ventilator graphics - Training for Respiratory Therapy
Transcription
ventilator graphics - Training for Respiratory Therapy
VENTILATOR GRAPHICS ver.2.0 Charles S. Williams RRT, AE-C Purpose • Graphics are waveforms that reflect the patientventilator system and their interaction. • Purposes of monitoring graphics: • Allow users to interpret, evaluate, and troubleshoot the ventilator and the patient’s response to the ventilator. • Monitor the patient’s disease status (C and Raw). • Assess the patient’s response to therapy. • Monitor proper ventilator function • Allow fine tuning of ventilator to decrease WOB, optimize ventilation, and maximize patient comfort. Purpose • A skilled practitioner can use ventilator graphics to assess the status of the patient’s lungs in the same way a cardiologist uses an EKG to view the condition of the heart. • This is especially important for respiratory therapists to help make appropriate recommendations and to ensure proper functioning of the ventilator. Types of Waveforms Scalars and Loops: • Scalars: Plot pressure, volume, or flow against time. Time is the x-axis. • Loops: Plot pressure or flow against volume. (P/V or F/V). There is no time component. Types of Waveforms Basic shapes of waveforms: •Generally, the ramp waves are considered the same as exponential shapes, so you really only need to remember three: square, ramp, and sine waves. Types of Waveforms Basic shapes of waveforms: • Square wave: ▫ Represents a constant or set parameter. ▫ For example, pressure setting in PC mode or flowrate setting in VC mode. • Ramp wave: ▫ Represents a variable parameter ▫ Will vary with changes in lung characteristics ▫ Can be accelerating or decelerating • Sine wave: ▫ Seen with spontaneous, unsupported breathing Types of Waveforms Pressure Modes Volume Volume Flow Flow Pressure Pressure Volume Modes Volume Control SIMV (Vol. Control) Pressure Control PRVC SIMV (PRVC) SIMV (Press. Control) Pressure Support Volume Support Types of Waveforms Question: What are the three types of waveforms? Answer: Pressure Flow Volume Pressure Waveform • In Volume modes, the shape of the pressure wave will be a ramp for mandatory breaths. • In Pressure modes, the shape of the pressure wave will be a square shape. • This means that pressure is constant during inspiration or pressure is a set parameter. •In Volume modes, adding an inspiratory pause (or hold) will add a small plateau to the waveform. •This is thought to improve distribution of ventilation. Pressure Waveform Can be used to assess: •Air trapping (auto-PEEP) •Airway Obstruction •Bronchodilator Response •Respiratory Mechanics (C/Raw) •Active Exhalation •Breath Type (Pressure vs. Volume) •PIP, Pplat •CPAP, PEEP •Asynchrony •Triggering Effort Pressure Waveform 15 5 No patient effort PEEP Patient effort •The baseline for the pressure waveform will be higher, when PEEP is added. •There will be a negative deflection just before the waveform with patient triggered breaths. +5 Pressure Waveform 1 Inspiratory hold 2 A B = MAP 1 = Peak Inspiratory Pressure (PIP) 2 = Plateau Pressure (Pplat) A = Airway Resistance (Raw) B = Alveolar Distending Pressure • The area under the entire curve represents the mean airway pressure (MAP). Pressure Waveform Increased Airway Resistance A. Decreased Compliance B. PIP Raw PIP Raw Pplat Pplat •A -Increase in airway resistance (Raw) causes the PIP to increase, but Pplat pressure remains normal. •B-A decrease in lung compliance causes the entire waveform to increase in size. (More pressure is needed to achieve the same tidal volume). The difference between PIP and Pplat remains normal. Pressure Waveform Air-Trapping (Auto-PEEP) Expiratory “hold” applied AutoPEEP Set PEEP TotalPEEP +9 +5 +14 •While performing an expiratory hold maneuver, trapped air will cause the waveform to rise above the baseline. •An acceptable amount of auto-PEEP should be < 5cm H2O Pressure Waveform Label the parts: 1 Inspiratory hold 2 A B 1 = Peak Inspiratory Pressure (PIP) 2 = Plateau Pressure (Pplat) A = Airway Resistance (Raw) B = Alveolar Distending Pressure = MAP Pressure Waveform Raw Question: An increase in airway resistance causes _____to increase and _____ to remain the same? Answer: PIP increases, Pplat remains the same Volume Waveform • The Volume waveform will generally have a “mountain peak” appearance at the top. It may also have a plateau, or “flattened” area at the peak of the waveform. •There will also be a plateau if an inspiratory pause time is set or inspiratory hold maneuver is applied to the breath. Volume Waveform Can be used to assess: •Air trapping (auto-PEEP) •Leaks •Tidal Volume •Active Exhalation •Asynchrony Volume