Water Resources Management Plan 2014 Appendix 5 : Headroom
Transcription
Water Resources Management Plan 2014 Appendix 5 : Headroom
Water Resources Management Plan 2014 Appendix 5 : Headroom Appendix 5: Headroom Executive Summary 1. We require an assessment of target headroom for the dWRMP14. 2. As part of the headroom assessment process, a review of the headroom models created for WRMP09 has been undertaken, and the models updated with current data. 3. This appendix describes the various uncertainties in headroom, the key assumptions made in the models for these uncertainties by taking into account the current supply demand conditions and the outputs from the models. 4. The summary also lists the changes in assumptions made in the current headroom models in comparison to those made for WRMP09. It should be noted that the headroom assessment relies on data from several other tasks which are being undertaken concurrently and the updated information from these tasks have been incorporated in this dWRMP14. Appendix 5: Headroom Contents Page EXECUTIVE SUMMARY .....................................................................................................................................1 CONTENTS PAGE ..............................................................................................................................................2 INTRODUCTION ...............................................................................................................................................3 TARGET HEADROOM ..........................................................................................................................................3 HEADROOM UNCERTAINTY ..................................................................................................................................3 OBJECTIVES .....................................................................................................................................................4 THE MODEL ....................................................................................................................................................4 KEY ASSUMPTIONS ..........................................................................................................................................5 SUPPLY SIDE DATA ............................................................................................................................................5 S1, S2 and S3 Vulnerable Water Licences ..................................................................................................5 S4 Bulk Imports ................................................................................................................................5 S5 Gradual Pollution .............................................................................................................................6 S6 Accuracy of Supply Side Data ...........................................................................................................8 S7 Single Source Dominance .................................................................................................................8 S8 Uncertainty of Impact of Climate Change on Deployable Output.......................................................9 S9 New source uncertainty ...................................................................................................................9 DEMAND SIDE DATA..........................................................................................................................................9 D1 Accuracy of Sub–component Demand Data ..................................................................................9 D2 Demand Forecast Uncertainty.................................................................................................... 10 D3 Uncertainty of Climate Change on Demand ................................................................................ 10 D4 Uncertainty of Demand Management Measures ........................................................................ 11 OVERLAPPING AND CORRELATED .................................................................................................................. 12 OVERLAPPING ................................................................................................................................................ 12 CORRELATED ................................................................................................................................................. 12 RESULTS.........................................................................................................................................................13 MODELLED SCENARIOS..................................................................................................................................... 13 FINAL RESULTS ............................................................................................................................................... 13 Appendix 5: Headroom Introduction Target Headroom 5. When a supply and demand balance is calculated and forecast over a planning period there are many sources of uncertainties that arise due to assumptions being made, incomplete or unreliable data sets or a lack of understanding of factors that may influence the supply demand balance such as climate change. Incorporating target headroom into the balance helps to ensure that levels of service can be maintained despite uncertainties surrounding supply demand forecasting. 6. Target headroom may be defined as “the minimum buffer that a prudent water company should allow between supply and demand to cater for specified uncertainties (except for those due to outages) in the overall supply and demand balance”. 7. The Guideline do not expect water companies to eliminate all potential uncertainties, but they should certainly plan to eliminate the majority of the uncertainties in the immediate future and less over the longer term as it is understood that there will be changes to the supply demand balance later on in the planning period that could not be anticipated at the beginning. Therefore, the current methodology allows headroom to be displayed as a probability distribution known as headroom uncertainty. Headroom Uncertainty 8. Headroom uncertainty addresses key components of the supply demand balance for the entire planning period and, through the quantification of all foreseeable sources of uncertainty provides an additional planning allowance added to the demand forecast. Further to that the assessment of headroom uncertainty allows water companies to see which components of their supply demand balance are the major sources of uncertainty. When a company understands the uncertainties in its supply demand projections it can make appropriate investment decisions to ensure levels of service are maintained. 9. The 2002 UKWIR methodology 1 suggests that there are eight sources of uncertainty in the supply side data and four in the demand side. The methodology allows for water companies to include as many or few as are relevant bearing in mind that within a 30 year planning period there is likely to be many changes to the operation of a company and therefore many additional sources of uncertainty. Some components may be specific to a particular source such as a pollution issue, whilst others may affect a whole RZ such as licence reductions and some will affect the company as a whole such as the impacts of climate change on supply and demand. 10. After an assessment has been made on which components apply in each zone, and for what period, the uncertainties must then be quantified. This process requires close liaison within our Company with the personnel who have the most experience / knowledge in each individual area. Many assumptions and simplifications are made, which must be documented to ensure the approach is fully auditable and above all, robust enough to be able to provide realistic targets throughout the planning horizon. 1 An improved methodology for assessing Headroom – final report (UKWIR, 2002). Appendix 5: Headroom 11. The headroom assessment can then be integrated with other components of the supply – demand balance in order to provide a tool that can aid planning and decision making regarding the timing and nature of schemes designed to increase supply and manage demand. Objectives 12. The objective of this report was to summarise and complete a model for the assessment of headroom uncertainty using all data currently available. The output is displayed as a probability distribution that allows water companies to plan to manage uncertainties throughout the planning period to 2040. 13. The assessment of headroom has been done so in accordance with the latest UKWIR methodology (UKWIR, 2002). The approach is transparent and fully auditable and has been done at a company, regional and Resource Zone (RZ) level. Two assessments have been undertaken, one for Dry Year Annual Average (DYAA) and another for Average Day Peak Week (ADPW). 14. The base year of the planning horizon is 2015; thereafter the results are displayed in five year intervals up to 2040, consistent with each AMP period. 15. This report also details comprehensive methods of quantifying uncertainties for each of the components that comprise the headroom assessment to enable future users of the model to manipulate raw data in a way that ensures consistency across all components and that all assumptions and simplifications are mathematically correct. 16. A further output of the model will be a clearly defined assessment of the degree to which each component influences the headroom uncertainty throughout the planning period, allowing the user to identify the key drivers of uncertainty in the supply demand balance. 17. To assess the headroom for DYCP the same approach has been adopted for DYAA calculation but all deployable outputs used have been the peak deployable outputs and all calculations involving demand figures have used the peak demand. The Model 18. The model requires all uncertainties to be quantified in Ml/d and represented by probability distributions which are then used to populate a Monte Carlo model. For this project @Risk version 4.5 was used as the simulation tool. 19. The model is based on a template developed by UKWIR (2002), however a considerable number of improvements have made to make the analysis more robust and to improve the functionality, so the model can be used to test assumptions. Appendix 5: Headroom Key Assumptions Supply Side Data S1, S2 and S3 Vulnerable Water Licences 20. S1 and S2 uncertainties relate to vulnerable surface water and groundwater licences. As per the WRPG (S 3.2), the Environment Agency has provided companies with “confirmed” and “likely” sustainability changes required, and these have been included explicitly in baseline deployable output according to the guidance. Companies are instructed not to make any additional allowance for sustainability reduction in headroom and consequently these components are set to zero in the model. 