The New Physics of Compact Stars: CompStar
Transcription
The New Physics of Compact Stars: CompStar
David Blaschke University of Wroclaw The New Physics of Compact Stars: CompStar 1st EuroGENESIS Workshop, Dubrovnik, 24-11-2010 David Blaschke University of Wroclaw CompStar in a nutshell ! duration: 5 years (Feb. 2008 - Feb. 2013) ! 10 ESF participating countries ! annual budget: 70.5 k! ! expected key activities: ! science meetings (conferences, schools, workshops) ! fellowships (short and long term visits) Steering Committee " Poland » Polish Academy of Sciences (PAN), Warsaw " Italy » Istituto Nazionale di Fisica Nucleare (INFN), Rome " Germany » Deutsche Forschungsgemeinschaft (DFG), Bonn " Denmark » Forskningsrådet for Natur og Univers (FNU), Copenhagen " Spain » Consejo Superior de Investigaciones Cientificas (CSIC), Madrid » Ministerio de Educacion y Ciencia (MEC) " France » Centre National de la Recherche Scientifique (CNRS), Paris " Slovak Republic » Slovak Research and Development Agency, Bratislava " Switzerland Schweizerischer Nationalfonds (SNF), Bern " Portugal » Fundação para a Ciência e a Tecnologia, Lisboa " United Kingdom » Science & Technology Facilities Council, Swindon Members CompStar members partners in Europe other ESF members Members New Member: Croatia CompStar members partners in Europe other ESF members Members & Partners North America Asia & Australia South America Africa Scientific Scope CompStar joins three communities Scientific Scope CompStar joins three communities CO CR ME MF PE SN Topics core physics high density nuclear matter crust physics low density nuclear matter Mergers binary neutron stars and GRB’s Magnetic Fields strong fields and cooling processes Perturbations Gravitational Waves signals Supernovae collapse the birth of Neutron Stars PSR J1614-2230 - A new constraint for the Compact Star EoS • NS-WD binary in Scorpius • NS is recycled MSP with P = 3.15 ms • almost edge-on, inclination 89.17o • Shapiro delay measured! • MW D ∼ 0.5 M⊙ • MN S = (1.97 ± 0.04) M⊙ PSR J1614-2230 - A new constraint for the Compact Star EoS • NS-WD binary in Scorpius • NS is recycled MSP with P = 3.15 ms • almost edge-on, inclination 89.17o • Shapiro delay measured! • MW D ∼ 0.5 M⊙ • MN S = (1.97 ± 0.04) M⊙ Demorest et al., Nature 467, 1081 (2010) PSR J1614-2230 - A new constraint for the Compact Star EoS 2.5 GR P< Mass (solar) ality AP4 aus MPA1 MS0 PAL1 MS2 c 2.0 J1614-2230 J1903+0327 1.5 AP3 ENG J1909-3744 SQM1 PAL6 GS1 Double NS Systems SQM3 FSU GM3 MS1 1.0 0.5 0.07 on rotati Nucleons Nucleons+ExoticStrange Quark Matter 8 9 10 11 12 Radius (km) 13 14 15 Demorest et al., Nature 467, 1081 (2010) PSR J1614-2230 - A new constraint for the Compact Star EoS 2.5 GR P< Mass (solar) ality AP4 aus MPA1 MS0 PAL1 MS2 c 2.0 J1614-2230 J1903+0327 1.5 AP3 ENG J1909-3744 SQM1 PAL6 GS1 Double NS Systems SQM3 FSU GM3 MS1 1.0 0.5 0.07 on rotati Nucleons Nucleons+ExoticStrange Quark Matter 8 9 10 11 12 Radius (km) 13 14 15 Demorest et al., Nature 467, 1081 (2010) Some “soft” EoS are now ruled out ! What about hybrid stars? Strong constraints for quark matter! PSR J1614-2230 - A new constraint for the Compact Star EoS 2.5 RX J1856 it PSR J0751+1807 im yl 2.0 t ali M [Msun] us Ca 1.5 0.2 4U 0614 +09 0.15 1.0 DBHF ηD = 0.92, ηD = 