Waveform Inspiratory Tidal Volume Exhaled volume returns to baseline Volume Waveform Air-Trapping or Leak Loss of volume •If the exhalation side of the waveform doesn’t return to baseline, it could be from air-trapping or there could be a leak (ET tube, vent circuit, chest tube, etc.) Volume Waveform Question: The volume waveform is most commonly used to assess which two conditions? Answer: Air trapping and leaks Flow Waveform • In Volume modes, the shape of the flow wave will be square. • This means that flow remains constant or flowrate is a set parameter. • In Pressure modes, the shape of the flow waveform will have ramp pattern. •Some ventilators allow you to select the desired flow pattern in Volume Control mode. Flow Waveform Can be used to assess: •Air trapping (auto-PEEP) •Airway Obstruction •Bronchodilator Response •Active Exhalation •Breath Type (Pressure vs. Volume) •Inspiratory Flow •Asynchrony •Triggering Effort Flow Waveform Volume Pressure Flow Waveform •The decelerating flow pattern may be preferred over the constant flow pattern. The same tidal volume can be delivered, but with a lower peak pressure. Flow Waveform Auto-Peep (air trapping) = Normal Expiratory flow doesn’t return to baseline Start of next breath •If the expiratory portion of the waveform doesn’t return to baseline before the start of the next breath starts, there could be air trapping. (emphysema, improper I:E ratio) Flow Waveform Bronchodilator Response Pre-Bronchodilator long exp. time Post-Bronchodilator shorter exp. time Peak flow Improved Peak Flow •To assess response to bronchodilator therapy, you should see an increase in peak expiratory flow rate. •The expiratory portion of the curve should return to baseline sooner. Flow Waveform Question: This flow pattern indicates what? Answer: Air trapping (auto-PEEP) Flow Waveform Question: To assess improvement after a breathing treatment you should see what? Pre-Bronchodilator Post-Bronchodilator shorter exp. time Improved Peak Flow Answer: Improved peak flow and shorter expiratory time Types of Waveforms Pressure Modes Volume Volume Flow Flow Pressure Pressure Volume Modes Volume Control SIMV (Vol. Control) Pressure Control PRVC SIMV (PRVC) SIMV (Press. Control) Pressure Support Volume Support •In Pressure Limited, control modes (time-cycled), inspiratory flow should return to baseline. •In support modes (flow-cycled), flow does not return to baseline. Types of Waveforms •The area of no flow indicated by the red line is known as a “zero-flow state”. •This indicates that inspiratory time is too long for this patient. Types of Waveforms Pressure Modes Volume Volume Flow Flow Pressure Pressure Volume Modes Volume Control SIMV (Vol. control) Pressure Control PRVC SIMV (PRVC) SIMV (Press. control) Pressure Support/ Volume Support Question: How can I tell what type of mode (or type of breath) is this? Is it Volume or Pressure? Remember the letter “P”. In Pressure modes…The Pressure waveform…has a Plateau. Types of Waveforms Interpret the mode: The pressure waveform has a plateau The flow waveform doesn't return to baseline Is it a Volume or Pressure mode? Is it a Control (rate) or Support mode? Pressure/Volume Loops 500 250 5 15 30 Pressure/Volume Loops • Volume is plotted on the y-axis, Pressure on the xaxis. • Inspiratory curve is upward, Expiratory curve is downward. • Spontaneous breaths go clockwise and positive pressure breaths go counterclockwise. • The bottom of the loop will be at the set PEEP level. It will be at 0 if there’s no PEEP set. • If an imaginary line is drawn down the middle of the loop, the area to the right represents inspiratory resistance and the area to the left represents expiratory resistance. Pressure/Volume Loops Can be used to assess: •Lung Overdistention •Airway Obstruction •Bronchodilator Response •Respiratory Mechanics (C/Raw) •WOB •Flow Starvation •Leaks •Triggering Effort Pressure/Volume Loops Dynamic Compliance (Cdyn) 500 250 5 15 30 •The top part of the P/V loop represents Dynamic compliance (Cdyn). • Cdyn = Δvolume/Δpressure Pressure/Volume Loops 500 250 5 15 30 •The P-V loop becomes almost square shaped in pressure modes because of pressure limiting (constant) , during the inspiration. Pressure/Volume Loops Overdistention “beaking” 500 250 5 15 30 •Pressure continues to increase with little or no change in volume, creating a “bird beak”. •Fix by reducing amount of tidal volume delivered Pressure/Volume Loops Airway Resistance Increased expiratory resistance: secretions, bronchospasms, etc. 500 Increased inspiratory resistance: kinked ET tube, patient biting tube (Hysteresis) 250 5 15 •As airway resistance increases, the loop will become