21. S3 allows for reductions in deployable output through time limited licences being reduced or revoked upon expiration. The WRPG (S 5.3) states that we should not make allowances in their headroom calculations for the risk of time-limited licences not being renewed or a licence revoked because of a sustainability reduction. Consequently, the results presented in this report do not take into account any uncertainty from time limited licences with the S3 component set to zero. S4 Bulk Imports 22. S4 Allows for uncertainties in bulk imports that are out of the receiving water companies control. Four imports have been identified and through discussions with our Operations Control Centre we have reviewed historical operations and their reliability has been approximately quantified. The four imports are summarised in table 1. Table 1: Summary of Bulk Supplies Donor Source Resource Current Agreed Volume Zone (Ml/d) Average Peak Weir Wood 2 5.4 5.4 Affinity Water 4 36 36 Darwell Reservoir Belmont Scheme 3 8 8 6 6.3 7.8 Weir Wood 23. Weir Wood Reservoir is owned and operated by Southern Water Services (SWS). The treatment works at the reservoir transfers water into our system at five locations which are metered and monitored. In recent years the full supply has not been guaranteed under the severe drought conditions experienced so the uncertainties surrounding the Weir Wood abstraction have been modelled using a triangular distribution based on the possibility that the deployable output could reduce to 3.4 Ml/d. This has been derived from the operational experience during the drought of 2011/12 when SWS reduced the supply to this level for much of the period. 24. The distribution therefore has the following parameters for average and peak condition: • Max loss 2.0 Ml/d Appendix 5: Headroom • • Min loss 0 Ml/d Average loss 1.0 Ml/d Affinity Water 25. Affinity (Central) Water supplies water from their existing WTW supply to our Surrey Hill Reservoir in RZ4. The abstraction by Affinity Water is up to 101 Ml/d, of which we have an assured supply of 36 Ml/d, however, should the abstraction decrease then our entitlement will decrease accordingly. Based upon the experience in the recent drought and assurances received from Affinity, the import is considered reliable, however the reduction in supply that is out of our control has been assumed at 10% reduction of the agreement. 26. The distribution therefore has the following parameters for average and peak condition: • Max loss 3.6 Ml/d • Min loss 0 Ml/d • Average loss 1.8 Ml/d Darwell 27. We receive bulk supply from SWS’s Darwell Reservoir which provides raw water to our Hazards Green Water Treatment Works in RZ3. The current agreement with SWS is for 8 Ml/d to be available. Historically Darwell Reservoir has been considered to be unreliable with severe restrictions during droughts as the reservoir has been down to 10 – 20% full for weeks at a time. Additional transfer capacity has been recently implemented to transfer water from Bewl Reservoir to Darwell Reservoir, which is likely to increase the security of the import in the future. 28. The scheme has not been operational long enough to confirm this but based on operational data supplied by Southern Water the Darwell bulk import could reduce to 5.98Ml/d. This is represented in the model by a triangular distribution with the following parameters for both average and peak periods: • Max loss 2.0Ml/d • Min loss 0 Ml/d • Average loss 1.0 Ml/d Matts Hill 29. The import from SWS at Matts Hill into RZ6 (representing the Belmont Agreement) has been identified as uncertain as there have been prolonged periods, particularly during droughts, where the agreed quantity was not available. The current agreement with SWS provides for 6.3 Ml/d average and 7.8 Ml/d peak to be available. During recent dry periods SWS have reduced the supply directly due to source capability issues. It is on this basis that a triangular distribution has been used to represent the uncertainty with the following parameters: • Max loss 1.1 Ml/d average and 2.6 Ml/d peak • Min loss 0 Ml/d • Average loss 0.55 Ml/d and 1.3 Ml/d peak (50% of the maximum) S5 Gradual Pollution Appendix 5: Headroom 30. S5 allows for uncertainties surrounding permanent loss of output through gradual pollution of a source resulting in either abandonment or the installation of treatment. By contrast, temporary losses are accounted for in the outage assessment which is reported elsewhere. 31. The risk of contamination has been quantified by using a standard approach of borehole vulnerability which assesses the risk of contamination at each source using the following parameters: • Groundwater flow mechanism - Fissured aquifers are allocated a larger risk score; • Distance from outcrop - For confined aquifers, risk is inversely proportional to distance from outcrop; • Superficial cover - Unconfined aquifers may have a decreased risk if they are overlain by superficial deposits. The nature of the deposits is also considered; • Unsaturated depth - Risk is inversely proportional to unsaturated depth; • Primary land use - For unconfined aquifers the land use around the source has been considered and for confined aquifers the land use around the outcrop has been considered; • Age of casing - If the last geophysical inspection of a borehole found the casing to be in good order then degradation of the casing has been taken to increase the risk of contamination. If a boreholes casing is known (from geophysical inspection) to be in disrepair then it is discounted as the casing is assumed to have been replaced. And; • Site specific risks - Subjective assessment based on presence of adits, proximity to motorways, rivers etc. 32. To calculate figures for the total risk, the scores for all sources within the same aquifer has been averaged and categorised into low, medium and high risk. This has then been applied to all our sources constructed in the same type of aquifer. If the aquifer is confined the risk has been halved. Through discussions with our Water Quality Manager, losses of output due to gradual pollution have been estimated to be 10% of the risk value and this is factored into the model. 33. For these models, it has been assumed that no source will be abandoned due to gradual pollution uncertainty. The headroom risk has been related to the process losses associated with additional treatment required due to pollution. The risk of contamination has been quantified based on the type of aquifer as assumed for WRMP09 and shown in the following table. The risk values, and therefore the probability values, used in the analysis are shown in table 2. Table 2: Risk of Contamination based on Aquifer types Aquifer Risk of Contamination Chalk High – 5% Upper / Lower Greensand Medium – 2.5% Tunbridge Wells Sand Medium – 2.5% Ashdown Formation Medium – 2.5% Hythe Formation Medium – 2.5% Gravels High – 5% Appendix 5: Headroom 34. It should be noted that where a loss in S5 is identified in the headroom simulation the loss is permanently excluded in the headroom assessment for the rest of the period. This matches the model closer to what occurs in reality, where a source that is lost to gradual pollution will be lost for the rest of the assessment period. S6 Accuracy of Supply Side Data 35. S6 allows for uncertainties surrounding the measurement of outputs and the quantity of water being abstracted at a source. For S6, all sources firstly had to be categorised according to their constraints so the origin of the uncertainty can then be identified and estimated. 36. Surface water sources have uncertainties surrounding the deployable output assessment. These models are based on numerical models, which include assumptions and estimates. On that basis, surface water deployable outputs have been assigned an uncertainty of +/10%. 37. The deployable output of groundwater sources that are constrained by the aquifer or the Deepest Advisable Pumped Water Level (DAPWL) have uncertainties arising from the method of the deployable output assessment. The deployable output assessment uses historical water level and pumping rate data, which can often be incomplete or erroneous, or may not fully represent the conditions that would exist during times of drought or peak demand for example. 38. Based on the confidence level grading carried out in the output assessment, the sources have been graded as 1 (Good), 2 (Fair), 3 (Poor). This has also been linked to the constraints affecting an output value. This has been converted into a percentage uncertainty of the deployable output to obtain the triangular distribution (Minimum, Average and Maximum Values) for @Risk analysis as shown below. Table 3: Percentage Loss for Triangular Distribution for S6 component Confidence Grading DO constraint % Loss No uncertainty Licence constraint 1% Good Treatment/process 5% Good Hydrology/hydrogeology 5% Fair Treatment/process 10% Fair Hydrology/hydrogeology 10% Poor Treatment/process 20% Poor Hydrology/hydrogeology 20% 39. The Baseline deployable outputs used in this headroom assessment are the most robust and up-to-date information available using the updated figures reported in the Supply Section. S7 Single Source Dominance Appendix 5: Headroom 40. S7 has been omitted from the headroom assessment in accordance with UKWIR (2002) as it is considered as an outage issue and will be included in that component of the dWRMP14. S8 Uncertainty of Impact of Climate Change on Deployable Output 41. HR Wallingford has carried out an assessment of the impact of climate change on deployable outputs which concluded that the range of uncertainty made for WRMP09 remains reasonable using the latest information, although the projected impacts themselves are marginally lower than those reported for WRMP09. This is in part due to this assessment using UKCP09 climate change projections, resulting in different deployable output changes. 42. The impacted deployable outputs for mid, wet and dry scenarios have been supplied, which may then be used to form triangular distributions at a RZ level the following equations: • Maximum deployable output loss = (Mid deployable output) – (Dry deployable output) • Minimum deployable output loss = (Mid deployable output) – (Wet deployable output) • Base case = 0 (Mid deployable output – Mid deployable output) 43. Water Resources planning is based on dry years in accordance with the Level of Service. Most research suggests that climate change will result in drier conditions in the south east of England. Therefore, the triangular distributions have been skewed to 60% dry, 40% wet. This ensures that the model will favour the dry climate change scenario. 44. Overall, therefore, no major changes have been applied to the WRMP09 models with regard to the distribution of uncertainty in the models. S9 New source uncertainty 45. S9 allows for uncertainties in estimations of the deployable output of new sources. At time of calculation the results from the optimisation modelling for the dWRMP14 were not available and consequently the baseline outputs for the S9 component has not been included. However, the model still includes functionality to incorporate new sources at a later stage. 46. However, it is considered reasonable that for the purposes of the baseline target headroom, the options being considered deployable output include the yield uncertainty within their own constraints at this stage, and consequently this current calculation is a reasonable estimation of the S9 parameter. Demand Side Data D1 Accuracy of Sub–component Demand Data 47. The D1 parameter allows for uncertainties in the demand forecast that arise from the input of the base year data of the forecast. Data for the base year, 2011/12 has been derived from the June Returns/Annual Return. 48. Two methods are employed to quantify the demand over the year in the AR. A ‘bottom up’ approach sums the demand from each individual sub-component, while the source meters sum the total distribution input (referred to as the ‘top-down’ approach). There is often a small discrepancy between the two totals, which is addressed in a calculation which spreads the imbalance across all components in proportion to their uncertainty. Appendix 5: Headroom 49. A review of the return data and the imbalances reported suggests an appropriate distribution is a uniform distribution ranging from -1% to +2.5%. This is included in the baseline model. The high and low scenario difference therefore has been derived the current best estimate DYAA forecast, with the lower margin set at -1% and the upper margin at +2.5% of the demand. This range is unchanged to the distribution reported in the previous WRMP09. D2 Demand Forecast Uncertainty 50. Sources of uncertainty in the demand forecast include assumptions in population growth, per capita consumption and changes and growth in non-household demand. 