) Wang et al. (2002) P < 17 GPa T < 1900 K ε < 40% Inner pistons (forward) Courtesy Bill Durham, MIT 16 Thermal gradient in the D-DIA cell Z (mm) 1700 5 GPa +3 Temperature (K) 1500 1300 1100 0 900 y = -154,22x2 + 38,08x + 1 673,00 R² = 0,97 700 WC anvil 500 -3 -2 a) -1 0 1 2 3 -3 Z position (mm) WC anvil Over 2 mm at cell centre : ∆T ~ 155 K/mm Raterron et al., RSI, 2013 17 Pressure during D-DIA runs Pressure (GPa) 6 T = 1673 K 5 P ~ 5.0 (±0.5) GPa 4 0 5 10 15 20 Specimen Strain (%) Raterron et al., RSI, 2013 18 Strain, P & stress measurements d-spacing variations ε = f (σ , P, T ,...) NSLS X17-B2 beamline Diffracted beam : σ (2 dhkl sin θ = λ) Transmitted beam : ε Synchrotron X rays 19 In situ σ and ε measurements cBN anvils EDX detector 1 10 Coutesy: M. Vaughan 5 YAG σ1 σ (diffraction) 9 Conical slit Incident Specimen white X-ray Modified from Raterron & Merkel, J. Syn. Rad., 2009 ε (radiography) 20 Deformation-DIA (D-DIA) at NSLS X17-B2 10-element EDX detector 1 5 10 9 Anvil: Sintered diamond or cBN Conical slit : fixed 2θ Paul Raterron – CNRS Lille – Fosterite 2015 Deformation-DIA (D-DIA) at NSLS X17-B2 CCD camera 10-element EDX detector Conical slit (front part) Paul Raterron – CNRS Lille – Fosterite 2015 Deformation-DIA (D-DIA) at ESRF ID06 23 Paul Raterron – CNRS Lille – Fosterite 2015 6-Axis Deformation Apparatus at PETRA III Extension (DESY, Hamburg) 24 Courtesy Nori Nishiyama, DESY ε measurement : X-ray radiography 60 Piston Al2O3 50 Fayalite Fe2SiO4 Fa100 alpha SC olivine 5,32E-5 s-1 Strain (%) 40 SC olivine Mg1.8Fe0.2SiO4 7,98E-5 s-1 30 20 2,20E-5 s-1 3,07E-5 s-1 10 2,43E-5 s-1 1,40E-5 s-1 0 1250 1300 1350 1400 1450 1500 Time (min) ESRF – ID06 Paul Raterron – CNRS Lille – Fosterite 2015 25 25 In situ σ measurement : X-ray diffraction dhkl < dhkl Singh et al. (1998) alumina d110 σ1 2.392 Å Det.# 5 σ1 min. Det. # 1 σ1 max. 2.386 Å ψ σ Sij : elastic compliances σ : differential stress Unit cell <V> = f (P, T) 26 Paul Raterron – CNRS Lille – Fosterite 2015 High-P steady state deformation conditions ε = f (σ , P, T ,...) Constant strain rate ε Constant differential stress σ 20 dԑ/dt = 4.8 × 10-5 s-1 16 Specimen Strain (%) Differential Stress (GPa) 1 12 8 4 Alumina {012} 0,8 {104} {110} {113} 0,6 {024} {116} 0,4 {214} 596 ±±80 20MPa MPa <σ > == 624 (EPSC model) 0,2 {300} 0 0 0 1 000 2 000 3 000 Time (s) Raterron et al., RSI, 2013 4 000 5 000 0 5 10 15 20 Specimen Strain (%) 27 Alumina dhkl-stress EPSC simulation EPSC : Elastoplastic self-consistent Raterron et al., RSI, 2013 Eshelby σ 28 In situ LPO measurements Peak position (dhkl = f(Ψ)) => P(T), Stress value and orientation Peak intensity (Ihkl = f(Ψ)) => LPO 020 021 101 002 131 112 130 041 210 (1/dhkl) Bollinger et al., JAC, 2012 29 In situ LPO measurements 1 Correction factor Fcorr Correction factor for sensitivity Correction factor for sensitivity and shadow effect 5 9 Detector number Fcorr = ∑ Ipeak / ∑ Iref Icorr = Ipeak / Fcorr Bollinger et al., JAC, 2012 6 In situ LPO measurements Forsterite Mg2SiO4 1100°C 010 001 100 Inverse pole figure (IPF) of compression direction from in situ X-ray data Bollinger et al., JAC, 2012 IPF from EBSD data on run product 8 