wider. •An increase in expiratory resistance is more commonly seen. 30 Pressure/Volume Loops Increased Compliance Decreased Compliance 500 500 250 250 5 15 30 Example: Emphysema, Surfactant Therapy 5 15 Example: ARDS, CHF, Atelectasis 30 Pressure/Volume Loops A Leak 500 250 5 15 30 •The expiratory portion of the loop doesn’t return to baseline. This indicates a leak. Pressure/Volume Loops Inflection Points Upper Inflection Point (Third Inflection Point) 500 250 5 15 30 Lower Inflection Point •The lower inflection point represents the point of alveolar opening (recruitment). •Some lung protection strategies for treating ARDS, suggest setting PEEP just above the lower inflection point. Pressure/Volume Loops 500 250 5 15 30 Question: What does this loop indicate? Answer: Decreased lung compliance. (ARDS, CHF, Atelectasis) Pressure/Volume Loops 500 250 5 15 30 Question: What is occurring when there is a bird beak appearance on the P/V loop? Answer: Lung overdistention. Pressure continues to increase, while volume remains the same. Pressure/Volume Loops Inflection Points Upper Inflection Point (Third Inflection Point) 500 250 5 15 30 Lower Inflection Point Question: Lung protection strategies suggest setting peep at what point? Answer: Just above the lower inflection point Flow/Volume Loops 60 40 20 0 200 -20 -40 -60 400 600 Flow/Volume Loops • Flow is plotted on the y axis and volume on the x axis • Flow volume loops used for ventilator graphics are the same as ones used for Pulmonary Function Testing, (usually upside down). • Inspiration is above the horizontal line and expiration is below. • The shape of the inspiratory portion of the curve will match the flow waveform. • The shape of the exp flow curve represents passive exhalation. • Can be used to determine the PIF, PEF, and Vt • Looks circular with spontaneous breaths Flow/Volume Loops Can be used to assess: •Air trapping •Airway Obstruction •Airway Resistance •Bronchodilator Response •Insp/Exp Flow •Flow Starvation •Leaks •Water or Secretion accumulation •Asynchrony Flow/Volume Loops 60 40 20 Begin Inspiration Begin Expiration 0 200 400 600 -20 -40 -60 Peak Flow Flow/Volume Loops 0 0 •The shape of the inspiratory portion of the curve will match the flow waveform. Flow/Volume Loops A Leak 60 = Normal 40 Expiratory part of loop does not return to starting point, indicating a leak. 20 0 200 400 600 -20 -40 -60 •If there is a leak, the loop will not meet at the starting point where inhalation starts and exhalation ends. It can also occur with air-trapping. Flow/Volume Loops Airway Obstruction Reduced Peak Flow 0 “scooping” 0 “normal PFT view” •The expiratory part of the curve “scoops” with diseases that cause small airway obstruction (high expiratory resistance). e.g. asthma, emphysema. Flow/Volume Loops Airway Obstruction 0 0 “normal vent graphic view” •The F-V loop appears “upside down” on most ventilators. “scooping” Reduced Peak Flow Flow/Volume Loops 60 40 20 Begin Inspiration Begin Expiration 0 200 400 600 -20 -40 -60 Peak Flow What points on the F/V loop do the arrows indicate? Flow/Volume Loops 60 40 20 0 200 400 600 -20 -40 -60 Question: When the expiratory side of the loop doesn’t return to baseline, this indicates what? Answer: There is a leak. (ETT cuff, vent circuit) Flow/Volume Loops 0 0 Question: What is the term used for the part of the loop indicated by the arrow? Answer: This is known as “scooping”. It’s caused by airway obstruction. Air Trapping (auto-PEEP) • Causes: • Insufficient expiratory time • Early collapse of unstable alveoli/airways during exhalation • How to Identify it on the graphics • Pressure wave: while performing an expiratory hold, the waveform rises above baseline. • Flow wave: the expiratory flow doesn’t return to baseline before the next breath begins. • Volume wave: the expiratory portion doesn’t return to baseline. • Flow/Volume Loop: the loop doesn’t meet at the baseline • Pressure/Volume Loop: the loop doesn’t meet at the baseline • How to Fix: • Give a treatment, adjust I-time, increase flow, add PEEP. Airway Resistance Changes • Causes: • • • • • • Bronchospasm ETT problems (too small, kinked, obstructed, patient biting) High flow rate Secretion build-up Damp or blocked expiratory valve/filter Water in the HME • How to Identify it on the graphics • Pressure wave: PIP increases, but the plateau stays the same • Flow wave: it takes longer for the exp side to reach baseline/exp flow rate is reduced • Volume wave: it takes longer for the exp curve to reach the baseline • Pressure/Volume loop: the loop will be wider. Increase Insp. Resistance will cause it to bulge to the right. Exp resistance, bulges to the left. • Flow/Volume