51. In order to quantify the uncertainties around the central demand forecast, an upper and a lower demand forecast has been estimated with the changes in demand as shown in the table below. The forecast is weighted with a higher level of uncertainty towards the upper, or higher forecast, which the significant reductions in household consumption adopted in the base forecast and our assessment the likelihood of these reductions in demand management being achieved. This upper end forecast is some 3 times higher than the lower end forecast which we consider is a reasonable reflection of the conservative nature of the base forecast. Table 4: D2: High and Low Forecast Range Change to Forecast Low High 2014/15 -0.5% 0.5% 2019/20 -0.8% 1.5% 2024/25 -1.0% 3.0% 2029/30 -1.5% 5.0% 2034/35 -2.0% 7.0% 2039/40 -2.5% 9.0% 52. Triangular distributions have been modelled for each year using the following equations: • Maximum increase in demand = High – Mid • Minimum increase in demand = Low – Mid • Base case = 0 (Mid – Mid) D3 Uncertainty of Climate Change on Demand 53. Modelling the impact of climate change on demand has been undertaken by HR Wallingford for the company. Demand figures for a mid, wet and dry scenarios have been supplied, the climate change impacted deployable outputs may then be used to form a triangular distribution at a RZ level using the following equations: • Maximum increase in demand = High – Mid • Minimum increase in demand = Low – Mid • Base case = 0 (Mid – Mid) 54. In order to quantify the uncertainties around the central demand forecast, an upper and a lower demand forecast has been estimated with the changes in demand as shown in the table below. Appendix 5: Headroom Table 5: D3: High and Low Forecast Range Change to Forecast Low High 2014/15 0.00% 0.10% 2019/20 0.00% 0.21% 2024/25 -0.05% 0.32% 2029/30 -0.11% 0.44% 2034/35 -0.17% 0.58% 2039/40 -0.24% 0.71% D4 Uncertainty of Demand Management Measures 55. D4 is the demand equivalent of S9 and although not included in the baseline analysis, the functionality is included in the model. The study has identified a number of demand management measures and has estimated the uncertainty surrounding water savings on an scale of 0 – 100. As with S9 the score has been converted into a percentage by assuming that a score of 0 equates to no saving uncertainty, whilst a score of 100 equates to a saving uncertainty of 50%. 56. Each scheme within the shortlist has been included in the model with its own triangular distribution. The scheme can be activated by assigning a ‘1’ to the scheme and deactivated by assigning a ‘0’ to the scheme. This may be done at any modelled year within the planning period to allow the user to control which schemes will affect the headroom uncertainty. 57. However, this parameter has currently been set to zero and has not been used in our assessment of target headroom. Appendix 5: Headroom Overlapping and Correlated 58. Headroom components may be related or dependent, which will often need to be incorporated into the statistical analysis. Relationships between headroom components will be in one of the following forms: • Overlapping • Correlated Overlapping 59. Headroom components are said to overlap when only the larger of the two uncertainties needs to be included. S1/S2 and S5 are the only overlapping headroom components in the model and as the former are not included in this model, being set to zero, there are no further parameters which overlap. Correlated 60. Headroom components are correlated when they are influenced by the same factors. The following correlations have been used: • S8, D3 Correlation coefficient 0.75 61. If climate change has a large impact on supply then it will also have a large impact on demand. In the future climate change cannot be wet and dry at the same time, so if the dry scenario is selected for one component it should also be selected for the other. However, as demand is generally driven by summer discretionary use, resulting from hot dry summers and supply is mostly dependant on water recharge it is not appropriate to use a correlation coefficient of 1 so 0.75 has been adopted. • S8, S4 Correlation coefficient 0.5 62. If climate change has a large impact on supply then the uncertainty around bulk imports is likely to increase. The company does not have detailed modelling on the yields of bulk supplies, so it may not be appropriate use a correlation coefficient of 1. As an estimate a figure of 0.5 has been used. Appendix 5: Headroom Results Modelled Scenarios 63. The model runs were completed for the baseline forecast and deployable output and a full suite of percentile plots were produced for each of the average and peak scenarios for each of the 8 WRZs. An example plot is shown below, for WRZ3 Average condition. The full set of tables, for each WRZ are included in Appendix A and B for the dry year annual average and the dry year summer peak periods respectively, together with the relevant tornado plots Appendices C and D. Figure 1: Average Headroom Percentile plot, WRZ3 64. We have considered a range of issues in assessing the appropriate level of headroom for the dWRMP14 and consider that the 65 percentile reflects the most appropriate level of risk across the planning period. Previous percentiles have ranged from 90 %ile down to 50%ile, but, in comparison with target headroom figures produced for WRMP09 and the current level of risk experienced in the industry, the 65%ile represents: • Reasonable consistency with historic levels of target headroom; • A figure which is proportionate with the demands and resources of the company; and • A level of risk that is within the range of other companies estimates. Final Results 65. The final figures for this dWRMP14 are presented in Table 6 below. Appendix 5: Headroom Table 6: Summary of Target Headroom for dWRMP14 2015 2020 2025 Ml/d Ave Peak Ave Peak Ave Peak RZ1 0.9 1.5 2.4 3.4 3.0 4.3 RZ2 2.4 2.7 6.1 8.0 7.4 10.0 RZ3 2.0 1.6 4.1 4.7 5.6 6.6 RZ4 4.7 5.5 7.1 8.2 8.6 10.6 RZ5 0.7 1.2 1.7 2.6 2.1 3.2 RZ6 1.5 2.1 1.9 2.4 2.5 3.4 RZ7 1.4 1.2 2.6 2.5 2.8 2.7 RZ8 0.9 1.0 2.5 3.0 3.6 4.2 TOTAL 14.6 16.7 28.5 35.0 35.6 45.0 2030 Ave 3.8 8.4 7.6 10.3 2.8 3.1 3.0 4.8 43.8 Peak 5.1 11.2 9.3 13.7 4.1 4.1 2.9 5.6 56.1 2035 Ave 4.7 9.2 9.3 12.1 3.2 3.9 3.2 6.2 51.7 Peak 6.4 12.2 11.7 16.5 5.1 4.9 3.2 7.2 67.2 2040 Ave 5.5 10.6 11.3 13.5 4.0 4.7 3.4 7.6 60.7 Peak 7.0 13.6 13.6 19.5 5.5 5.8 3.6 8.6 77.2 66. We consider that the final headroom figures presented in this report are consistent, transparent, robust and are comparable with the rest of the region. These results are in line with other neighbouring water companies’ headroom as reported previously, as a percentage of distribution input and in terms of levels of confidence. Headroom Model Results for dWRMP14 Final Report Feb 2013 APPENDIX A – WATER RESOURCE ZONE HEADROOM MODEL SPREADSHEET DATA DRY YEAR ANNUAL AVERAGE Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet Scenario Ref Resource Zone Ref South East Water DYAA RZ1 Version Phase 4.5 Date 13/02/2013 Component S1 & S2 Correlated With By Conti nuou Depe nden t Overl appi ng Company Name Parameters Headroom Component (Ml/d) 2019/20 2024/25 2011/12 2014/15 2029/30 2034/35 2039/40 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.40 0.000 0.81 1.21 1.62 2.02 2.43 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields 0.00 FALSE Type FALSE 0.00 FALSE Type 0.00 FALSE S9 Type FALSE D1 0.00 FALSE 0.30 FALSE Type 0.66 0.72 0.77 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.30 0.30 0.30 0.30 0.30 0.30 0.000 0.000 0.000 0.000 0.000 0.000 0.27 FALSE 0.00 0.10 0.27 0.48 0.69 0.91 0.000 0.000 0.000 0.000 0.000 0.000 Uncertainty of impact of climate change on demand Type FALSE D4 0.60 0.000 Demand forecast variation FALSE D3 0.54 0.000 Accuracy of sub-component data Type D2 0.00 0.000 Uncertainty over New Sources 0.00 FALSE 0.01 0.03 0.04 0.04 0.05 0.06 0.000 0.000 0.000 0.000 0.000 0.000 Uncertainty of impact of demand management Type FALSE 0.00 FALSE Type Param. A Param. B Param. C 0.00 Triangular 0.00 Min Best Max 0.00 0.00 0.00 0.00 0.03 0.00 14 Overlapping components 0.00 Triangular Min Best Max 0.00 0.00 0.06 0.00 16 0.00 Triangular Min Best Max 0.00 0.00 0.09 0.00 18 0.00 Triangular Min Best Max 0.00 0.00 0.13 0.00 20 0.00 Triangular Min Best Max 0.00 0.00 0.15 0.00 22 0.00 Triangular Min Best Max Triangular 0.00 Min Best Max 0.00 0.18 0.00 20 0.00 22 Group 1 Group 2 Group 3 Sum of Headroom components Distribution Profile Parameters Profile A B C Fixed Val Value Triangular Min Min Best Best Estimate Max Max Normal Avg Mean Max Max Estimate SD St'd Deviation Lognormal Avg Mean Max Max Estimate SD St'd Deviation Beta A Alpha B Beta Scl Scale Exponential Rate Rate Custom x1 Value 1 x2 Value 2 p1 Probability 1 Uniform Min Min Estimate Max Max Estimate Weibull Loc Location Scl Scale Shp Shape Gama Loc Location Scl Scale Shp Shape Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale 2011/12 0.57 D 2014/15 0.72 2019/20 1.78 2024/25 2.42 2029/30 3.10 2034/35 3.79 2039/40 4.48 Analysis Statistics p2 Probability 2 Mean Minimum 25th percentile 50th percentile 75th percentile Maximum Std Deviation Variance Skewness 0.581 -0.738 0.187 0.610 0.951 1.937 0.509 0.259 0.018 0.712 -0.383 0.350 0.705 1.074 1.766 0.458 0.210 -0.042 1.769 -2.964 0.473 1.679 2.958 6.444 1.739 3.024 0.141 2.316 -2.381 0.953 2.212 3.655 7.520 1.860 3.460 0.178 3.076 -2.625 1.543 2.918 4.588 9.205 2.146 4.607 0.167 3.859 -2.189 2.149 3.699 5.538 10.779 2.398 5.749 0.155 4.496 -2.035 2.621 4.343 6.343 12.407 2.675 7.158 0.161 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water DYAA RZ2 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2011/12 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 FALSE 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 FALSE 0.00 0.41 0.83 1.24 1.66 2.07 2.49 FALSE FALSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FALSE 0.00 0.00 1.54 1.72 1.89 2.06 2.23 FALSE FALSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FALSE 0.56 0.56 0.56 0.56 0.56 0.56 0.56 FALSE FALSE 0.31 0.00 0.18 0.49 0.87 1.25 1.65 FALSE FALSE 0.00 0.02 0.05 0.07 0.08 0.10 0.12 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE FALSE 0.00 14 Overlapping components 0.00 16.00 0.00 18 0.00 20 0.00 22 0.00 20 0.00 22 Sum of Headroom components Group 1 2011/12 0.86 Group 2 2014/15 2.00 2019/20 4.16 2024/25 5.07 2029/30 6.05 2034/35 7.04 2039/40 8.04 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 0.9 1.97 4.2 5.2 6.1 7.0 8.0 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -1.4 -0.68 -8.2 -7.8 -8.8 -8.7 -8.7 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.2 1.22 0.4 1.0 1.6 2.3 2.4 Beta A Alpha B Scl Scale 50th percentile 0.9 1.96 3.8 4.8 5.7 6.6 7.6 Exponential Rate Rate 75th percentile 1.5 2.69 8.0 9.1 10.7 11.6 13.2 Custom x1 Value 1 x2 Maximum 3.2 4.88 17.8 19.0 22.7 27.0 27.5 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.9 1.01 5.1 5.6 6.4 6.8 7.3 Weibull Loc Location Scl Scale Shp Shape Variance 0.8 1.02 26.1 31.8 40.8 46.8 53.8 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.09 0.2 0.2 0.1 0.2 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Beta Value 2 Scale p1 Probability 1 p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water DYAA RZ3 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2011/12 