In situ LPO measurements Forsterite Mg2SiO4 1100°C (010) glide plane [100] Burgers vector (?) Bollinger et al., JAC, 2012 Deformation T-Cup (DT-Cup) T-Cup + Hexagonal anvil Hunt et al. , Rev. Sci. Instr., 2014 33 Deformation T-Cup (DT-Cup) Hunt et al. , Rev. Sci. Instr., 2014 34 Deformation T-Cup (DT-Cup) P → 18.8 GPa T → 1573 K Strain ε → 56% Hunt et al. , Rev. Sci. Instr., 2014 35 Deformation T-25 (DT-25) 25 mm 36 Paul Raterron – CNRS Lille – Fosterite 2015 Rotational Drickamer Apparatus (RDA) RDA Yamazaki & Karato Rev. Sci. Instr., 2001 P → 23 GPa T → 1800 K High strain: γ > 6 Wadsleyite : Nishihara et al. , PEPI, 2008 37 Rotational Drickamer Apparatus (RDA) 20° Incident X rays Top anvil Cylindrical sleeve PEEK 4 mm Pyrophyllite Bottom anvil Ringwoodite Mg1.8Fe0.2SiO4 Miyagi et al. , PEPI, 2013 38 Rotational Drickamer Apparatus (RDA) Nishihara et al. , PEPI, 2008 Radial diffraction in the DAC 40 µm 80 µm Pressure range 0-50 GPa: routine 60-300 GPa: possible Homogeneous heating to 1500K Local heating to 4000 K 0° Synchrotron x-rays ~25 µm 90° δ 30-40 keV In-situ measurement Courtesy Sébastien Merkel, Université de Lille - texture - stress (strain) - sample dimensions 40 Stress and LPO measurements Courtesy Sébastien Merkel, Université de Lille 41 Stress and LPO measurements In situ measurement: hcp-Co, 42 GPa, 300K (Merkel and Yagi, Rev. Sci. Instrum., 2005) δ Courtesy Sébastien Merkel 42 Stress and LPO measurements Monochromatic beam Angle dispersive X-ray Diffraction δ 360° = 0 EPSC model for the deformed aggregate δ Q parameter : a measure of d-spacing response to stress (Singh et al., J. Appl. Physics, 1998) Courtesy Sébastien Merkel 43 HT Radial diffraction in the DAC Electrical contacts Sample, heaters, gasket... Opening 70ºx70º Thermocouples Inconel body Courtesy Sébastien Merkel Liermann et al. , Rev. Sci. Instr., 2009 HT Radial diffraction in the DAC Heater (graphite) Insulating layer (alumina) Synthetic mica KMg3(AlSi3O10)F2 Fusion: 1378 ºC RX Amorphous Boron + epoxy Diameter: 400 µm Hole: 80 µm ~ 10 mm Thermocouple Power requirements : ~ 2V, 100 A for 1000 K 1/8'' ~ 3 mm Max. temperature: ~ 1500 K Courtesy Sébastien Merkel 400 µm High-Pressure Deformation and Synchrotron Radiation: Mantle Rheology at Mantle Pressures Introduction Materials plasticity Rheological laws Notions of crystal plasticity Dislocation / Diffusion creep High-P (> 3 GPa) deformation devices & synchrotron X rays Deformation-DIA apparatus (D-DIA) In situ strain, stress & LPO measurements DT-Cup and DT-25 Rotational Drickamer apparatus (RDA) Radial diffraction in the Diamond anvil cell (DAC) Mantle rheology at mantle pressures Olivine and enstatite single-crystal rheology at high P From single crystal to aggregate plasticity 46 Paul Raterron – CNRS Lille – Fosterite 2015 Mantle rheology at mantle pressures Observables or constraints Seismic velocity / anisotropy Viscosity Depth (km) LVZ 220 km δln(Vs) (%) Gung et al., Nature 2003 Viscosity (Pa.s) after Forte & Mitrovica, Nature, 2001 47 Paul Raterron – CNRS Lille – Fosterite 2015 Mantle rheology at mantle pressures Experiments and modeling Seismic velocity / anisotropy [100 ] [010] Viscosity [001] ε = f (σ , P, T ,...) Ocean geotherm, 60-km depth, 10-15 s-1, γ = 0.5 Observed / Computed LPO Flow laws / computations 48 Paul Raterron – CNRS Lille – Fosterite 2015 From single-crystal to aggregate plasticity σ b a c Single crystal deformation => Individual slip-system rheological law ε = Aσ n fO2m exp − E * + PV * RT High-P deformation data (e.g., olivine, Raterron et al., PEPI, 2012) Room-P deformation data (e.g., olivine, Bai et al., JGR, 1991) Aggregate Mantle P, T, σ,…, conditions Classical / empirical modeling Computational modeling 49 Dislocation slip-system activity at high P ? Olivine σ1 // [011]c σ1 // [110]c b a 1 to 2 mm c [100](010) σ1 // [101]c a b c a c [001](010) [001](100) [100](001) 50 Paul Raterron – CNRS Lille – Fosterite 2015 Dislocation slip-system activity at high P ? b a [100](010) c 6 mm b c a [001](010) Raterron et al., Am. Mineral., 2007 51 Dislocation slip-system activity at high P ? Raterron et al. , PEPI, 2009 52 Dislocation slip-system activity at high P ? Enstatite σ1 // [110]c σ1 // [011]c a b 1 to 2 mm b a [001](100) c c [001](010) 53 Paul Raterron – CNRS Lille – Fosterite 2015 Orthoenstatite vs protoenstatite a M1 M1 b Mg2 Mg2 Orthoenstatite (Pbca) Jahn, Acta Cristal. Section A, 2010 Protoenstatite (Pbcn) 54 Enstatite slip-system activity at high P E * + PV * ε = Aσ exp − RT n protoenstatite 1-atm rheological laws Mackwell, GRL, 1991 0 orthoenstatite [101]c crystals [001](100) slip system log10 (Strain Rate , s-1) -1 -2 -3 -4 -5 This study -6 0 1 2 3 4 5 -1 P/RT (10 Pa mol J ) 5 6 55 Paul Raterron – CNRS Lille – Fosterite 2015 Enstatite slip-system activity at high P E * + PV * ε = Aσ exp − RT n orthoenstatite P=1.3 GPa rheological law Ohuchi et al., CMP, 2011 log10 (Strain Rate , s-1) -2 orthoenstatite [011]c crystals [001](010) slip system -3 -4 -5 This study -6 0 1 2 3 4 P/RT (105 Pa mol J-1) 5 6 56 Paul Raterron – CNRS Lille – Fosterite 2015 Enstatite slip-system activity at high P E * + PV * ε = Aσ exp − RT n 30 EN_011 - DEF1 P=6.4(2) GPa Τ =1586 K σ =803(89) MPa P=6.2(2) GPa Τ =1600 K σ =578(89) MPa Specimen strain (%) 25 20 15 DEF3 DEF2 10 5 0 500 P=5.9(3) GPa Τ =1611 K σ =759(90) MPa 𝑛𝑛𝐸𝐸𝐸𝐸 = 𝑛𝑛𝑂𝑂𝑂𝑂 × ln 𝑛𝑛𝑂𝑂𝑂𝑂 = 3.5 𝜀𝜀𝐸𝐸𝐸𝐸 ̇i 𝜀𝜀𝐸𝐸𝐸𝐸 ̇ ii �ln => 𝜀𝜀𝑂𝑂𝑂𝑂 ̇i 𝜀𝜀𝑂𝑂𝑂𝑂 ̇ ii 𝑛𝑛𝐸𝐸𝐸𝐸 101c Enstatite 550 600 650 Time (min) 700 011c SC olivine 750 800 57 Paul Raterron – CNRS Lille – Fosterite 2015 Enstatite slip-system activity at high P E * + PV * ε = Aσ exp − RT n 2 Enstatite [011]c crystals [001](010) slip system P=5 GPa ; T= 1400 MPa Ln(Strain Rate, s-1) 0 -2 -4 -6 -8 -10 -12 -14 -16 5 6 Ln(Stress, MPa) 7 8 58 Paul Raterron – CNRS Lille – Fosterite 2015 Enstatite slip-system activity at high P E * + PV * ε = Aσ exp − RT n Enstatite [011]c crystals [001](010) slip system P=5 GPa ; σ = 300 MPa Ln(Strain Rate, s-1) -9 -11 -13 -15 -17 -19 7,0E-05 7,5E-05 8,0E-05 8,5E-05 9,0E-05 9,5E-05 1/RT (J-1 mol) 59 Paul Raterron – CNRS Lille – Fosterite 2015 Dislocation slip-system activity in the mantle 10 1800 20-Ma ocean Adiabat Normalized Strain Rate Temperature (K) 1600 1400 1200 Continent 1000 800 600 400 Ol [011]c 20-Ma ocean Ol [110]c 1 Ol [101]c 0,1 0,01 OPx [101]c 0,001 OPx [011]c 