loop: decreased exp flow with a scoop in the exp curve • How to fix • Give a treatment, suction patient, drain water, change HME, change ETT, add a bite block, reduce PF rate, change exp filter. Compliance Changes • Decreased compliance • Causes ARDS Atelectasis Abdominal distension CHF Consolidation Fibrosis Hyperinflation Pneumothorax Pleural effusion • How to Identify it on the graphics Pressure wave: PIP and plateau both increase Pressure/Volume loop: lays more horizontal • Increased compliance • Causes Emphysema Surfactant Therapy • How to Identify it on the graphics Pressure wave: PIP and plateau both decrease Pressure/Volume loop: Stands more vertical (upright) Leaks • Causes • Expiratory leak: ETT cuff leak , chest tube leak, BP fistula, NG tube in trachea • Inspiratory leak: loose connections, ventilator malfunction, faulty flow sensor • How to ID it • Pressure wave: Decreased PIP • Volume wave: Expiratory side of wave doesn’t return to baseline • Flow wave: PEF decreased • Pressure/Volume loop: exp side doesn’t return to the baseline • Flow/Volume loop: exp side doesn’t return to baseline • How to fix it • Check possible causes listed above • Do a leak test and make sure all connections are tight Asynchrony • Causes (Flow, Rate, or Triggering) • Air hunger (flow starvation) • Neurological Injury • Improperly set sensitivity • How to ID it • Pressure wave: patient tries to inhale/exhale in the middle of the waveform, causing a dip in the pressure • Flow wave: patient tries to inhale/exhale in the middle of the waveform, causing erratic flows/dips in the waveform • Pressure/Volume loop: patient makes effort to breath causing dips in loop either Insp/Exp. • Flow/Volume loop: patient makes effort to breath causing dips in loop either Insp/Exp. • How to fix it: • Try increasing the flow rate, decreasing the I-time, or increasing the set rate to “capture” the patient. • Change the mode - sometimes changing from partial to full support will solve the problem • If neurological, may need paralytic or sedative • Adjust sensitivity Asynchrony Flow Starvation •The inspiratory portion of the pressure wave shows a “dip”, due to inadequate flow. Asynchrony F/V Loop P/V Loop Types of Waveforms Interpret the mode: Is it a Volume or Pressure mode? Is it a Control (rate) or Support mode? Rise Time & Inspiratory Cycle Off % Rise Time •The inspiratory rise time determines the amount of time it takes to reach the desired airway pressure or peak flow rate. •Used to assess if ventilator is meeting patient’s demand in Pressure Support mode. •In SIMV, rise time becomes a % of the breath cycle. Rise Time pressure spike too fast too slow • If rise time is too fast, you can get an overshoot in the pressure wave, creating a pressure “spike”. If this occurs, you need to increase the rise time. This makes the flow valve open a bit more slowly. • If rise time is too slow, the pressure wave becomes rounded or slanted, when it should be more square. This will decrease Vt delivery and may not meet the patient’s inspiratory demands. If this occurs, you will need to decrease the rise time to open the valve faster. Inspiratory Cycle Off •The inspiratory cycle off determines when the ventilator flow cycles from inspiration to expiration, in Pressure Support mode. Also know as– •Inspiratory flow termination, •Expiratory flow sensitivity, •Inspiratory flow cycle %, •E-cycle, etc… •The flow-cycling variable is given different names depending on the brand of ventilator. Inspiratory Cycle Off Inspiration ends pressure flow •The breath ends when inspiratory flow has dropped to a specific flow value. Inspiratory Cycle Off 100% of Patient’s Peak Inspiratory Flow 100% Flow 75% 50% 30% •In the above example, the machine is set to cycle inspiration off at 30% of the patient’s peak inspiratory flow. Inspiratory Cycle Off A Exhalation spike B 100% 100% 60% 10% •A –The cycle off percentage is too high, cycling off too soon. This makes the breath too small. (not enough Vt.) •B – The cycle off percentage is too low, making the breath too long. This forces the patient to actively exhale (increase WOB), creating an exhalation “spike”. Rise Time Question: The red portion of the waveform indicates that rise time is what? Answer: It indicates that the rise time is too slow Inspiratory Cycle Off Flow 100% 30% Question: This pressure support breath is set to cycle of at 30% of the patient’s ________. Answer: Peak Inspiratory Flow Sources: • Rapid Interpretation of Ventilator Waveforms • Ventilator Waveform Analysis – Susan Pearson • Golden Moments in Mechanical Ventilation – Maquet, inc. • Servo-I Graphics – Maquet, inc. VENTILATOR GRAPHICS Thank You!