The New Physics of Compact Stars: CompStar

Transcription

The New Physics of Compact Stars: CompStar
David Blaschke
University of Wroclaw
The New Physics of Compact Stars: CompStar
1st EuroGENESIS Workshop, Dubrovnik, 24-11-2010
David Blaschke
University of Wroclaw
CompStar in a nutshell
! duration: 5 years (Feb. 2008 - Feb. 2013)
! 10 ESF participating countries
! annual budget: 70.5 k!
! expected key activities:
! science meetings (conferences, schools, workshops)
! fellowships (short and long term visits)
Steering Committee
"
Poland » Polish Academy of Sciences (PAN), Warsaw
"
Italy » Istituto Nazionale di Fisica Nucleare (INFN), Rome
"
Germany » Deutsche Forschungsgemeinschaft (DFG), Bonn
"
Denmark » Forskningsrådet for Natur og Univers (FNU), Copenhagen
"
Spain » Consejo Superior de Investigaciones Cientificas (CSIC), Madrid
» Ministerio de Educacion y Ciencia (MEC)
"
France » Centre National de la Recherche Scientifique (CNRS), Paris
"
Slovak Republic » Slovak Research and Development Agency, Bratislava
"
Switzerland Schweizerischer Nationalfonds (SNF), Bern
"
Portugal » Fundação para a Ciência e a Tecnologia, Lisboa
"
United Kingdom » Science & Technology Facilities Council, Swindon
Members
CompStar members
partners in Europe
other ESF members
Members
New Member:
Croatia
CompStar members
partners in Europe
other ESF members
Members
&
Partners
North America
Asia & Australia
South America
Africa
Scientific Scope
CompStar joins three communities
Scientific Scope
CompStar joins three communities
CO
CR
ME
MF
PE
SN
Topics
core physics
high density nuclear matter
crust physics
low density nuclear matter
Mergers
binary neutron stars and GRB’s
Magnetic Fields
strong fields and cooling processes
Perturbations
Gravitational Waves signals
Supernovae collapse
the birth of Neutron Stars
PSR J1614-2230 - A new constraint for the Compact Star EoS
• NS-WD binary in Scorpius
• NS is recycled MSP with P =
3.15 ms
• almost edge-on, inclination 89.17o
• Shapiro delay measured!
• MW D ∼ 0.5 M⊙
• MN S = (1.97 ± 0.04) M⊙
PSR J1614-2230 - A new constraint for the Compact Star EoS
• NS-WD binary in Scorpius
• NS is recycled MSP with P =
3.15 ms
• almost edge-on, inclination 89.17o
• Shapiro delay measured!
• MW D ∼ 0.5 M⊙
• MN S = (1.97 ± 0.04) M⊙
Demorest et al., Nature 467, 1081 (2010)
PSR J1614-2230 - A new constraint for the Compact Star EoS
2.5
GR
P<
Mass (solar)
ality AP4
aus
MPA1
MS0
PAL1
MS2
c
2.0
J1614-2230
J1903+0327
1.5
AP3
ENG
J1909-3744 SQM1
PAL6
GS1
Double NS Systems
SQM3
FSU
GM3
MS1
1.0
0.5
0.07
on
rotati
Nucleons Nucleons+ExoticStrange Quark Matter
8
9
10
11
12
Radius (km)
13
14
15
Demorest et al., Nature 467, 1081 (2010)
PSR J1614-2230 - A new constraint for the Compact Star EoS
2.5
GR
P<
Mass (solar)
ality AP4
aus
MPA1
MS0
PAL1
MS2
c
2.0
J1614-2230
J1903+0327
1.5
AP3
ENG
J1909-3744 SQM1
PAL6
GS1
Double NS Systems
SQM3
FSU
GM3
MS1
1.0
0.5
0.07
on
rotati
Nucleons Nucleons+ExoticStrange Quark Matter
8
9
10
11
12
Radius (km)
13
14
15
Demorest et al., Nature 467, 1081 (2010)
Some “soft” EoS are now ruled out !
What about hybrid stars? Strong constraints for quark matter!