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 1.0000 1.0000 1.0000 2.0000 3.0000 4.0000 5.0000 0.00 0.000 0.25 0.000 0.51 0.000 0.76 0.000 1.02 0.000 1.27 0.000 1.52 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.79 0.000 0.88 0.000 0.96 0.000 1.05 0.000 1.14 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.47 0.000 0.47 0.000 0.47 0.000 0.47 0.000 0.47 0.000 0.47 0.000 0.47 0.00 0.000 0.00 0.000 0.15 0.000 0.41 0.000 0.73 0.000 1.05 0.000 1.38 0.00 0.000 0.02 0.000 0.04 0.000 0.05 0.000 0.07 0.000 0.08 0.000 0.10 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management Type FALSE FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2011/12 1.47 Group 2 2014/15 1.74 2019/20 2.96 2024/25 4.57 2029/30 6.24 2034/35 7.92 2039/40 9.61 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 1.5 1.7 3.1 4.6 6.4 8.1 9.8 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -0.5 -0.1 -3.7 -2.9 -2.5 -2.2 -0.7 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.9 1.1 1.4 2.4 4.0 5.6 6.8 Beta A Alpha B Beta Scl Scale 50th percentile 1.5 1.7 3.0 4.3 6.3 7.9 9.6 Exponential Rate Rate 75th percentile 2.0 2.3 5.0 6.6 8.6 10.6 12.7 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 3.4 3.7 10.2 12.8 15.6 18.6 22.1 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.8 0.8 2.6 2.9 3.3 3.6 4.1 Weibull Loc Location Scl Scale Shp Shape Variance 0.6 0.6 6.6 8.4 10.9 13.3 16.7 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.1 0.1 0.2 0.1 0.1 0.0 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water DYAA RZ4 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 0.00 0.000 0.36 0.000 0.72 0.000 1.08 0.000 1.44 0.000 1.80 0.000 2.16 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.97 0.000 1.08 0.000 1.18 0.000 1.29 0.000 1.40 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 1.45 0.000 1.45 0.000 1.45 0.000 1.45 0.000 1.45 0.000 1.45 0.000 1.45 -1.90 0.000 0.00 0.000 0.47 0.000 1.26 0.000 2.21 0.000 3.18 0.000 4.16 0.00 0.000 0.06 0.000 0.13 0.000 0.17 0.000 0.21 0.000 0.25 0.000 0.29 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 1.34 Group 2 2014/15 3.67 2019/20 5.53 2024/25 6.83 2029/30 8.29 2034/35 9.77 2039/40 11.26 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 1.4 3.6 5.4 6.8 8.2 9.7 11.0 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -7.7 -3.1 -5.5 -5.3 -7.1 -8.7 -6.6 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile -0.8 1.8 2.5 3.5 4.5 5.0 5.9 Beta A Alpha B Beta Scl Scale 50th percentile 1.3 3.6 5.4 6.8 8.0 9.4 10.9 Exponential Rate Rate 75th percentile 3.6 5.4 8.4 10.1 12.0 13.9 15.6 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 9.9 10.3 18.4 21.8 25.3 30.3 33.5 Uniform Min Min Estimate Max Max Estimate Std Deviation 3.1 2.3 4.1 4.6 5.4 6.4 7.0 Weibull Loc Location Scl Scale Shp Shape Variance 9.5 5.3 17.0 21.1 29.6 41.1 49.2 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.0 0.1 0.1 0.0 0.2 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water DYAA RZ5 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 0.000 0.22 0.000 0.43 0.000 0.65 0.000 0.86 0.000 1.08 0.000 1.29 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.35 0.000 0.39 0.000 0.42 0.000 0.46 0.000 0.50 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.30 0.000 0.30 0.000 0.30 0.000 0.30 0.000 0.30 0.000 0.30 0.000 0.30 0.04 0.000 0.00 0.000 0.10 0.000 0.26 0.000 0.46 0.000 0.66 0.000 1.21 0.00 0.000 0.01 0.000 0.03 0.000 0.03 0.000 0.04 0.000 0.05 0.000 0.06 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 0.34 Group 2 2014/15 0.53 2019/20 1.20 2024/25 1.63 2029/30 2.09 2034/35 2.56 2039/40 3.37 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 0.3 0.5 1.2 1.7 2.2 2.5 3.4 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -0.6 -0.5 -1.7 -1.7 -2.1 -1.7 -1.4 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.0 0.2 0.4 0.8 1.1 1.2 2.0 Beta A Alpha B Beta Scl Scale 50th percentile 0.3 0.5 1.2 1.6 2.1 2.5 3.3 Exponential Rate Rate 75th percentile 0.7 0.9 2.1 2.5 3.3 3.7 4.6 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 1.3 1.6 4.3 5.4 6.7 7.6 8.8 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.4 0.4 1.2 1.3 1.5 1.8 1.9 Weibull Loc Location Scl Scale Shp Shape Variance 0.2 0.2 1.4 1.6 2.3 3.1 3.5 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.0 0.1 0.2 0.2 0.2 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water (ex MKW) DYAA RZ6 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.6500 0.6500 0.6500 0.5500 0.5500 0.5500 0.5500 0.00 0.000 0.00 0.000 0.23 0.000 0.46 0.000 0.69 0.000 0.92 0.000 1.15 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.04 0.000 0.06 0.000 0.09 0.000 0.11 0.000 0.13 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.49 0.000 0.49 0.000 0.49 0.000 0.49 0.000 0.49 0.000 0.49 0.000 0.49 0.00 0.000 0.00 0.000 0.16 0.000 0.45 0.000 0.80 0.000 1.18 0.000 1.57 0.00 0.000 0.02 0.000 0.04 0.000 0.06 0.000 0.07 0.000 0.08 0.000 0.10 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 1.14 Group 2 2014/15 1.16 2019/20 1.62 2024/25 2.07 2029/30 2.69 2034/35 3.33 2039/40 3.99 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 1.1 1.2 1.6 2.1 2.6 3.3 4.0 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -1.3 -1.4 -1.1 -0.9 -0.5 -1.0 -1.3 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.5 0.5 0.9 1.4 1.7 2.0 2.5 Beta A Alpha B Beta Scl Scale 50th percentile 1.1 1.1 1.5 2.1 2.6 3.2 3.8 Exponential Rate Rate 75th percentile 1.8 1.8 2.2 2.8 3.5 4.5 5.5 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 3.4 3.4 4.1 5.6 6.7 9.5 9.9 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.8 0.8 0.9 1.1 1.3 1.7 2.0 Weibull Loc Location Scl Scale Shp Shape Variance 0.7 0.7 0.8 1.1 1.7 2.9 4.2 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.0 0.1 0.1 0.2 0.3 0.3 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water (ex MKW) DYAA RZ7 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 1.0000 2.0000 2.0000 2.0000 2.0000 2.0000 0.00 0.000 0.03 0.000 0.06 0.000 0.09 0.000 0.11 0.000 0.14 0.000 0.17 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.06 0.000 0.09 0.000 0.12 0.000 0.15 0.000 0.18 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.16 0.000 0.16 0.000 0.16 0.000 0.16 0.000 0.16 0.000 0.16 0.000 0.16 0.02 0.000 0.00 0.000 0.05 0.000 0.14 0.000 0.25 0.000 0.36 0.000 0.48 0.00 0.000 0.01 0.000 0.01 0.000 0.02 0.000 0.02 0.000 0.03 0.000 0.03 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 0.18 Group 2 2014/15 1.20 2019/20 2.35 2024/25 2.50 2029/30 2.67 2034/35 2.84 2039/40 3.02 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 0.2 1.2 2.4 2.5 2.7 2.8 3.0 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -1.3 -0.6 0.0 -0.2 -0.1 -0.3 -0.2 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile -0.1 0.8 1.9 1.9 2.1 2.0 2.2 Beta A Alpha B Beta Scl Scale 50th percentile 0.2 1.2 2.4 2.5 2.6 2.7 3.0 Exponential Rate Rate 75th percentile 0.5 1.5 2.9 3.0 3.3 3.4 3.7 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 1.5 2.8 5.3 4.7 5.4 6.5 7.1 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.4 0.5 0.8 0.8 0.9 1.0 1.1 Weibull Loc Location Scl Scale Shp Shape Variance 0.2 0.3 0.6 0.6 0.8 1.1 1.3 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.0 0.0 -0.1 0.1 0.1 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water (ex MKW) DYAA RZ8 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 0.000 0.60 0.000 1.21 0.000 1.81 0.000 2.42 0.000 3.02 0.000 3.63 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.02 0.000 0.04 0.000 0.05 0.000 0.06 0.000 0.07 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.64 0.000 0.64 0.000 0.64 0.000 0.64 0.000 0.64 0.13 0.000 0.00 0.000 0.22 0.000 0.60 0.000 1.08 0.000 1.58 0.000 2.12 0.00 0.000 0.03 0.000 0.06 0.000 0.07 0.000 0.09 0.000 0.11 0.000 0.13 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences Type S5/1 S6 Summary of S5 components (sheet S5) C FALSE FALSE Accuracy of supply side data Type S6/1 S8 FALSE FALSE Uncertainty of impact of climate change on source yields Type S8/1 S9 Summary of S8 components (sheet S8) FALSE Uncertainty over New Sources Type S9/1 D1 FALSE FALSE Accuracy of sub-component data Type D1/1 D2 Summary of D1 components (sheet D1) FALSE Demand forecast variation Type D2/1 D3 Summary of D2 components (sheet D2) FALSE FALSE Uncertainty of impact of climate change on demand Type D3/1 D4 Summary of D3 components (sheet D3) FALSE FALSE Uncertainty of impact of demand management Type D4/1 Summary of D4 components (sheet D4) FALSE FALSE Overlapping components 0.000 0.00 0.00 14 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Group 1 Group 2 Group 3 Sum of Headroom components Distribution Profile Parameters Profile A B C Fixed Val Value Triangular Min Min Best Best Estimate Max Max Normal Avg Mean Max Max Estimate SD St'd Deviation Lognormal Avg Mean Max Max Estimate SD St'd Deviation Beta A Alpha B Beta Scl Scale Exponential Rate Rate Custom x1 Value 1 x2 Value 2 p1 Probability 1 Uniform Min Min Estimate Max Max Estimate Weibull Loc Location Scl Scale Shp Gama Loc Location Scl Scale Shp Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape Extreme value Mod Mode Other Scl Scale M/M 2009/10 0.13 D 2014/15 0.63 2019/20 2.15 2024/25 3.16 2029/30 4.27 2034/35 5.41 2039/40 6.59 Analysis Statistics Mean 0.1 0.6 2.1 3.2 4.2 5.5 6.6 Minimum -1.0 -0.8 0.0 0.1 0.5 0.6 1.0 Shape 25th percentile -0.3 0.2 1.4 2.3 3.1 3.9 4.6 Shape 50th percentile 0.1 0.7 2.1 3.2 4.1 5.2 6.4 75th percentile 0.6 1.1 2.9 4.0 5.3 7.0 8.4 Maximum 1.3 2.0 5.0 6.3 8.8 11.7 13.6 Std Deviation 0.5 0.5 1.0 1.2 1.6 2.1 2.6 Variance 0.3 0.3 1.0 1.4 2.5 4.4 6.7 Skewness 0.0 0.0 0.2 0.1 0.2 0.4 0.3 Min/Max p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 APPENDIX B – WATER RESOURCE ZONE HEADROOM MODEL SPREADSHEET DATA DRY YEAR CRITICAL PERIOD Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet Scenario Ref Resource Zone Ref South East Water ADPW RZ1 Version Phase 4.5 Date 13/02/2013 Component S1 & S2 Correlated With By Conti nuou Depe nden t Overl appi ng Company Name 2011/12 2014/15 FALSE 0.0000 0.0000 0.0000 0.000 0.000 0.83 0.000 Parameters Headroom Component (Ml/d) 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 1.25 1.66 2.08 2.49 2.91 0.000 0.000 0.000 0.000 0.000 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 0.42 FALSE Accuracy of supply side data Type FALSE S8 0.00 FALSE Type 0.00 FALSE S9 Uncertainty over New Sources D1 Accuracy of sub-component data Type FALSE 0.00 FALSE Type 0.37 FALSE D2 FALSE 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.00 0.82 0.92 1.01 1.10 1.19 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.37 0.37 0.37 0.37 0.37 0.37 0.000 0.000 0.000 0.000 0.000 0.000 0.27 FALSE 0.00 0.12 0.34 0.60 0.88 1.18 0.000 0.000 0.000 0.000 0.000 0.000 Uncertainty of impact of climate change on demand Type FALSE D4 0.00 0.000 Demand forecast variation Type D3 0.00 0.000 Uncertainty of impact of climate change on source yields 0.00 FALSE 0.02 0.03 0.04 0.05 0.06 0.06 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 Uncertainty of impact of demand management Type FALSE 0.00 FALSE 14 Overlapping components 16 18 20 22 20 22 Group 1 Group 2 Group 3 Sum of Headroom components Distribution Profile Parameters Profile A B C Fixed Val Value Triangular Min Min Best Best Estimate Max Max Normal Avg Mean Max Max Estimate SD St'd Deviation Lognormal Avg Mean Max Max Estimate SD St'd Deviation Beta A Alpha B Beta Scl Scale Exponential Rate Rate Custom x1 Value 1 x2 Value 2 p1 Probability 1 Uniform Min Min Estimate Max Max Estimate Weibull Loc Location Scl Scale Shp Shape Gama Loc Location Scl Scale Shp Shape Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale 2011/12 1.05 D 2014/15 1.21 2019/20 2.59 2024/25 3.32 2029/30 4.11 2034/35 4.91 2039/40 5.71 Analysis Statistics p2 