1.00, ηD = 1.00, ηD = 1.02, ηD = 1.03, 0.5 0 6 8 ηV ηV ηV ηV ηV 0.1 = = = = = 0.0 0.0 0.5 0.5 0.5 10 12 R [km] z=0.05 14 Klähn et al., PLB 654, 170 (2007) 16 PSR J1614-2230 - A new constraint for the Compact Star EoS 2.5 RX J1856 2.0 ty M [Msun] u Ca i sal t mi li PSR J1614-2230 0.2 1.5 0.15 4U 0614 +09 1.0 DBHF ηD = 0.92, ηD = 1.00, ηD = 1.00, ηD = 1.02, ηD = 1.03, 0.5 0 6 8 ηV ηV ηV ηV ηV 0.1 = = = = = 0.0 0.0 0.5 0.5 0.5 10 12 R [km] z=0.05 14 CompStar, in preparation (2010) State-of-the-art hybrid EoS model: • Chiral symmetry restoration • Color superconductivity • Vector meanfield “stiffening” 16 PSR J1614-2230 - A new constraint for the Compact Star EoS 2.5 RX J1856 2.0 ty M [Msun] u State-of-the-art hybrid EoS model: Ca i sal t mi li PSR J1614-2230 0.2 1.5 0.15 4U 0614 +09 1.0 DBHF ηD = 0.92, ηD = 1.00, ηD = 1.00, ηD = 1.02, ηD = 1.03, 0.5 • Chiral symmetry restoration 0 6 ηV ηV ηV ηV ηV 0.1 = = = = = 8 0.0 0.0 0.5 0.5 0.5 z=0.05 10 12 R [km] 14 16 • Color superconductivity • Vector meanfield “stiffening” Danielewicz et al. (2002) • Flow constraint at high densities • Not too early onset of quark matter -3 Constraints from heavy-ion collisions: P [MeV fm ] "flow constraint" 10 2 10 =⇒ QCD phase diagram DBHF ηD = 0.92, ηD = 1.00, ηD = 1.03, ηD = 1.02, 1 0.2 0.4 0.6 -3 n [fm ] ηV ηV ηV ηV = = = = 0.8 Klähn et al., PLB 654, 170 (2007) 0.0 0.5 0.5 0.5 1 Extreme States of Matter - The Phase Diagram NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome Motivation and Tasks EoS for Supernova and Merger Simulations: Wide range of parameters! • 10−8 ≤ n/n0 ≤ 10 • 0 ≤ T ≤ 200 MeV • 0 ≤ Yp ≤ 0.6; β = 1 − 2Yp Commonly used EsoS: • Lattimer-Swesty, NPA 535 (1991): Skyrme-type model LD modeling of nuclei embedded in nucleon gas • Shen, Toki et al., Prog. Theor. Phys. 100 (1998): RMF model (TM1), α particles with excluded volume procedure Recent development: • Horowitz-Schwenk, NPA 776 (2006): virial expansion, nucleons and α’s uses experimental data for BE and scattering phase shifts, exact limit for low densities n/n0 < 10−3 Tasks of the present work: • medium effects on light clusters from quantum statistical approach • realistic description of high-density matter (DD-RMF) • thermodynamics, liquid-gas phase transition (instability region) Theory of nuclear matter with clusters (I) Total nucleon density: Z 3 Z ∞ X dω 1 d k1 f1,Z (ω)S1(1, ω) ha†1a1iδτ,τ1 = 2 nτ (T, µ̃p, µ̃n) = 3 Ω 1 (2π) −∞ 2π A −1 Distribution functions: fA,Z (ω) = exp {β [ω − Z µ̃p − (A − Z)µ̃n ]} − (−1) Cluster decomposition of nucleon densities 1 X qu ZfA,Z [EA,ν (K; T, µ̃p, µ̃n)] = Ω A,ν,K 1 X qu tot (K; T, µ̃p, µ̃n)] (A − Z)fA,Z [EA,ν nn (T, µ̃p, µ̃n ) = Ω A,ν,K P qu A (K; T, µ̃p, µ̃n)] Mass fractions of clusters: XA,Z = Ωn ν,K fA,Z [EA,ν Thermodynamical potential F by integration of µ(n) [inverted n(µ)] → all thdyn. functions (EoS) Z n F (T, n, Yps)/Ω = dn′ µ̃(T, n′, Yps) ntot p (T, µ̃p , µ̃n ) 0 Theory of nuclear matter with clusters (II) Single-nucleon quasiparticle dispersion in effective mass approximation: Eτqu(k) = ∆EτSE(0) k2 4 + O(k ) + ∗ 2mτ From density-dependent RMF theory follows q qu En,p (0) = [m − Σn,p(T, n, ±δ)]2 + k 2 + Σ0n,p(T, n, ±δ) Σn,p – scalar self energy; Σ0n,p time component of vector self energy SE ∆En,p (k) = Σ0n,p(T, n, ±δ) − Σn,p(T, n, ±δ) ; m∗n,p = m − Σn,p(T, n, ±δ) Quasiparticle energies for clusters from A-particle Schrödinger equation in perturbation theory K2 SE Pauli Coul + ∆EA,Z = = + (K) + ∆EA,Z (K) + ∆EA,Z (K) + . . . 