PSR J1614-2230 - A new constraint for the Compact Star EoS
2.5
RX J1856
it
PSR J0751+1807
im
yl
2.0
t
ali
M [Msun]
us
Ca
1.5
0.2
4U 0614 +09
0.15
1.0
DBHF
ηD = 0.92,
ηD = 1.00,
ηD = 1.00,
ηD = 1.02,
ηD = 1.03,
0.5
0
6
8
ηV
ηV
ηV
ηV
ηV
0.1
=
=
=
=
=
0.0
0.0
0.5
0.5
0.5
10
12
R [km]
z=0.05
14
Klähn et al., PLB 654, 170 (2007)
16
PSR J1614-2230 - A new constraint for the Compact Star EoS
2.5
RX J1856
2.0
ty
M [Msun]
u
Ca
i
sal
t
mi
li
PSR J1614-2230
0.2
1.5
0.15
4U 0614 +09
1.0
DBHF
ηD = 0.92,
ηD = 1.00,
ηD = 1.00,
ηD = 1.02,
ηD = 1.03,
0.5
0
6
8
ηV
ηV
ηV
ηV
ηV
0.1
=
=
=
=
=
0.0
0.0
0.5
0.5
0.5
10
12
R [km]
z=0.05
14
CompStar, in preparation (2010)
State-of-the-art hybrid EoS model:
• Chiral symmetry restoration
• Color superconductivity
• Vector meanfield “stiffening”
16
PSR J1614-2230 - A new constraint for the Compact Star EoS
2.5
RX J1856
2.0
ty
M [Msun]
u
State-of-the-art hybrid EoS model:
Ca
i
sal
t
mi
li
PSR J1614-2230
0.2
1.5
0.15
4U 0614 +09
1.0
DBHF
ηD = 0.92,
ηD = 1.00,
ηD = 1.00,
ηD = 1.02,
ηD = 1.03,
0.5
• Chiral symmetry restoration
0
6
ηV
ηV
ηV
ηV
ηV
0.1
=
=
=
=
=
8
0.0
0.0
0.5
0.5
0.5
z=0.05
10
12
R [km]
14
16
• Color superconductivity
• Vector meanfield “stiffening”
Danielewicz et al. (2002)
• Flow constraint at high densities
• Not too early onset of quark matter
-3
Constraints from heavy-ion collisions:
P [MeV fm ]
"flow constraint"
10
2
10
=⇒ QCD phase diagram
DBHF
ηD = 0.92,
ηD = 1.00,
ηD = 1.03,
ηD = 1.02,
1
0.2
0.4
0.6
-3
n [fm ]
ηV
ηV
ηV
ηV
=
=
=
=
0.8
Klähn et al., PLB 654, 170 (2007)
0.0
0.5
0.5
0.5
1
Extreme States of Matter - The Phase Diagram
NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome
Motivation and Tasks
EoS for Supernova and Merger Simulations: Wide range of parameters!
• 10−8 ≤ n/n0 ≤ 10
• 0 ≤ T ≤ 200 MeV
• 0 ≤ Yp ≤ 0.6; β = 1 − 2Yp
Commonly used EsoS:
• Lattimer-Swesty, NPA 535 (1991):
Skyrme-type model LD modeling of nuclei embedded in nucleon gas
• Shen, Toki et al., Prog. Theor. Phys. 100 (1998):
RMF model (TM1), α particles with excluded volume procedure
Recent development:
• Horowitz-Schwenk, NPA 776 (2006): virial expansion, nucleons and α’s
uses experimental data for BE and scattering phase shifts, exact limit for low densities n/n0 < 10−3
Tasks of the present work:
• medium effects on light clusters from quantum statistical approach
• realistic description of high-density matter (DD-RMF)
• thermodynamics, liquid-gas phase transition (instability region)
Theory of nuclear matter with clusters (I)
Total nucleon density:
Z 3 Z ∞
X
dω
1
d k1
f1,Z (ω)S1(1, ω)
ha†1a1iδτ,τ1 = 2
nτ (T, µ̃p, µ̃n) =
3
Ω 1
(2π) −∞ 2π
A −1
Distribution functions: fA,Z (ω) = exp {β [ω − Z µ̃p − (A − Z)µ̃n ]} − (−1)
Cluster decomposition of nucleon densities
1 X
qu
ZfA,Z [EA,ν
(K; T, µ̃p, µ̃n)]
=
Ω
A,ν,K
1 X
qu
tot
(K; T, µ̃p, µ̃n)]
(A − Z)fA,Z [EA,ν
nn (T, µ̃p, µ̃n ) =
Ω
A,ν,K
P
qu
A
(K; T, µ̃p, µ̃n)]
Mass fractions of clusters: XA,Z = Ωn ν,K fA,Z [EA,ν
Thermodynamical potential F by integration of µ(n) [inverted n(µ)]
→ all thdyn. functions (EoS)
Z n
F (T, n, Yps)/Ω =
dn′ µ̃(T, n′, Yps)
ntot
p (T, µ̃p , µ̃n )
0
Theory of nuclear matter with clusters (II)
Single-nucleon quasiparticle dispersion in effective mass approximation:
Eτqu(k)
=
∆EτSE(0)
k2
4
+
O(k
)
+
∗
2mτ
From density-dependent RMF theory follows
q
qu
En,p
(0) = [m − Σn,p(T, n, ±δ)]2 + k 2 + Σ0n,p(T, n, ±δ)
Σn,p – scalar self energy; Σ0n,p time component of vector self energy
SE
∆En,p
(k) = Σ0n,p(T, n, ±δ) − Σn,p(T, n, ±δ) ; m∗n,p = m − Σn,p(T, n, ±δ)
Quasiparticle energies for clusters from A-particle Schrödinger equation in perturbation theory
K2
SE
Pauli
Coul
+ ∆EA,Z
=
=
+
(K) + ∆EA,Z
(K) + ∆EA,Z
(K) + . . .