Probability 2 Mean Minimum 25th percentile 50th percentile 75th percentile Maximum Std Deviation Variance Skewness 1.1 -0.5 0.6 1.1 1.5 2.6 0.6 0.3 0.0 1.2 -0.2 0.8 1.3 1.7 2.7 0.6 0.3 0.0 2.6 -3.5 0.7 2.4 4.3 9.8 2.6 6.8 0.2 3.3 -3.4 1.0 3.1 5.5 11.3 3.0 8.7 0.2 4.0 -3.8 1.7 3.8 6.2 12.7 3.3 10.8 0.2 5.0 -4.5 2.3 4.8 7.4 15.4 3.7 13.6 0.2 5.6 -3.8 2.7 5.4 8.3 17.1 4.0 16.0 0.2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water ADPW RZ2 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.43 0.000 0.87 0.000 1.30 0.000 1.73 0.000 2.17 0.000 2.60 0.000 3.03 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 2.57 0.000 2.85 0.000 3.03 0.000 3.21 0.000 3.39 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.22 0.000 0.22 0.000 0.22 0.000 0.22 0.000 0.22 0.000 0.22 0.000 0.22 0.38 0.000 0.00 0.000 0.22 0.000 0.61 0.000 1.09 0.000 1.59 0.000 2.11 0.00 0.000 0.03 0.000 0.06 0.000 0.08 0.000 0.10 0.000 0.12 0.000 0.14 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 1.04 Group 2 2014/15 2.12 2019/20 5.37 2024/25 6.49 2029/30 7.60 2034/35 8.74 2039/40 9.89 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 0.9 2.1 5.2 6.6 7.3 8.5 9.8 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -2.3 -1.5 -11.9 -14.4 -16.1 -14.8 -16.6 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile -0.1 1.1 -0.5 -0.2 0.4 1.3 2.6 Beta A Alpha B Scl Scale 50th percentile 0.9 2.0 4.7 5.8 6.6 7.9 9.5 Exponential Rate Rate 75th percentile 2.0 3.1 10.8 13.4 14.0 14.9 16.8 Custom x1 Value 1 x2 Maximum 4.3 5.9 26.3 30.3 32.3 36.5 40.4 Uniform Min Min Estimate Max Max Estimate Std Deviation 1.4 1.4 8.0 9.2 9.4 9.9 10.6 Weibull Loc Location Scl Scale Shp Shape Variance 1.9 1.9 63.3 85.3 88.0 98.1 111.6 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.1 0.2 0.2 0.2 0.2 0.1 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Beta Value 2 Scale p1 Probability 1 p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water ADPW RZ3 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 1.0000 1.0000 1.0000 2.0000 3.0000 4.0000 5.0000 0.21 0.000 0.41 0.000 0.62 0.000 0.83 0.000 1.03 0.000 1.24 0.000 1.44 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 1.54 0.000 1.71 0.000 1.83 0.000 1.95 0.000 2.06 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.19 0.000 0.52 0.000 0.94 0.000 1.37 0.000 1.82 0.00 0.000 0.03 0.000 0.05 0.000 0.07 0.000 0.08 0.000 0.10 0.000 0.10 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 1.21 Group 2 2014/15 1.44 2019/20 3.40 2024/25 5.12 2029/30 6.88 2034/35 8.65 2039/40 10.43 Group 3 Distribution Profile Parameters Profile A B C D Analysis Statistics Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 1.2 1.4 3.2 4.9 6.7 9.2 10.6 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -0.1 0.1 -7.6 -8.0 -6.8 -5.0 -8.2 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.9 1.1 -0.4 1.1 2.2 4.3 5.2 Beta A Alpha B Beta Scl Scale 50th percentile 1.2 1.4 2.9 4.4 6.0 8.8 10.4 Exponential Rate Rate 75th percentile 1.5 1.8 6.4 8.3 11.0 14.2 15.7 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 2.3 2.8 15.7 18.9 23.4 26.7 28.5 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.5 0.5 4.9 5.2 6.0 6.4 7.2 Weibull Loc Location Scl Scale Shp Shape Variance 0.2 0.2 23.9 27.2 36.3 41.1 51.4 Gama Loc Location Scl Scale Shp Shape Skewness -0.1 0.0 0.3 0.2 0.2 0.1 0.1 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water ADPW RZ4 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.80 0.000 1.59 0.000 2.39 0.000 3.18 0.000 3.98 0.000 4.77 0.000 5.57 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 1.00 0.000 1.11 0.000 1.23 0.000 1.34 0.000 1.45 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 1.69 0.000 1.69 0.000 1.69 0.000 1.69 0.000 1.69 0.000 1.69 0.000 1.69 0.31 0.000 0.04 0.000 0.76 0.000 1.89 0.000 3.42 0.000 5.02 0.000 6.67 0.00 0.000 0.08 0.000 0.16 0.000 0.20 0.000 0.25 0.000 0.31 0.000 0.31 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 3.54 Group 2 2014/15 4.14 2019/20 6.74 2024/25 8.82 2029/30 11.32 2034/35 13.87 2039/40 16.44 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 3.6 4.2 6.7 8.6 11.6 14.1 16.9 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -3.5 -2.4 -6.4 -3.1 -2.8 -3.6 -2.2 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 1.6 2.1 3.7 5.1 7.6 9.4 11.7 Beta A Alpha B Beta Scl Scale 50th percentile 3.6 4.1 6.6 8.6 11.5 13.9 16.6 Exponential Rate Rate 75th percentile 5.6 6.4 9.6 12.0 15.5 18.7 22.0 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 10.7 10.4 19.7 23.1 30.0 35.6 39.0 Uniform Min Min Estimate Max Max Estimate Std Deviation 2.6 2.7 4.1 4.8 5.5 6.4 7.5 Weibull Loc Location Scl Scale Shp Shape Variance 6.5 7.1 17.2 23.1 30.6 41.2 56.6 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.0 0.1 0.1 0.2 0.1 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water ADPW RZ5 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.24 0.000 0.48 0.000 0.72 0.000 0.96 0.000 1.20 0.000 1.44 0.000 1.68 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.51 0.000 0.57 0.000 0.63 0.000 0.68 0.000 0.74 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.41 0.000 0.41 0.000 0.41 0.000 0.41 0.000 0.41 0.000 0.41 0.000 0.41 0.04 0.000 0.00 0.000 0.19 0.000 0.52 0.000 0.94 0.000 1.37 0.000 1.73 0.00 0.000 0.02 0.000 0.03 0.000 0.04 0.000 0.05 0.000 0.06 0.000 0.06 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE Triangular 0.00 14 Overlapping components Triangular 0.00 16 Triangular 0.00 18 Triangular 0.00 20 Triangular 0.00 22 Triangular 0.00 20 Triangular 0.00 22 Sum of Headroom components Group 1 2009/10 0.69 Group 2 2014/15 0.90 2019/20 1.87 2024/25 2.50 2029/30 3.22 2034/35 3.96 2039/40 4.62 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 0.7 0.9 2.0 2.5 3.2 4.0 4.5 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -0.7 -0.6 -2.5 -3.4 -2.8 -3.1 -1.8 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.2 0.5 0.7 1.1 1.5 2.0 2.5 Beta A Alpha B Beta Scl Scale 50th percentile 0.7 0.9 2.0 2.4 3.1 3.8 4.4 Exponential Rate Rate 75th percentile 1.2 1.4 3.2 3.9 4.9 5.9 6.3 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 2.1 2.4 6.5 8.5 10.5 12.0 12.7 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.6 0.6 1.7 2.0 2.4 2.7 2.7 Weibull Loc Location Scl Scale Shp Shape Variance 0.3 0.4 3.0 3.9 5.9 7.3 7.4 Gama Loc Location Scl Scale Shp Shape Skewness 0.1 -0.1 0.1 0.2 0.2 0.2 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water (ex MKW) ADPW RZ6 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.9800 0.9800 0.9800 1.3000 1.3000 1.3000 1.3000 0.00 0.000 0.00 0.000 0.15 0.000 0.31 0.000 0.46 0.000 0.61 0.000 0.76 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.05 0.000 0.07 0.000 0.09 0.000 0.12 0.000 0.14 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.59 0.000 0.59 0.000 0.59 0.000 0.59 0.000 0.59 0.000 0.59 0.000 0.59 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE FALSE 0.00 Type FALSE FALSE D4 0.00 0.19 0.54 0.98 1.45 1.96 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.03 0.05 0.07 0.08 0.10 0.12 0.000 0.000 0.000 0.000 0.000 0.000 Uncertainty of impact of demand management Type FALSE FALSE 0.00 14 Overlapping components 0.00 16 0.00 18 0.00 20 0.00 22 0.00 20 0.00 22 Sum of Headroom components Group 1 2009/10 1.57 Group 2 2014/15 1.59 2019/20 2.01 2024/25 2.87 2029/30 3.50 2034/35 4.17 2039/40 4.87 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 1.5 1.6 2.0 2.9 3.5 4.2 4.9 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -2.0 -1.7 -1.3 -1.1 -1.0 -0.7 -2.4 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile 0.7 0.7 1.1 1.9 2.3 2.8 2.9 Beta A Alpha B Scl Scale 50th percentile 1.5 1.6 1.9 2.8 3.5 4.1 4.7 Exponential Rate Rate 75th percentile 2.3 2.5 2.8 3.8 4.6 5.6 6.5 Custom x1 Value 1 x2 Maximum 4.8 5.5 5.4 7.6 8.5 10.8 13.7 Uniform Min Min Estimate Max Max Estimate Std Deviation 1.2 1.2 1.3 1.4 1.6 2.0 2.6 Weibull Loc Location Scl Scale Shp Shape Variance 1.3 1.4 1.6 1.9 2.6 4.1 6.9 Gama Loc Location Scl Scale Shp Shape Skewness 0.1 0.1 0.2 0.1 0.2 0.3 0.4 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Beta Value 2 Scale p1 Probability 1 p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water (ex MKW) ADPW RZ7 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 1.0000 2.0000 2.0000 2.0000 2.0000 2.0000 0.00 0.000 0.03 0.000 0.07 0.000 0.10 0.000 0.13 0.000 0.17 0.000 0.20 -0.24 0.000 -0.24 0.000 -0.24 0.000 -0.24 0.000 -0.24 0.000 -0.24 0.000 -0.24 0.00 0.000 0.00 0.000 0.09 0.000 0.13 0.000 0.17 0.000 0.22 0.000 0.26 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.20 0.000 0.20 0.000 0.20 0.000 0.20 0.000 0.20 0.000 0.20 0.000 0.20 0.02 0.000 0.00 0.000 0.07 0.000 0.18 0.000 0.32 0.000 0.47 0.000 0.62 0.00 0.000 0.01 0.000 0.02 0.000 0.02 0.000 0.03 0.000 0.03 0.000 0.03 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE 0.000 0.00 0.00 14 Overlapping components 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Sum of Headroom components Group 1 2009/10 -0.01 Group 2 2014/15 1.01 2019/20 2.20 2024/25 2.40 2029/30 2.62 2034/35 2.85 2039/40 3.08 Group 3 Distribution Profile Parameters Profile A B C Analysis Statistics D Fixed Val Value Triangular Min Min Best Best Estimate Max Max Mean 0.0 1.0 2.2 2.4 2.6 2.8 3.1 Normal Avg Mean Max Max Estimate SD St'd Deviation Minimum -0.9 -0.4 -0.1 0.1 -0.5 -0.8 -0.3 Lognormal Avg Mean Max Max Estimate SD St'd Deviation 25th percentile -0.3 0.7 1.7 1.9 2.0 2.1 2.2 Beta A Alpha B Beta Scl Scale 50th percentile 0.0 1.0 2.2 2.4 2.6 2.8 3.1 Exponential Rate Rate 75th percentile 0.2 1.3 2.7 3.0 3.3 3.5 3.9 Custom x1 Value 1 x2 Value 2 p1 Probability 1 Maximum 0.9 2.3 4.4 4.7 5.6 6.8 7.1 Uniform Min Min Estimate Max Max Estimate Std Deviation 0.3 0.5 0.7 0.8 0.9 1.1 1.2 Weibull Loc Location Scl Scale Shp Shape Variance 0.1 0.2 0.5 0.7 0.9 1.2 1.5 Gama Loc Location Scl Scale Shp Shape Skewness 0.0 0.0 -0.1 0.1 0.1 0.2 0.2 Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape M/M Min/Max Extreme value Mod Mode Other Scl Scale p2 Probability 2 Headroom Model Results for dWRMP14 Final Report Feb 2013 Headroom Spreadsheet South East Water (ex MKW) ADPW RZ8 Correlated With S1 & S2 By Overlapping Component Component Dependent Component Version Phase 4.5 Date 13/02/2013 Continuous / intermittent Company Name Scenario Ref Resource Zone Ref Headroom Component (Ml/d) Parameters 2009/10 2014/15 2019/20 2024/25 2029/30 2034/35 2039/40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 0.000 0.65 0.000 1.29 0.000 1.94 0.000 2.58 0.000 3.23 0.000 3.87 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.02 0.000 0.03 0.000 0.04 0.000 0.05 0.000 0.06 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.00 0.000 0.00 0.000 0.81 0.000 0.81 0.000 0.81 0.000 0.81 0.000 0.81 0.13 0.000 0.00 0.000 0.28 0.000 0.77 0.000 1.41 0.000 2.10 0.000 2.84 0.00 0.000 0.03 0.000 0.07 0.000 0.09 0.000 0.11 0.000 0.14 0.000 0.14 Vulnerable surface water and groundwater licences Now included in S5/S1 & S2 below S4 Bulk transfers FALSE S5/S1 & S2 Max of Gradual pollution/Vulnerable surface water and groundwater licences ) Type C S6 Accuracy of supply side data S8 Uncertainty of impact of climate change on source yields S9 Uncertainty over New Sources D1 Accuracy of sub-component data D2 Demand forecast variation D3 Uncertainty of impact of climate change on demand D4 Uncertainty of impact of demand management FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE Type FALSE FALSE Type FALSE FALSE Type FALSE FALSE Overlapping components 0.000 0.00 0.00 14 16 0.000 0.00 18 0.000 0.00 20 0.000 0.00 22 0.000 0.00 20 0.000 0.00 22 Group 1 Group 2 Group 3 Sum of Headroom components Distribution Profile Parameters Profile A B C Fixed Val Value Triangular Min Min Best Best Estimate Max Max Normal Avg Mean Max Max Estimate SD St'd Deviation Lognormal