2Am Important effect for cluster binding energy in medium: Pauli shift: 2 K gi,1 + gi,2T + hi,1n Pauli Pauli ∆EA,Z (K) ≈ ∆EA,Z (0) exp − ; gi(T, n, Yp) = gA,Z 1 + hi,2n qu EA,ν (K) qu EA,Z (K) (0) EA,Z Typel, Röpke, Klähn, D.B., Wolter, Phys. Rev. C 81, 015803 (2010) Proton fraction (dissociation degree) in nuclear matter (a) 0.5 0.4 proton fraction Xp proton fraction Xp 0.5 0.3 0.2 0.1 0.0 -4 -3 -2 -1 -5 10 10 10 10 10 -3 density n [fm ] (b) 0.4 0.3 0.2 2 MeV 4 MeV 6 MeV 8 MeV 10 MeV 12 MeV 14 MeV 16 MeV 18 MeV 20 MeV 0.1 0 10 0.0 -4 -3 -2 -1 0 -5 10 10 10 10 10 10 -3 density n [fm ] Proton fraction Xp in symmetric nuclear matter in generalized RMF model (a) and quantum statistical approach (b). Thin lines show the nuclear statistical equlibrium (NSE) model for comparison. Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010) Nuclear matter symmetry energy with clusters Nuclear (internal) symmetry energy: E(n, 1, T ) + E(n, −1, T ) Esym(n, T ) = − E(n, 0, T ) 2 20 experiment RMF without clusters QS with clusters 15 10 5 0 0 1 2 Vsurf 3 4 [cm/ns] 5 (b) 1.5 experiment RMF without clusters QS with clusters 15 Esym(n)/Esym(n0) (a) internal symmetry energy Esym [MeV] free symmetry energy Fsym [MeV] 20 10 0.5 MDI x = 1 MDI x = 0 MDI x = -1 RMF, T = 0 MeV QS, T = 1 MeV Exp (col. 6, Tab. 1) sc (col. 12, Tab. 1) QS, T= 1 MeV QS, T= 4 MeV QS, T= 8 MeV 0.4 1.0 0.3 0.2 0.5 5 0.1 (a) 0 0 1 2 Vsurf 3 4 [cm/ns] 5 0.0 1.0 0.5 density n/n0 (b) 0.0 0.10 0.05 density n/n0 Natowitz, Röpke, Typel, D.B., ..., Wolter, arxiv:1001.1102 [nucl-th]; PRL (2010). Comparison with standard SN EoS (Shen et al.) 0 0 α-particle fraction Xα 10 10 4 MeV 8 MeV -1 -1 10 10 -2 -2 10 10 -3 10 • NSE (dotted) -3 -5 10 0 10 α-particle fraction Xα • virial expansion (dash-dotted) -4 10 -3 10 -2 -1 10 10 10 -4 10 0 10 12 MeV -3 -2 10 10 -1 10 20 MeV -1 • generalized RMF (long-dashed) -1 10 • Shen et al. (short-dashed) 10 • quantum statistics (solid) -2 -2 10 10 -3 10 -3 -3 10 -2 -1 10 10 -3 density n [fm ] 10 -3 10 -2 -1 10 10 -3 density n [fm ] α particle fractions in symmetric nuclear matter as functions of density at four temperatures. Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010) Extreme States of Matter - The Phase Diagram NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome 80 40 0 0 3 Color Super (2SC) Quarkconducting Matter 4 0.25 3 Φ = 0.1 1 2 CFL s/n = 0.25 0.6 0.9 1.2 -3 n [fm ] mixed phase: RMF-2SC PNJL 0.4 0.5 0.3 full symbols: after thermalization 0.8 0.75 1 1.6 1.2 2 2A GeV URQMD 4A GeV b=0 6A GeV δt=0.5 fm/c 8A GeV 10A GeV 2 3 4 0.5 Matter critical line for 2SC color superconductivity 120 Liquid-Gas Transition T [MeV] 160 Normal Quark ε-mNnB [GeV/fm ] Hadronic Matter Phase diagrams for the CBM and NICA experiments 1.5 1.8 ηV=0 0.3 0.6 ηV=0.25 0.9 1.2 -3 nB [fm ] 1.5 Phase diagram for isospin-symmetric matter (left); trajectories for heavy-ion collisions (right) D.B., F. Sandin, V. Skokov, S. Typel, Acta Phys. Pol. Supp. 3, 741 (2010). 