2Am
Important effect for cluster binding energy in medium: Pauli shift:
2
K
gi,1 + gi,2T + hi,1n
Pauli
Pauli
∆EA,Z (K) ≈ ∆EA,Z (0) exp −
; gi(T, n, Yp) =
gA,Z
1 + hi,2n
qu
EA,ν
(K)
qu
EA,Z
(K)
(0)
EA,Z
Typel, Röpke, Klähn, D.B., Wolter, Phys. Rev. C 81, 015803 (2010)
Proton fraction (dissociation degree) in nuclear matter
(a)
0.5
0.4
proton fraction Xp
proton fraction Xp
0.5
0.3
0.2
0.1
0.0
-4
-3
-2
-1
-5
10 10
10
10 10
-3
density n [fm ]
(b)
0.4
0.3
0.2
2 MeV
4 MeV
6 MeV
8 MeV
10 MeV
12 MeV
14 MeV
16 MeV
18 MeV
20 MeV
0.1
0
10
0.0
-4
-3
-2
-1
0
-5
10 10
10
10
10 10
-3
density n [fm ]
Proton fraction Xp in symmetric nuclear matter in generalized RMF model (a) and quantum
statistical approach (b). Thin lines show the nuclear statistical equlibrium (NSE) model for
comparison.
Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010)
Nuclear matter symmetry energy with clusters
Nuclear (internal) symmetry energy:
E(n, 1, T ) + E(n, −1, T )
Esym(n, T ) =
− E(n, 0, T )
2
20
experiment
RMF without clusters
QS with clusters
15
10
5
0
0
1
2
Vsurf
3
4
[cm/ns]
5
(b)
1.5
experiment
RMF without clusters
QS with clusters
15
Esym(n)/Esym(n0)
(a)
internal symmetry energy Esym [MeV]
free symmetry energy Fsym [MeV]
20
10
0.5
MDI x = 1
MDI x = 0
MDI x = -1
RMF, T = 0 MeV
QS, T = 1 MeV
Exp (col. 6, Tab. 1)
sc (col. 12, Tab. 1)
QS, T= 1 MeV
QS, T= 4 MeV
QS, T= 8 MeV
0.4
1.0
0.3
0.2
0.5
5
0.1
(a)
0
0
1
2
Vsurf
3
4
[cm/ns]
5
0.0
1.0
0.5
density n/n0
(b)
0.0
0.10
0.05
density n/n0
Natowitz, Röpke, Typel, D.B., ..., Wolter, arxiv:1001.1102 [nucl-th]; PRL (2010).
Comparison with standard SN EoS (Shen et al.)
0
0
α-particle fraction Xα
10
10
4 MeV
8 MeV
-1
-1
10
10
-2
-2
10
10
-3
10
• NSE (dotted)
-3
-5
10
0
10
α-particle fraction Xα
• virial expansion (dash-dotted)
-4
10
-3
10
-2
-1
10
10
10
-4
10
0
10
12 MeV
-3
-2
10
10
-1
10
20 MeV
-1
• generalized RMF (long-dashed)
-1
10
• Shen et al. (short-dashed)
10
• quantum statistics (solid)
-2
-2
10
10
-3
10
-3
-3
10
-2
-1
10
10
-3
density n [fm ]
10
-3
10
-2
-1
10
10
-3
density n [fm ]
α particle fractions in symmetric nuclear matter as functions of density at four temperatures.
Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010)
Extreme States of Matter - The Phase Diagram
NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome
80
40
0
0
3
Color Super
(2SC) Quarkconducting
Matter
4
0.25
3
Φ = 0.1
1
2
CFL
s/n = 0.25
0.6
0.9 1.2
-3
n [fm ]
mixed phase:
RMF-2SC PNJL
0.4
0.5
0.3
full symbols:
after thermalization
0.8
0.75
1
1.6
1.2
2
2A GeV URQMD
4A GeV b=0
6A GeV δt=0.5 fm/c
8A GeV
10A GeV
2
3
4
0.5
Matter
critical line for 2SC
color superconductivity
120
Liquid-Gas Transition
T [MeV]
160
Normal Quark
ε-mNnB [GeV/fm ]
Hadronic Matter
Phase diagrams for the CBM and NICA experiments
1.5
1.8
ηV=0
0.3
0.6
ηV=0.25
0.9
1.2
-3
nB [fm ]
1.5
Phase diagram for isospin-symmetric matter (left); trajectories for heavy-ion collisions (right)
D.B., F. Sandin, V. Skokov, S. Typel, Acta Phys. Pol. Supp. 3, 741 (2010).