Avg Mean Max Max Estimate SD St'd Deviation Beta A Alpha B Beta Scl Scale Exponential Rate Rate Custom x1 Value 1 x2 Value 2 p1 Probability 1 Uniform Min Min Estimate Max Max Estimate Weibull Loc Location Scl Scale Shp Gama Loc Location Scl Scale Shp Logistic Avg Mean Scl Scale Preto Loc Location Shp Shape Extreme value Mod Mode Other Scl Scale M/M 2009/10 0.13 D 2014/15 0.68 2019/20 2.47 2024/25 3.64 2029/30 4.96 2034/35 6.33 2039/40 7.73 Analysis Statistics Mean 0.1 0.7 2.5 3.6 4.9 6.2 7.6 Minimum -1.5 -1.0 -0.1 -0.3 0.0 0.3 -0.2 Shape 25th percentile -0.4 0.1 1.4 2.4 3.4 4.2 4.9 Shape 50th percentile 0.1 0.7 2.5 3.6 4.8 6.0 7.2 75th percentile 0.7 1.2 3.4 4.7 6.2 8.1 9.9 Maximum 1.6 2.4 5.9 7.8 11.4 14.6 17.5 Std Deviation 0.7 0.7 1.3 1.5 2.0 2.8 3.4 Variance 0.4 0.5 1.6 2.3 4.0 7.7 11.7 Skewness 0.0 0.0 0.1 0.1 0.2 0.4 0.4 Min/Max p2 Probability 2 Headroom Model Results for dWRMP14 Final Report APPENDIX C – RESOURCE ZONE 2019 MODEL SIMULATION HEADROOM DATA DRY YEAR ANNUAL AVERAGE Headroom Model Results for dWRMP14 Final Report RZ1 Simulation Results for DYAA 2019/U50 Simulation Summary Information Workbook Name RZ1_v4.5.xlsm Number of Simulations 1 Number of Iterations 1000 Number of Inputs 482 Number of Outputs 168 Sampling Type Monte Carlo Simulation Start Time 3/18/13 16:09:14 Simulation Duration 00:00:05 Random # Generator RAN3I Random Seed 50 Summary Statistics for 2019 Statistics Minimum -2.96 Percentile 5% -0.88 Maximum 6.44 10% -0.49 Mean 1.77 15% -0.17 Std Dev 1.74 20% 0.19 Variance 3.023653637 25% 0.47 Skewness 0.141126304 30% 0.76 Kurtosis 2.472983958 35% 1.00 Median 1.68 40% 1.23 Mode 2.42 45% 1.44 Left X -0.88 50% 1.68 Left P 5% 55% 1.95 Right X 4.71 60% 2.20 Right P 95% 65% 2.43 Diff X 5.59 70% 2.68 Diff P 90% 75% 2.96 #Errors 0 80% 3.36 Filter Min Off 85% 3.72 Filter Max Off 90% 4.18 #Filtered 0 95% 4.71 Regression and Rank Information for 2019 Rank 1 Name Regr S8, WRZ 1 / 2019/20 0.941 Corr 0.960 2 D1, RZ1 / 2019/200.226 0.254 3 D2, RZ1 / 2019/200.112 0.097 4 S6, Kemsing / 2019/20 0.086 0.103 5 S6, Hartlake / 2019/20 0.074 0.119 6 S6, Tonbridge (Gravels) 0.043/ 2019/20 0.001 7 S6, Cramptons Rd 0.020 / 2019/20 -0.020 8 2019/20 0.014 0.034 9 2014/15 0.014 0.032 10 D3, RZ1 / 2020/210.011 0.702 11 2019/20 0.010 0.018 12 2014/15 0.010 -0.034 13 S6, Saints Hill / 2019/20 0.008 0.026 14 S6, Oak Lane / 2019/20 0.006 0.028 Headroom Model Results for dWRMP14 Final Report RZ2 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name Number of Simulations Simulation RZ2 - phase 3.3 v4.xls 1 Summary Information Number of Iterations 1000 Workbook Name RZ2_v4.5.xlsm Number of Outputs Number of Simulations 1 Number of Iterations Sampling Type 1000 Simulation Start Time of Inputs Number 607 04/11/2008 11:23 Simulation Stop Time of Outputs Number 140 04/11/2008 11:26 Simulation Duration Sampling Type Monte Carlo Simulation Start Time 3/18/13 15:26:56 Number of Inputs Random Seed 624 140 Monte Carlo 00:03:17 Simulation Duration 00:00:05 Summary Statistics RAN3I Statistic Random # GeneratorValue %tile Minimum -9.83 5% Random Seed 50 Maximum Mean Std Dev Summary Statistics for 2019 -0.25 0 0.25 Std b Coefficients 0.5 0.75 20% 0.44 25% 1.41 30% 2.03 2.750210723 10% -2.42 35% 2.69 Median Mean 4.18 4.41 15% -1.37 40% 3.25 Std Dev 5.11 20% -0.52 3.71 45% 3.73 -3.23 50% 4.41 Left P Variance 26.12993984 25% 0.39 5% 55% 5.14 Right X Skewness 0.179910168 30% 12.96 1.39 60% 5.83 Right P Kurtosis 2.458051907 95% 35% 1.98 65% 6.63 Diff X Median 3.79 40% 16.19 2.55 70% 7.13 Mode 2.98 90% 45% 3.18 75% 7.88 0 80% 9.01 Filter Min Left X -3.81 50% 3.79 85% 10.08 Filter Max Left P 5% 55% 4.52 90% 11.54 #Filtered Right X 13.13 60% 5.160 95% 12.96 Right P 95% 65% 6.05 #1 Sensitivity 16.94 70% 6.94 Name Regr Diff P 90% 75% 7.96 0.916 S8, WRZ 2 / 2019/20 / $G$18 #2 #Errors S6, Barcombe /02019/20 / $J$58 80% 8.82 0.264 0.264 #3 D2, RZ2 Filter Min/ 2019/20 Off / $G$77 85% 9.69 0.197 0.161 #4 D1, RZ2 Filter Max/ 2019/20 Off / $L$32 90% 11.25 0.149 0.107 0.059 0.051 Rank 1 -0.61 4.95 17.79 Regression Sensitivity for 2019/U50 -0.5 15% Maximum #Errors -0.75 -1.64 4.72 Kurtosis Diff P -1 10% -8.23 Left X .266 .2 .149 .059 .043 .037 .016 .013 .005 .005 .004 .004 S6, Coggins Mill/Sharnden .../R42 D3, RZ2 / 2030/31/M73 S8, WRZ 4 / 2019/20/G20 -3.23 19.69 Percentile 24.49722684 5% -3.81 0.168281482 Mode .91 Value Statistics Skewness Minimum Variance S8, WRZ 2 / 2019/20/G18 S6, Barcombe / 2019/20/J58 D2, RZ2 / 2019/20/G77 D1, RZ2 / 2019/20/L32 S6, Cowish / 2019/20/J46 S4, Weir Wood / 2019/20/H14 S6, Shell Brook/J55 S6, Coggins Mill/Sharnden .../J45 D3, RZ2 / 2020/21/I62 S5, Saddlescombe / 2009/10.../M36 S5, Saddlescombe / 2019/20.../Q36 S5, Offham Springs / 2014/.../O33 S5, Coombe Down / 2034/35/W26 -.004 -.003 -.003 50 #5 #6 Diff X S6, Cowish / 2019/20 / $J$46 #Filtered 0 0.921 0.041 0.497 0.037 -0.036 #8 Regression and/ Rank Information for 20190.028 S6, Groombridge 2019/20 / $J$43 0.021 #9 S6, Poverty Bottom Rank Name/ 2019/20 / $J$49 Regr Corr 0.015 2019/20 / $J$45 1S6, Coggins Mill/Sharnden S8, WRZ 2 / /2019/20 0.944 0.980 0.015 0.024 #7 #10 #11 #12 S4, Weir Wood / 2019/20 / $H$14 95% 13.13 Corr S6, Shell Brook / $J$55 S6, Hempstead / 2019/20 / $J$44 2 D1, RZ2 / 2019/200.149 S6, Cockhaise Well / 2019/20 / $J$51 0.076 0.053 0.010 0.018 0.009 -0.015 #14 3S6, Forest RowS4, Weir Wood / 2019/20 0.079 0.524 0.007 / 2019/20 / $J$42 4D3, RZ2 / 2020/21 S6, Barcombe / 2019/20 0.077 0.091 0.007 / $I$62 #15 2019/20 $J$52 5S6, Rathfinny / D2, RZ2 // 2019/200.067 0.038 0.005 0.011 #16 / 2009/10 // $M$36 6S5, Saddlescombe S6, Rathfinny 2019/20 0.022 0.049 0.004 -0.053 #13 7 S6, Poverty Bottom 0.018 / 2019/20 0.018 8 D3, RZ2 / 2020/210.007 9 S5, Saddlescombe0.004 / 2014/15 -0.021 10 S6, Cockhaise Well0.003 / 2019/20 -0.031 11 S6, Shell Brook / 2019/20 0.002 -0.029 12 S6, Hempstead / 2019/20 0.002 -0.051 13 S5, Whitelands / 2014/15 0.001 0.055 14 S5, Eridge / 2014/15 0.001 0.702 0.034 -0.008 0.671 Headroom Model Results for dWRMP14 Final Report RZ3 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name RZ3 - phase 3.3 v4.xls Number of Simulations Simulation Summary Information 1 Number of Iterations Workbook Name RZ3_v4.5.xlsm 1000 Number of Inputs Number of Simulations 1 629 Number of Outputs 1000 Number of Iterations Sampling Type 140 Monte Carlo Number of Inputs 653 Number of Outputs 140 Simulation Duration Sampling Type Monte Carlo Simulation Start Time Random Seed 3/18/13 16:17:00 Simulation Start Time Simulation Stop Time Simulation Duration 04/11/2008 12:02 04/11/2008 12:06 00:03:16 50 00:00:06 Random # Generator RAN3I Summary Statistics StatisticRandom Seed Value %tile 50 Minimum Std b Coefficients 35% 2.43 2.57 20% 0.85 3.67 40% 2.86 Mode Variance 6.595277205 25% 1.36 3.99 45% 3.29 Left X Skewness 0.11431686 50% 3.67 Left P Kurtosis 2.474100524 30% -1.03 1.67 35% 2.06 5% 55% 4.01 Right X Median 3.01 8.82 40% 2.45 60% 4.39 Right P Mode 2.95 95% 45% 2.69 65% 4.93 9.84 50% 3.01 90% 70% 5.35 55% 3.29 75% 5.80 0 80% 6.32 85% 7.14 90% 7.85 95% 8.82 Diff X Left X -0.96 Diff P Left P 5% Percentile 2.98 5% -0.96 10% -0.20 15% 0.30 Right X 7.48 60% 3.62 Right P 95% 65% 4.13 Diff X 8.44 70% 4.47 Diff P 90% 75% 4.96 #Errors 0 Rank Filter Min Off 0 Sensitivity80% 5.48 85% 6.11 Regr Name Corr #1 S8, WRZ / $G$19 Filter Max 3 / 2019/20 Off 90% 6.63 0.821 0.906 #2 D2, RZ3 / 2019/20 / $G$78 #Filtered 0 95% 7.48 0.253 0.235 #3 D1, RZ3 / 2019/20 / $L$33 0.208 0.234 20190.176 0.215 0.135 0.550 #6 #7 #8 #9 #10 S6, Arlingtonand / 2019/20 $J$56 Regression Rank/ Information for S4, Darwell Reservoir / 2019/20 / $G$10 Rank Name Regr S6, Wallers Haven / $J$55 1 S8, WRZ 3 / 2019/20 0.947 Corr 0.091 0.946 2 0.205 S6, Stonegate / 2019/20 / $J$46 0.144 0.041 0.008 0.033 0.036 3 S6, River Rother S4, at Darwell Reservoir / 2019/20 0.122 0.027 Crowhurst Br0.161 / $J$53 4 S6, CrowhurstD2, RZ3 / 2019/200.114 Bridge / 2019/20 / $J$42 0.101 0.027 0.044 D1, RZ3 / 2019/200.245 S6, Birling Farm / 2019/20 / $J$47 0.046 -0.013 #12 5 S6, Friston & Deep S6, Wallers 0.055 / 2019/20 Dean / Haven 2019/20 / $J$350.067 0.022 6 2014/15 / $J$28 2014/15 0.014 0.118 0.014 #13 7 2019/20 / $L$28 S6, Friston & Deep0.013 Dean / 2019/20 0.050 0.014 -0.063 #14 8 2009/10 / $H$28 2019/20 0.013 0.025 0.014 -0.008 #15 2019/20 / $J$45 9 S6, Turzes Farm D3,/RZ3 / 2020/210.011 0.711 0.012 0.037 #16 S6, Water Works Rd / 2019/20 / $J$50 0.010 0.024 #11 1 2.03 2.606538542 Std Dev #5 0.75 30% Median #4 0.5 1.69 0.176731223 3.15 Regression Sensitivity for 2019/U50 0.25 25% Mean #Filtered 0 1.18 8.884103909 10.20 Filter Max -0.25 0.61 20% Maximum Filter Min -0.5 15% -3.73 #Errors -0.75 -0.02 3.79 Statistics Minimum Kurtosis -1 10% Mean Skewness .255 .211 .176 .134 .092 .034 .029 .026 .019 .018 .015 .013 .006 .006 .006 -1.03 12.92 Summary Statistics for 2019 Variance .816 5% Maximum Std Dev S8, WRZ 3 / 2019/20/G19 D2, RZ3 / 2019/20/G78 D1, RZ3 / 2019/20/L33 S6, Arlington / 2019/20/J56 S4, Darwell Reservoir / 20.../G10 S6, Wallers Haven/J55 S6, Birling Farm / 2019/20.../J47 S6, Crowhurst Bridge / 201.../J42 S6, River Rother at Crowhu.../J53 2019/20/L28 2014/15/J28 D3, RZ3 / 2020/21/I63 S6, Turzes Farm / 2019/20/J45 S6, Sweet Willow Rd / 2019.../J36 S6, Powder Mill (BH1) / 20.../N33 2014/15/J25 Value -4.15 10 S6, Birling Farm / 2019/20 0.010 0.046 11 S6, Crowhurst Bridge 0.009 / 2019/20 0.020 12 2014/15 13 S6, Wallers Haven0.005 Augmentation -0.017 BHs / 2019/20 14 2019/20 0.005 0.005 -0.043 0.029 0.057 Headroom Model Results for dWRMP14 Final Report RZ4 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name Simulation Summary Information RZ4 - phase 3.3 v4.xls Number of Simulations Workbook Name RZ4_v4.5.xlsm Number of Iterations Number of Simulations 1 1000 Number of Inputs Number of Iterations 1000 600 Number of Outputs 590 Number of Inputs Sampling Type 1 133 Monte Carlo Number of Outputs 126 Sampling Type Monte Carlo Simulation Start Time 3/18/13 16:25:41 Simulation Duration 00:00:06 Random # Generator RAN3I Simulation Start Time Simulation Stop Time Simulation Duration Random Seed 05/11/2008 11:48 05/11/2008 11:51 50 Random Seed Summary Statistics 50 Statistic Value %tile Minimum Summary Statistics for 2019 -6.39 5% Maximum Statistics Minimum -5.52 Std Dev Maximum 18.36 10% 5.22 0.05 20% 2.71 Variance Mean 5.44 27.2450667 15% 0.97 25% 3.54 Skewness Std Dev Kurtosis Variance 4.13 0.061399978 20% 1.75 30% 4.37 17.04516276 2.593131526 25% 2.47 35% 5.16 Median Skewness 0.102877761 30% 7.58 3.16 40% 5.90 Kurtosis 2.644119562 35% 3.75 11.09 45% 6.85 Median 5.41 -1.08 40% 4.27 50% 7.58 Mode 5.87 5% 45% 4.74 55% 8.33 Left X -1.24 16.36 50% 5.41 60% 8.97 5% 55% 5.89 65% 9.57 Diff X Left P 95% 17.44 70% 10.33 Diff P Right X 12.49 60% 90% 6.40 75% 11.04 #Errors Right P 95% 65% 7.07 0 80% 11.76 Filter Min Diff X 13.73 70% 7.70 85% 12.91 90% 75% 8.40 90% 14.24 #Errors 0 80% 8.94 0 95% 16.36 Filter Min Off 85% 9.77 Filter Max Off Left P Right X Right P Filter Max Diff P #Filtered Regression Sensitivity for 2019/U50 -1 -0.75 -0.5 -0.25 Rank #Filtered #1 #2 #3 #4 .214 .14 .117 .067 .054 .044 .043 .027 .023 .016 .014 .009 0 0.25 Std b Coefficients #5 1.86 Sensitivity 90% 10.97 Name 95% 12.49Regr S8, WRZ 4 / 2019/20 / $G$20 Corr 0.573 0.670 D2, RZ4 / 2019/20 / $G$79 0.462 Regression and Rank Information for 2019 0.462 S6, Bray South / 2019/20 / $J$49 0.352 Rank Name Regr D1, RZ4 / 2019/20 / $L$34 1 S8, WRZ 4 / 2019/20 0.727 Corr 0.347 0.800 2 D1, RZ4 / 2019/200.469 0.457 D2, RZ4 / 2019/200.211 0.179 0.341 0.407 0.118 0.100 0.068 0.081 0.043 #10 5 S6, West HamS4, Valleys /0.172 2019/200.481 0.055 PSThree / 2019/20 / $J$42 6 S6, Boxhalls Lane S6, College Avenue0.094 2019/20 0.102 0.044 LGS / 2019/20 //$J$39 #11 7 S6, West HamS6, Hurley / 2019/20 0.066 Park / 2019/20 / $J$43 0.046 0.042 8 S6, Itchel / 2019/20 S6, West Ham Park 