120 80 40 0 0 Liquid-Gas Transition T [MeV] 160 Normal Quark 4 3 0.5 Φ = 0.1 2 1 0.75 2 0.5 0.3 0.9 1.2 -3 n [fm ] Hadronic matter 40 grid point 1 grid point 2 grid point 3 30 20 Quark matter 10 CFL s/n = 0.25 0.6 50 Color Super (2SC) Quarkconducting Matter 4 0.25 3 1 20 solar mass, tpost bounce = 3.5 seconds Matter Temperature, T [MeV] Hadronic Matter Phase diagram and EoS for SN collapse 1.5 1.8 0 14 14.2 14.4 14.6 14.8 3 Baryon Density, log10(ρ [g/cm ]) 15 Phase diagram for isospin-symmetric matter, extension to asymmetric matter and EoS for SN collapse; calculations in progress (right-hand side)! F. Sandin, T. Fischer, D.B., M. Liebendörfer, S. Typel, in preparation. → CompStar Coll. For bag model, see: I. Sagert et al., Phys. Rev. Lett. 102, (2009) → CompStar Coll. Finances and Management Publication & publicity ESF administration Grants Science meetings SC meetings Matching funds Astrosim 2008 2009 2010 schools 2 1 1 workshops 4 4 4 short visits 1 5 3 exchange 0 1 2 120000 100000 80000 60000 40000 20000 0 2008 2009 2010 CompStar Schools & Workshops L"dek Zdrój 2008 DE 24% FR 5% CH 4% DE 14% FR 27% EU 7% PT 13% UK ES 4% 5% CH 2% PL 11% World 6% EU 9% CH 3% UK 7% SK 2% PT SK 8% 1% ES 4% 100 84 107 IT 10% PL 12% World 13% ES 4% Caen 2010 IT 10% DK 1% PL 26% UK 4% DE 21% FR 10% IT 12% DK World 2% 6% EU 14% Coimbra 2009 87 90 85 67 60 30 14 2008 6 6 2009 11 9 2010 6 0 Science Meetings 2008 !Theoretical issues in nuclear astrophysics, Orsay (France) !Dense matter in heavy-ion collisions and astrophysics, Dubna (Russia) !The modern physics of compact stars,Yerevan (Armenia) !Quantum statistical mechanics and field theory, Wroclaw (Poland) 2009 !Neutron stars as gravitational wave sources, Rome (Italy) !Defining the neutron star crust: x-ray burst, superbursts and giant flares, Santa Fe (USA) !Microphysics in computational relativistic astrophysics, Copenhagen (Denmark) !Modeling and observation of neutron stars, Meudon (France) 2010 !“CompStar” EoS workshop, Darmstadt (Germany) !Physics and astrophysics of neutron stars and black holes, Bremen (Germany) !Mode-SNR-PWN workshop, Bordeaux (France) Networking CR ME MF PE SN 2008 CO CO core physics: high density nuclear matter CR crust physics: low density nuclear matter ME Mergers : binary neutron stars and GRB’s MF Magnetic Fields: strong fields and cooling processes PE Perturbations: Gravitational Waves signals SN Supernovae collapse: the birth of Neutron Stars Networking CR ME MF PE SN 2010 2009 2008 CO CO core physics: high density nuclear matter CR crust physics: low density nuclear matter ME Mergers : binary neutron stars and GRB’s MF Magnetic Fields: strong fields and cooling processes PE Perturbations: Gravitational Waves signals SN Supernovae collapse: the birth of Neutron Stars Publications A&A ApJ CQG EPL JPG MNRAS NPA PRC PRD PRL 0 5 10 15 20 total 2008 2009 2010 # papers 113 25 43 45 # authors 149 41 81 88 ! paper/author 2.1 1.3 1.6 1.5 ! authors/paper 3.7 4.0 3.7 3.4 ! countries/paper 2.3 2.6 2.3 2.2 25 Future Goals Measures ! PhD & Postdoc exchange ERA in astronuclear physics between sites with with new generation of complementary expertise interdisciplinary researchers ! Schools & Workshops EoS of dense matter for astrophysical simulations: supernovae, mergers, evolving compact stars task force “CompStar-EoS” with six conveners for EoS (3) and applications (3) www.compstar-esf.org