120
80
40
0
0
Liquid-Gas Transition
T [MeV]
160
Normal Quark
4
3
0.5
Φ = 0.1
2
1
0.75
2
0.5
0.3
0.9 1.2
-3
n [fm ]
Hadronic matter
40
grid point 1
grid point 2
grid point 3
30
20
Quark matter
10
CFL
s/n = 0.25
0.6
50
Color Super
(2SC) Quarkconducting
Matter
4
0.25
3
1
20 solar mass, tpost bounce = 3.5 seconds
Matter
Temperature, T [MeV]
Hadronic Matter
Phase diagram and EoS for SN collapse
1.5
1.8
0
14
14.2
14.4
14.6
14.8
3
Baryon Density, log10(ρ [g/cm ])
15
Phase diagram for isospin-symmetric matter, extension to asymmetric matter and EoS for SN
collapse; calculations in progress (right-hand side)!
F. Sandin, T. Fischer, D.B., M. Liebendörfer, S. Typel, in preparation. → CompStar Coll.
For bag model, see: I. Sagert et al., Phys. Rev. Lett. 102, (2009) → CompStar Coll.
Finances and Management
Publication & publicity
ESF administration
Grants
Science meetings
SC meetings
Matching funds
Astrosim
2008
2009
2010
schools
2
1
1
workshops
4
4
4
short visits
1
5
3
exchange
0
1
2
120000
100000
80000
60000
40000
20000
0
2008
2009
2010
CompStar Schools & Workshops
L"dek Zdrój 2008
DE
24%
FR
5%
CH
4%
DE
14%
FR
27%
EU
7%
PT
13%
UK
ES
4%
5%
CH
2%
PL
11%
World
6%
EU
9%
CH
3%
UK
7%
SK
2%
PT
SK 8%
1%
ES
4%
100
84
107
IT
10%
PL
12%
World
13%
ES
4%
Caen 2010
IT
10%
DK
1%
PL
26%
UK
4%
DE
21%
FR
10%
IT
12%
DK
World 2%
6%
EU
14%
Coimbra 2009
87
90
85
67
60
30
14
2008
6
6
2009
11
9
2010
6
0
Science Meetings
2008
!Theoretical issues in nuclear astrophysics, Orsay (France)
!Dense matter in heavy-ion collisions and astrophysics, Dubna (Russia)
!The modern physics of compact stars,Yerevan (Armenia)
!Quantum statistical mechanics and field theory, Wroclaw (Poland)
2009
!Neutron stars as gravitational wave sources, Rome (Italy)
!Defining the neutron star crust: x-ray burst, superbursts and giant flares, Santa Fe (USA)
!Microphysics in computational relativistic astrophysics, Copenhagen (Denmark)
!Modeling and observation of neutron stars, Meudon (France)
2010
!“CompStar” EoS workshop, Darmstadt (Germany)
!Physics and astrophysics of neutron stars and black holes, Bremen (Germany)
!Mode-SNR-PWN workshop, Bordeaux (France)
Networking
CR
ME
MF
PE
SN
2008
CO
CO core physics: high density nuclear matter
CR crust physics: low density nuclear matter
ME Mergers : binary neutron stars and GRB’s
MF Magnetic Fields: strong fields and cooling processes
PE Perturbations: Gravitational Waves signals
SN Supernovae collapse: the birth of Neutron Stars
Networking
CR
ME
MF
PE
SN
2010
2009
2008
CO
CO core physics: high density nuclear matter
CR crust physics: low density nuclear matter
ME Mergers : binary neutron stars and GRB’s
MF Magnetic Fields: strong fields and cooling processes
PE Perturbations: Gravitational Waves signals
SN Supernovae collapse: the birth of Neutron Stars
Publications
A&A
ApJ
CQG
EPL
JPG
MNRAS
NPA
PRC
PRD
PRL
0
5
10
15
20
total
2008
2009
2010
# papers
113
25
43
45
# authors
149
41
81
88
! paper/author
2.1
1.3
1.6
1.5
! authors/paper
3.7
4.0
3.7
3.4
! countries/paper
2.3
2.6
2.3
2.2
25
Future
Goals
Measures
! PhD & Postdoc exchange
ERA in astronuclear physics
between sites with
with new generation of
complementary expertise
interdisciplinary researchers
! Schools & Workshops
EoS of dense matter for
astrophysical simulations:
supernovae, mergers,
evolving compact stars
task force “CompStar-EoS”
with six conveners for
EoS (3) and applications (3)
www.compstar-esf.org

Similar documents