200 0 100 200 300 Depth (km) 400 0,0001 50 (a) 150 200 250 300 Depth (km) 10 Normalized Strain Rate 100 Continent Ol [011]c Ol [110]c 1 Ol [101]c 0,1 0,01 OPx [101]c 0,001 OPx [011]c 0,0001 (b) Paul Raterron – CNRS Lille – Fosterite 2015 50 100 150 200 Depth (km) 250 300 60 From single-crystal to aggregate plasticity σ b a c CRSS : critical resolved shear stress Slip-system flow law => slip-system CRSS σ Viscoplastic self-consistent (VPSC) simulation Eshelby GSF energy (ab initio) => slip-system Peierls stress (olivine, Durinck et al., PCM, 2005) => relative CRSS « Diffusion » (isotropic mechanism) Computational modeling for olivine aggregate σ 70% SC olivine + Dislocation slip systems, … Biphase aggregate 30% diopside Diff. Second-Order (SO) model (Ponte Castañeda, JMPS, 2002) + Isotropic mechanism (n = 1) (Si diff., Dohmen et al. 2002) E*=530 kJ/mol ; V*=0 « Diffusion » Paul Raterron – CNRS Lille – Fosterite 2015 62 Computational modeling for peridotite aggregate . 20-Ma ocean geotherm / γ = 10-15 s-1 / QFM-2 SC olivine 1,0 1.0 [100](010) [001](010) [001](100) CRSS ( MPa) [100](001) [100](021) [001]{110} 0,5 0.5 a/c slip transition 0,0 0.0 50 100 150 200 250 300 350 400 Depth (km) Raterron et al., PEPI, 2014 63 Computational modeling for peridotite aggregate . 20-Ma ocean geotherm / γ = 10-15 s-1 / QFM-2 Diopside 20-Ma ocean geotherm dγ/dt = 10-15 s-1 30 DIOPSIDE <1-10>{110} [001]{110} CRSS ( MPa) [010](100) [001](100) 20 10 0 50 90 130 170 210 250 290 330 370 410 Depth / km Raterron et al., PEPI, 2014 64 Computational modeling for peridotite aggregate . 20-Ma ocean geotherm / γ = 10-15 s-1 / QFM-2 70% SC olivine + 15 390-km depth Flow stress (MPa) 30% diopside Reasonable stress 10 Second-Order (SO) model (Ponte Castañeda, JMPS, 2002) activity > 50% 5 + Isotropic mechanism (n = 1) 0 10 20 30 40 50 60 70 80 Isotrope mechanism activity (% ) Raterron et al., PEPI, 2014 90 100 (Si diff., Dohmen et al. 2002) E*=530 kJ/mol ; V*=0 65 Computational modeling for peridotite aggregate . 20-Ma ocean geotherm / γ = 10-15 s-1 / QFM-2 a slip/a+c 60 km Depth n ~ 6.1 c (010) 100 010 001 60 km a (010) 240 km Isotropic 390 km Depth n ~ 1.4 a slip/a+c 390 km c (010) Aggregate shear strain Raterron et al., PEPI, 2014 Taketo home From Single-crystal aggregate plasticity *** Key points to take home *** 1 - Constraining Mantle dynamics and seismic features requires high-P > 3 GPa rheological data 2 - In high-P experiments, P, T and strain rates are well constrained ; stress exhibits large uncertainty; yet rheological laws are accessible 3 - Extrapolation of aggregate rheology to mantle P, T and stress conditions requires multiscale approaches which integrate individual mechanisms 67 Paul Raterron – CNRS Lille – Fosterite 2015 High-Pressure Deformation and Synchrotron Radiation, or Mantle Rheology at Mantle Pressures Thank You Caroline Bollinger GFZ, Bayreuth, Germany Olivier Castelnau PIMM, CNRS, Arts et Métiers, ParisTech Jiuhua Chen FIU, Miami, USA Fabrice Detrez MSME, Université Paris Est Guillaume Fraysse UMET, CNRS, Lille Jennifer Girard Yale University, USA Caleb Holyoke Akron Université, USA Sébastien Merkel UMET, Université de Lille 68