0.063 / 2019/20 0.075 0.026 / $J$40 0.047 0.031 #14 9 S6, Woodgarston S6, West Ham/ PS /0.033 2019/200.065 0.023 / 2019/20 $J$46 / $I$64 10D3, RZ4 / 2020/21 D3, RZ4 / 2020/210.020 0.640 0.017 #15 / 2019/20 $J$31 0.016 11S6, Cookham S6, Itchel / 2019/20 #16 Heath / 2019/20 /0.015 $J$47 0.033 12S6, BeenhamsS6, Beenhams Heath (including 0.050W0.014 Waltham) / 2019/20 #9 #12 #13 3 4 S6, Hurley / 2019/20 / $J$38 0.389 0.181 #8 1 0.73 15% 0.139 #7 0.75 0 10% 0.214 #6 0.5 -1.08 Mean Left X .572 .461 .353 .347 Value Percentile 22.42 5% 7.45 -1.24 Mode S8, WRZ 4 / 2019/20/G20 D2, RZ4 / 2019/20/G79 S6, Bray South / 2019/20/J49 D1, RZ4 / 2019/20/L34 S6, Hurley / 2019/20/J38 S4, Three Valleys / 2019/2.../G14 S6, College Avenue / 2019/.../J45 S6, Bray Gravels / 2019/20.../J44 S6, West Ham PS / 2019/20/J42 S6, Boxhalls Lane LGS / 20.../J39 S6, West Ham Park / 2019/2.../J43 S6, Itchel / 2019/20/J40 S6, Woodgarston / 2019/20/J46 D3, RZ4 / 2020/21/I64 S6, Beenhams Heath / 2019/.../J47 S6, Boxhalls Lane Chalk / .../J34 00:03:30 S4, Three Valleys / 2019/20 / $G$14 S6, College Avenue / 2019/20 / $J$45 S6, Bray Gravels / 0.177 2019/200.167 S6, Bray Gravels / 2019/20 / $J$44 0.052 0.015 13 S6, Woodgarston /0.015 2019/200.033 14 S6, Lasham / 2019/20 0.009 0.030 0.036 0.123 0.505 -0.015 Headroom Model Results for dWRMP14 Final Report RZ5 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name RZ5 - phase 3.3 v4.xls Summary Information Number Simulation of Simulations RZ5_v4.5.xlsm 1000 Number Number of Inputsof Simulations 1 523 Number Number of Outputs of Iterations 1000 140 Sampling Type of Inputs Number 510 Monte Carlo Simulation Start Time Number of Outputs 140 05/11/2008 12:15 Simulation Stop Time Sampling Type Monte Carlo 05/11/2008 12:18 Simulation Start Time 3/18/13 16:32:40 Simulation Duration 00:00:05 Random # Generator RAN3I Simulation Duration Random Seed Summary Statistics Value 50 %tile Random Seed Statistic Minimum Summary Statistics for Maximum 2019 -0.25 0 0.25 0.64 0.179238319 15% -0.07 30% 0.82 KurtosisStd Dev 1.18 2.631792274 20% 0.18 35% 0.99 Median Variance Mode Skewness 1.402462576 25%1.57 0.36 40% 1.21 0.093043381 30%1.36 0.52 45% 1.37 Left X Kurtosis 2.507451832 35% 0.68 -0.49 50% 1.57 Median 1.17 5% 40% 0.82 55% 1.71 Mode 1.55 3.92 45% 1.02 60% 1.91 Left X -0.73 95% 50% 1.17 65% 2.03 4.41 70% 2.23 Left P 5% 55%90% 1.34 75% 2.46 #Errors Right X 3.17 60% 1.50 0 80% 2.72 Filter MinRight P 95% 65% 1.67 85% 3.00 Diff X Filter Max 3.91 70% 1.82 90% 3.36 #FilteredDiff P 90% 75% 2.05 0 95% 3.92 #Errors 0 80% 2.27 Filter Min Off Rank Filter Max Off Std b Coefficients #1 S8, WRZ 05 / 2019/20 / $G$21 95% 3.17 0.845 #Filtered Corr 0.842 D2, RZ5 / 2019/20 / $G$80 0.350 0.332 #3 D1, RZ5 / 2019/20 / $L$35 0.322 0.310 0.161 0.163 #6 #7 1 Sensitivity 85% 2.52 Name 90% 2.82 Regr 0.42 #2 #5 0.75 0.21 1.20 #4 0.5 -0.09 Skewness Mean Regression Sensitivity for 2019/U50 -0.5 10% 1.713826706 10% -0.32 25% Diff P -0.75 -0.49 5.53 4.26 Diff X -1 5% VarianceMaximum Right P .16 .102 .099 .032 .022 .014 .012 .009 .009 .007 .007 .006 .006 Value -2.16 -1.69 Right X .35 .318 50 Percentile 1.59 15% 5%1.31 -0.73 20% Left P .846 00:02:33 Statistics Std Dev Minimum Mean S8, WRZ 5 / 2019/20/G21 D2, RZ5 / 2019/20/G80 D1, RZ5 / 2019/20/L35 S6, Greatham / 2019/20/J35 S6, The Bourne / 2019/20/J40 S6, Britty Hill / 2019/20/J39 S6, Oakhanger / 2019/20/J31 S6, Tilford WR / 2019/20/J28 S6, Rushmoor / 2019/20/J33 D3, RZ5 / 2020/21/I65 2019/20/L30 2019/20/L34 2009/10/H30 2009/10/H33 2009/10/H34 2014/15/J34 1 Number Workbook of Iterations Name Regression and Rank Information for 2019 S6, Greatham / 2019/20 / $J$35 Rank Name Regr S6, The Bourne / 2019/20 / $J$40 1 S8, WRZ 5 / 2019/20 0.911 Corr 0.103 0.926 2 0.310 S6, Britty Hill / 2019/20 / $J$39 D1, RZ5 / 2019/200.335 S6, Tilford Meads / 2019/20 / $J$27 0.069 0.098 0.084 0.033 0.022 0.123 0.032 0.067 #8 3 D2, RZ5 / 2019/200.156 S6, Oakhanger / 2019/20 / $J$31 #9 4 S6, park Greatham / 2019/20 0.090 S6, Headley / 2019/20 / $J$32 0.101 0.028 #10 5 Britty Hill / 2019/20 0.054 S6, TilfordS6, WR / 2019/20 / $J$28 0.074 0.020 -0.037 #11 6 D3, RZ5 / 2020/210.016 S6, East Meon / 2019/20 / $J$41 0.676 0.019 0.006 #12 7 Tilford/ Meads 2019/20-0.0390.015 D3, RZ5 /S6, 2020/21 $I$65 /0.016 0.649 #13 8 S6, Rushmoor / 2019/20 (including / $J$33 -0.029 S6, Oakhanger 0.015 oaklands -0.0170.014 and southlands) / 2019/20 #14 9 2019/20 / 2019/20 $L$30 0.013 0.045 0.009 0.050 #15 10 2014/15 / 2019/20 $J$30 0.013 0.029 0.008 0.012 #16 11 2019/20 / 2014/15 $L$34 0.013 0.015 0.008 0.050 12 2019/20 0.012 -0.018 13 2014/15 0.012 0.014 14 S6, Hawkley / 2019/20 0.011 -0.023 0.024 Headroom Model Results for dWRMP14 Final Report RZ6 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name Number of Simulations Simulation RZ6 - phase 3.3 v4.xls Summary Information Number of Iterations Workbook Name 1 RZ6_v4.5.xlsm Number of Inputs Number of Simulations Number of Outputs 693 1 140 Number of Iterations Sampling Type 1000 Number Simulation Start Timeof Inputs 629 05/11/2008 12:29 Simulation Stop Timeof Outputs Number 140 05/11/2008 12:31 Simulation Duration Sampling Type Monte Carlo Random Seed 3/18/13 16:36:47 Simulation Start Time Monte Carlo Simulation Duration 00:00:06 Summary Statistics RAN3I StatisticRandom # GeneratorValue Minimum Random Seed 50 Maximum Mean Std Dev Summary Statistics for 2019 Statistics Variance Skewness Minimum Maximum Kurtosis -0.25 0 0.25 Std b Coefficients 1.17 1.19 20% 1.38 25% 1.59 30% 1.77 -1.06 Percentile 1.412203795 5% 0.08 0.091444931 4.06 10% 0.35 2.74827377 35% 1.93 2.12 20% 4.15 0.72 45% 2.27 Left X Variance 0.847923168 25% 0.88 0.50 50% 2.42 Skewness 0.059484608 5% 30% 1.03 55% 2.57 4.47 60% 2.74 Right P Kurtosis 2.602221986 35% 95% 1.17 65% 2.90 Diff X Median 1.53 70% 3.07 Diff P Mode 1.33 40% 3.97 1.31 45% 90% 1.42 75% 3.23 #Errors Left X 0.08 0 50% 1.53 80% 3.48 Left P 5% 55% 1.67 85% 3.73 Right X 3.13 60% 1.81 0 90% 3.96 95% 4.47 Right P 95% 65% 1.94 Diff X 3.04 Sensitivity 70% 2.06 Rank Diff P #1 #2 90% Name D2, RZ6 / 2019/20 / $G$81 75% 2.21 Regr #Errors 0 80% 2.34 Filter Min Off 85% 2.53 D1, RZ6 / 2019/20 / $L$36 S4, Matts Hill / 2019/20 / $G$13 Corr 0.706 0.652 0.579 0.554 0.220 0.247 #4 Filter Max / 2019/20 Off S6, Trosley / $J$54 90% 2.76 0.209 0.216 #5 #Filtered 0 / 2019/20 / $J$52 95% 3.13 S6, Hartley Chalk 0.148 0.053 0.122 0.093 S6, Thurnham Bh Rank 11 / 2019/20 / $J$48 for 2019 0.113 Regression and Information 0.112 #7 #8 S6, Thurnham Bh 13 / 2019/20 / $J$49 S8, RZ6 / 2019/20 / $G$15 0.113 #10 Rank Name Regr Corr S6, Hockers lane / 2019/20 / $J$50 0.080 1 S6, Hartley Greensand D1, RZ6 //2019/200.731 0.753 0.077 2019/20 / $J$43 #11 2 S6, Forstal BhD2, RZ6 / 2019/200.334 4 / 2019/20 / $J$41 #9 1 15% 0.92 #6 0.75 0.92 2.44 Std Dev #3 0.5 10% Mode Regression Sensitivity for 2019/U50 -0.5 0.50 6.39 40% #Filtered -0.75 Value 5% 15% 2.42 0.57 Filter Max -1 %tile -0.88 1.56 Filter Min .22 .205 .148 .122 .114 .113 .081 .08 .077 .067 .048 .044 .04 .033 50 Mean Right X .703 .576 00:02:34 Median Left P D2, RZ6 / 2019/20/G81 D1, RZ6 / 2019/20/L36 S4, Matts Hill / 2019/20/G13 S6, Trosley / 2019/20/J54 S6, Hartley Chalk / 2019/2.../J52 S6, Thurnham Bh 13 / 2019/.../J49 S6, Thurnham Bh 11 / 2019/.../J48 S8, RZ6 / 2019/20/G15 S6, Hockers lane / 2019/20.../J50 S6, Hartley Greensand / 20.../J43 S6, Forstal Bh 4 / 2019/20.../J41 S6, Boxley Well Source / 2.../J51 S6, Borough Green / 2019/2.../J46 S6, Thurnham Bh 12 / 2019/.../J42 S6, Ridley / 2019/20/J53 S6, Boxley Greensand / 201.../J45 1000 0.217 0.094 0.129 0.085 #12 0.283 0.076 2019/20 / $J$51 0.354 0.071 3 S6, Boxley Well S4,Source Matts /Hill / 2019/20 0.279 #13 / 2019/20 / $J$46 4 S6, Borough Green S6, Forstal Sourceworks 0.246 / 2019/20 0.204 0.045 0.040 #14 5 #15 #16 6 0.043 S6, SWS Burham / $J$57 0.044 0.025 S6, Ridley / 2019/20 / $J$53 0.042 0.104 S6, Thurnham Bh 12 / 2019/20 / $J$42 0.041 0.042 S6, Thurnham Bhs0.237 / 2019/20 0.225 S6, Hartley Chalk /0.169 2019/200.178 7 S8, RZ6 / 2019/20 0.145 0.280 8 S6, Matts Hill (Belmont) 0.143 / 2019/20 0.139 9 S6, Trosley / 2019/20 0.135 10 S6, Cossington Greensand 0.055 0.049 / 2019/20 11 S6, Boxley Greensand 0.053 / 2019/20 0.038 12 S6, Hockers lane /0.050 2019/200.082 13 S6, Hartley Greensand 0.050/ 2019/20 0.083 14 S6, Boxley Well Source 0.043/ 2019/20 0.034 0.150 Headroom Model Results for dWRMP14 Final Report RZ7 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name Number of Simulations Simulation Number of Iterations RZ7 - phase 3.3 v4.xls RZ7_v4.5.xlsm Number of Outputs Number of Simulations 1 Sampling Type Number of Iterations Simulation Start Time 1000 Number of Inputs 140 Monte Carlo Random Seed 5% -0.40 2.42 10% -0.19 0.55 15% -0.05 0.58 20% 0.07 0.340382063 25% 0.16 30% 0.25 50 Variance Statistics Minimum 0.02 Percentile 0.027691689 5% 1.05 3.084046579 35% 0.33 Median Maximum 5.32 10% 1.37 0.56 40% 0.40 Mode Mean 2.37 15% 1.57 0.19 45% 0.49 Left X Std Dev 0.78 -0.40 20% 1.73 50% 0.56 Left P Variance 0.601882773 5% 25% 1.86 55% 0.63 Skewness 0.048107958 1.48 30% 1.97 60% 0.69 95% 65% 0.78 Diff X Kurtosis 3.18314579 35% 2.08 1.89 70% 0.86 Diff P Median 2.38 40% 2.19 90% 75% 0.95 #Errors Mode 2.65 45% 2.280 80% 1.04 85% 1.14 90% 1.31 95% 1.48 Right X Right P Filter Min Filter Max #Filtered Regression Sensitivity for 2019/U50 -0.25 0 0.25 Std b Coefficients 0.5 Rank 1 Left X 1.05 50% 2.38 Left P 5% 55% 2.47 Right X 3.63 60% 2.55 Right P 95% Sensitivity 65% 2.64 2.58Name 70% 2.74 Regr Diff X #1 S6, Bewl Res / 2019/20 / $J$25 #2 D2, RZ7 / 2019/20 / $G$82 #3 D1, RZ7 / 2019/20 / $L$37 #4 Min Off/ $G$16 S8,Filter WRZ7 / 2019/20 0 Corr 0.669 0.655 0.431 0.412 0.347 0.346 85% 3.18 0.323 0.347 #5 S6,Filter Goudhurst 8, 9 and 14 / 2019/20 / 90% $J$223.31 Max BhsOff 0.252 0.218 #6 S6,#Filtered Bewl Bridge Bhs 0 / 2019/20 / $J$21 0.217 0.230 #7 S6, Goudhurst Bh 11 & 13 / 2019/20 / $J$23 0.132 0.117 #8 S6, Lamberhurst Sourceworks / 2019/20 / $J$19 0.035 -0.038 #9 D3, RZ7 / 2020/21 / $I$67 #10 Name/ $L$5 S5,Rank Goudhurst / 2009/10 #11 0.75 Value -1.19 Summary Statistics for 2019 Kurtosis -0.5 50 Std Dev Skewness -0.75 00:02:49 Simulation Start Time 3/18/13 16:47:31 Summary Statistics Simulation Duration 00:00:04 Value %tile Random # Generator RAN3I Mean -1 05/11/2008 12:46 Random Seed Sampling Type Maximum .431 .347 .323 .252 .217 .132 .035 .017 .016 .016 .015 .009 .008 .008 .003 05/11/2008 12:44 308 140 Statistic 292 Monte Carlo Number of Outputs Simulation Duration Minimum .669 1000 Workbook Name Number of Inputs Simulation Stop Time S6, Bewl Res / 2019/20/J25 D2, RZ7 / 2019/20/G82 D1, RZ7 / 2019/20/L37 S8, WRZ7 / 2019/20/G16 S6, Goudhurst Bhs 8, 9 and.../J22 S6, Bewl Bridge Bhs / 2019.../J21 S6, Goudhurst Bh 11 & 13 /.../J23 S6, Lamberhurst Sourcework.../J19 D3, RZ7 / 2020/21/I67 S5, Goudhurst / 2009/10/L5 S5, Goudhurst / 2014/15/N5 S5, Goudhurst / 2019/20/P5 S5, Goudhurst / 2009/10/L6 S5, Goudhurst / 2019/20/P6 S5, Goudhurst / 2014/15/N6 S6, Maytham Farm / 2019/20.../J17 1 Summary Information #12 Diff P 90% 75% 2.87 #Errors 0 80% 3.03 95% 3.63 Regression and Rank Information for 20190.017 Regr S5,1 Goudhurst / 2014/15 / $N$5 Burham / 2019/200.530 Corr 0.016 0.563 0.016 #13 S5,2 Goudhurst / 2019/20 / $P$5 SW / 2019/20 Bewl Bridge 0.517 0.482 0.015 S5, Goudhurst / 2009/10 / $L$6 0.009 #14 S5, Goudhurst / 2019/20 / $P$6 #15 S5, Goudhurst / 2014/15 / $N$6 #16 3 S6, Bewl Bridge Bhs 0.424 / 2019/20 0.398 4 D1, RZ7 / 2019/200.278 0.008 0.324 0.008 Goudhurst Sourceworks 0.268 0.243 / 2019/20 S6,5 Maytham FarmS6, / 2019/20 / $J$17 0.003 6 S8, WRZ7 / 2019/20 0.239 0.236 7 D2, RZ7 / 2019/200.128 0.183 8 S6, Goudhurst Bh 11 0.075 & 13 /0.097 2019/20 9 S6, Bewl Res / 2019/20 0.044 0.016 10 D3, RZ7 / 2020/210.013 0.170 11 S6, Lamberhurst Sourceworks 0.013 0.020 / 2019/20 12 S5, Goudhurst / 2019/20 0.012 -0.039 13 S5, Goudhurst / 2014/15 0.012 0.068 14 S5, Goudhurst / 2019/20 0.003 -0.006 0.278 0.050 -0.024 -0.023 0.007 0.039 0.025 -0.027 Headroom Model Results for dWRMP14 Final Report RZ8 Simulation Results for DYAA 2019 / U50 Summary Information Workbook Name Number of Simulations Simulation RZ8 - phase 3.3 v4.xls Summary Information Number of Iterations Workbook Name Number of Inputs 602 Number of Simulations 1 Number of Iterations 1000 Number of Outputs Sampling Type 1 140 Monte Carlo Number Simulation Start Time of Inputs 572 05/11/2008 14:29 Number Simulation Stop Time of Outputs 140 05/11/2008 14:30 Simulation Duration Sampling Type Monte Carlo Random SeedSimulation Start Time 3/18/13 16:53:03 Simulation Duration 00:00:05 Random Seed 50 Summary Statistics RAN3I Statistic Random # GeneratorValue Minimum 0.10 5.82 10% 0.44 2.19 15% 0.71 1.34 Percentile 1.79123971 5% 0.63 20% 0.95 25% 1.18 0.124418484 30% 1.37 2.49074447 35% 1.56 Statistics Minimum -0.01 Kurtosis Maximum 4.98 Median Mean 2.13 15% 1.00 2.20 40% 1.79 Mode Std Dev 0.98 20% 1.20 3.41 45% 2.00 Left X Variance 0.961466464 0.10 25% 1.38 50% 2.20 Left P Skewness 0.150164999 5% 30% 1.51 55% 2.37 Kurtosis 2.32580547 35% 1.65 4.48 60% 2.54 2.12 40% 1.81 4.38 65% 2.69 Diff X Median 95% 70% 2.88 Diff P Mode 1.64 45% 1.96 90% 75% 3.10 #Errors Left X 0.63 0 50% 2.12 80% 3.36 Filter Min Left P 5% 55% 2.26 85% 3.59 Filter Max Right X 3.81 60% 2.37 90% 4.02 Right P 95% 65% 2.53 95% 4.48 Diff X 3.18 Right P #Filtered -0.75 -0.5 -0.25 0 0.25 Std b Coefficients 0.5 0.75 0 #1 #2 D1, RZ8 / 2019/20 Filter Min Off/ $L$38 85% 3.20 0.582 0.598 #3 S6, Wichling / 2019/20 / $J$47 0.229 0.200 #4 S6, Newnham / 2019/20 / $J$49 0.199 0.168 #5 S6, Wineycock Shaw / 2019/20 / $J$48 0.106 0.159 #6 S6, Charing Bhs 2, 3 and 4 / 2019/20 / $J$43 0.087 0.123 #7 Regression Rank Information S6, Westwell / and 2019/20 / $J$45 for 20190.069 0.067 #8 Corr 0.057 0.888 0.053 0.060 #9 S6, 2019/20 / $J$30 Regr RankThanington /Name S8, / $G$17 1 WRZ8 / 2019/20 D1, RZ8 / 2019/200.874 #10 S6, Charing Bh 5 / 2019/20 / $J$44 0.048 0.117 #11 S6, Howfield / 2019/20 / $J$31 #12 S6, Chilham / 2019/20 / $J$33 #13 4 Godmersham S6,/ 2019/20 Newnham / 2019/20 0.071 S6, / $J$34 #14 Rank 1 10% 0.85 Sensitivity 70% 2.70 Diff P 90% Name 75% 2.88 Regr D2, RZ8 / 2019/20 #Errors 0 / $G$83 80% 3.02 0.710 Regression Sensitivity for 2019/U50 -1 Value 5% Std Dev Right X .577 %tile Summary Statistics for 2019 Skewness .223 .196 .106 .088 .07 .057 .051 .047 .04 .039 .038 .032 .026 .014 50 Mean Variance .708 00:00:57 -1.18 Maximum D2, RZ8 / 2019/20/G83 D1, RZ8 / 2019/20/L38 S6, Wichling / 2019/20/J47 S6, Newnham / 2019/20/J49 S6, Wineycock Shaw / 2019/.../J48 S6, Charing Bhs 2, 3 and 4.../J43 S6, Westwell / 2019/20/J45 S6, Thanington / 2019/20/J30 S8, WRZ8 / 2019/20/G17 S6, Charing Bh 5 / 2019/20.../J44 S5, Chilham / 2019/20/P5 S6, Howfield / 2019/20/J31 S5, Thanington / 2019/20/P12 D3, RZ8 / 2020/21/I68 S5, Howfield / 2019/20/P11 S5, Newnham / 2019/20/P15 1000 RZ8_v4.5.xlsm Filter Max Off 90% 3.44 #Filtered 0 95% 3.81 2 D2, RZ8 / 2019/200.421 0.395 3 S6, Wichling / 2019/20 0.076 0.132 Corr 0.707 0.077 0.043 0.040 0.042 -0.026 0.068 0.042 0.073 0.040 0.012 5 Chilham / 2019/20 S8, WRZ8 / 2019/20 0.064 S5, / $P$5 #15 S5, 6 Godmersham S5,/ 2019/20 Chilham/ /$P$6 2014/15 0.056 0.066 0.039 0.030 #16 S5, 2019/20 / $P$12 /0.051 7 Thanington /S5, Godmersham 2014/150.017 0.037 0.056 8 S5, Chilham / 2019/20 0.050 0.063 9 D3, RZ8 / 2020/210.047 0.062 10 S5, Thanington / 2014/15 0.044 0.056 11 S6, Thanington / 2019/20 0.039 0.081 12 S5, Howfield / 2014/15 0.038 13 S6, Wineycock Shaw 0.033 / 2019/20 0.045 14 S5, Howfield / 2019/20 0.032 0.021 -0.037 0.046 Headroom Model Results for dWRMP14 Final Report APPENDIX D – RESOURCE ZONE 2019 MODEL SIMULATION HEADROOM DATA DRY YEAR CRITICAL PERIOD Headroom Model Results for dWRMP14 Final Report RZ1 Simulation Results for ADPW 2019 all - peak / U55 Summary Information Workbook Name RZ1- phase 3.3 v4.xls Number of Simulations Simulation Summary Information 1 Number of Iterations Workbook Name RZ1_v4.5.xlsm 1000 Number of Inputs Number of Simulations 1 492 Number of Outputs Number of Iterations 1000 Number of Inputs 482 Number of Outputs 168 Simulation Duration Sampling Type Monte Carlo Simulation Start Time Random Seed 3/18/13 16:09:14 Sampling Type Simulation Start Time Simulation Stop Time Simulation Duration 168 Monte Carlo 04/11/2008 09:44 04/11/2008 09:47 00:03:14 50 00:00:05 Random # Generator RAN3I Summary Statistics Statistic Random Seed Value %tile 50 Minimum Maximum Mean 0 0.25 Std b Coefficients 35% 1.14 40% 1.53 45% 1.84 Mode Variance 6.765095541 20% 2.23 0.30 25% -0.49 0.68 Left X Skewness 0.223969141 30% -1.73 1.13 50% 2.23 Left P Kurtosis 2.535514477 5% 35% 1.45 55% 2.63 Right X Median 2.40 40% 6.90 1.80 60% 3.03 Right P Mode 2.39 45% 95% 2.04 65% 3.47 Diff X Left X -1.43 50% 8.63 2.40 70% 3.92 90% 75% 4.32 0 80% 4.95 85% 5.42 90% 6.09 95% 6.90 15% -0.37 Left P 5% 55% 2.76 Right X 7.20 60% 3.13 Right P 95% 65% 3.43 Diff X 8.63 70% 3.86 0 Diff P 90% 75% 4.27 #Errors 0 Rank Filter Min Sensitivity 80% 4.92 Off Name 85% 5.49 Regr Corr #1 S8, WRZ / $G$37 Filter Max 1 / 2019/20 Off 90% 6.14 0.945 0.943 #2 D2, RZ1 / 2019/20 #Filtered 0 / $G$86 95% 7.20 0.260 0.214 #3 D1, RZ1 / 2019/20 / $L$42 0.172 0.193 S6, Kemsing / 2019/20 / $J$29 Regression and Rank Information for 20190.079 0.057 #6 #7 #8 1 0.79 2.436995697 2.60 #5 0.75 30% Std Dev #4 0.5 0.38 0.134665614 Median #Filtered -0.25 25% 2.57 Filter Max -0.5 0.05 7.177009959 Mean Filter Min -0.75 -0.47 20% 10% -0.84 #Errors -1 15% 9.84 Diff P D2, RZ7 / 2029/30/K82 2029/30/P22 S6, Pembury (TW) / 2029/30.../N32 .006 .005 -1.03 2.41 -3.49 Kurtosis .259 .171 .077 .023 .014 .011 .011 .009 .008 .007 10% Maximum Skewness .943 -1.73 9.49 Summary Statistics for 2019 Percentile 2.68 5% -1.43 Variance S8, WRZ 1 / 2019/20/G37 D2, RZ1 / 2019/20/G86 D1, RZ1 / 2019/20/L42 S6, Kemsing / 2019/20/J29 S6, Hartlake / 2019/20/J31 S6, Tonbridge (Gravels) / .../J34 S6, Oak Lane / 2019/20/J28 2009/10/H28 D3, RZ1 / 2020/21/I72 D2, RZ2 / 2014/15/E87 D2, RZ6 / 2009/10/C81 -.006 -.006 -.006 D2, RZ3 / 2009/10/C88 2014/15/J27 5% Statistics Minimum Std Dev Regression Sensitivity for 2019 all peak/U55 Value -4.40 S6, Saints Hill / 2019/20 / $J$30 0.052 0.021 0.033 -0.009 Rank Name Regr S6, Pembury (Ash) / 2019/20 / $J$33 1 S8, WRZ 1 / 2019/20 0.968 Corr 0.044 0.973 2S6, Hartlake / 2019/20 D1, RZ1 // $J$31 2019/200.187 0.174 0.024 S6, Cramptons Rd / 2019/20 / $J$25 0.012 0.035 0.034 #10 3S6, Tonbridge D2, RZ1 / 2019/200.090 (Gravels) / 2019/20 / $J$34 0.079 0.015 4S6, Oak Lane /S6, Kemsing / 2019/20 0.065 0.080 0.011 2019/20 / $J$28 #11 5D3, RZ1 / 2020/21 S6, Hartlake 0.049 / $I$72 / 2019/20 0.707 #12 0.021 0.008 62019/20 / $L$28 S6, Tonbridge (Gravels) 0.028/ 2019/20 0.041 0.007 #13 72009/10 / $H$28 S6, Cramptons Rd 0.017 / 2019/20 0.003 0.007 -0.047 #14 82014/15 / $J$28 2019/20 0.010 -0.014 0.006 -0.003 #15 92019/20 / $L$23 2014/15 0.010 -0.009 0.006 -0.004 0.006 0.022 #9 #16 2009/10 / $H$23 10 2009/10 0.009 -0.003 11 D3, RZ1 / 2020/210.009 0.711 12 2014/15 0.009 -0.008 13 2019/20 0.009 -0.039 14 2009/10 0.009 0.022 0.026 0.005 Headroom Model Results for dWRMP14 Final Report RZ2 Simulation Results for ADPW 2019 / U50 Summary Information Workbook Name Number of Simulations Simulation RZ2 - phase 3.3 v4.xls 1 Summary Information Number of Iterations 1000 Workbook Name RZ2_v4.5.xlsm Number of Outputs Number of Simulations 1 Number of Iterations Sampling Type 1000 Simulation Start Time of Inputs Number 607 04/11/2008 11:23 Simulation Stop Time of Outputs Number 140 04/11/2008 11:26 Number of Inputs Simulation Duration 624 140 Monte Carlo 00:03:17 Sampling Type Monte Carlo Simulation Start Time 3/18/13 16:00:13 Random Seed Simulation Duration 00:00:06 Summary Statistics Statistic Random # GeneratorValue %tile RAN3I Minimum -12.28 5% Random Seed 50 Maximum Mean Std Dev -2.54 8.10 20% -0.72 25% 0.71 30% 1.67 35% 2.92 5.95 40% 3.86 12.73 45% 4.94 50% 5.95 Maximum 26.32 2.591396398 10% -5.07 Mean 5.23 15% -3.20 Left X Std Dev 7.95 20% -6.48 -1.76 Left P Variance 63.26406322 25% -0.47 5% 55% 7.07 Right X Skewness 0.23901322 30% 20.45 0.62 60% 8.17 Right P Kurtosis 2.521596518 95% 35% 1.64 65% 9.00 Median 4.68 40% 2.73 26.93 70% 10.16 Mode 7.99 90% 45% 3.64 0 75% 11.68 #Errors 80% 13.05 Filter Min Left X -7.36 50% 4.68 85% 15.13 Filter Max Left P 5% 55% 5.62 90% 17.83 #Filtered Right X 19.45 0 60% 6.90 95% 20.45 Right P 95% #1 65% 8.03 Sensitivity 26.81Name 70% 9.02 Regr Diff P 90% / $G$38 75% 10.77 0.949 S8, WRZ 2 / 2019/20 #2 S6, Barcombe / 02020/21 / $J$58 #Errors 80% 12.29 0.163 0.164 #3 D2, RZ2 / 2019/20 Filter Min Off/ $G$87 85% 14.02 0.150 0.223 0.106 0.094 0.048 0.052 Regression Sensitivity for 2019/U50 Rank #4 #5 Diff X D1, RZ2 / 2019/20 / $L$43 Filter Max Off S6, Cowish / 2020/21 / $J$44 #6 #Filtered 0 S4, Weir Wood / 2019/20 / $H$14 #7 S6, Shellbrook / $J$55 90% 16.35 95% 19.45 0.025 0.023 -.003 S6, Shellbrook/H55 #8 S6, Groombridge / $J$51 Regression and/ 2020/21 Rank Information for 20190.018 -.003 -.003 -.002 -.002 .003 S5, Cockhaise Well / 2014/.../O24 S6, Rathfinny / 2014/15/H52 S5, Coombe Down / 2024/25/S26 S5, Coggins Mill/Sharnden .../O25 #9 S6, Eridge / 2020/21 Rank Name/ $J$43 Regr S6, Poverty Bottom / 2020/21 / $J$46 1 S8, WRZ 2 / 2019/20 0.982 D1, RZ2 / 2034/35/R32 -0.5 15% Kurtosis Diff P -0.75 -4.17 6.32 -11.92 Diff X -1 10% Skewness Mode .162 .15 .108 .048 .024 .023 .008 .007 .004 -0.25 0 0.25 Std b Coefficients 0.5 0.75 1 -6.48 28.20 Percentile 65.5561531 0.169987033 5% -7.36 Median .946 Value Statistics Minimum Variance S8, WRZ 2 / 2019/20/G38 S6, Barcombe / 2020/21/J58 D2, RZ2 / 2019/20/G87 D1, RZ2 / 2019/20/L43 S6, Cowish / 2020/21/J44 S4, Weir Wood / 2019/20/H14 S6, Shellbrook/J55 D3, RZ2 / 2020/21/I73 S6, Forest Row / 2020/21/J50 S6, Rathfinny / 2020/21/J52 Summary Statistics for 2019 50 #10 #11 Corr 0.012 0.009 0.983 S6, Coggins Mill/Sharnden / 2020/21 / $J$42 0.965 0.039 0.050 0.007 -0.015 -0.004 0.026 #13 0.091 0.007 3S6, Hempstead S6, Barcombe / 2020/21 0.077 0.110 0.006 / 2020/21 / $J$41 #14 / 2020/21 / $J$50 4S6, Forest Row D2, RZ2 / 2019/200.053 0.053 0.006 0.041 #15 $I$73Wood / 2019/20 5D3, RZ2 / 2020/21 S4,/Weir 0.050 0.043 0.005 0.711 S6, Rathfinny / 2020/21 / $J$52 0.057 #12 #16 2S6, Cockhaise Well D1, RZ2 / 2019/200.145 / 2020/21 / $J$49 0.009 Corr 6 S6, Rathfinny / 2020/21 0.020 0.052 7 S6, Poverty Bottom 0.016 / 2020/21 0.030 8 S6, Cow wish / 2020/21 0.006 0.026 9 D3, RZ2 / 2020/210.006 0.748 10 S6, Eridge / 2020/21 0.004 -0.015 11 S6, Saddlescombe0.003 / 2020/21 0.020 12 S5, Saddlescombe0.003 / 2014/15 0.074 13 S6, Clayton / 2020/21 0.002 0.028 14 S5, Rathfinny / 2019/20 0.002 0.045 0.004 -0.008 0.008 Headroom Model Results for dWRMP14 Final Report RZ3 Simulation Results for ADPW 2019 / U50 Summary Information Workbook Name RZ3 - phase 3.3 v4.xls Simulation Summary Information Number of Simulations RZ3_v4.5.xlsm 1000 Number of Inputs Number of Simulations 1 629 Number of Outputs Number of Iterations 1000 140 Sampling Type Number of Inputs 653 Monte Carlo Simulation Start Timeof Outputs Number 140 04/11/2008 12:02 Simulation Stop Time Type Sampling Monte Carlo 04/11/2008 12:06 Simulation Duration Simulation Start Time 3/18/13 16:17:00 Simulation Duration 00:00:06 Random # Generator RAN3I Random Seed Statistic Minimum Maximum Summary Statistics for 2019 0.74 3.17 15% -2.21 0.192252634 30% 1.34 2.47944665 20% -1.23 35% 2.11 Kurtosis Std Dev 4.89 Median Variance 23.88253037 4.32 25% -0.38 40% 2.79 Mode Skewness 0.28139112 6.50 30% 0.26 45% 3.56 Left X Kurtosis 2.447415005 35% -3.73 0.87 50% 4.32 Median 2.86 55% 4.97 Mode 1.25 5% 40% 1.50 13.29 60% 5.71 Left X -4.15 95% 50% 2.86 65% 6.47 Left P 5% 17.03 55% 3.49 70% 7.12 Right X 11.87 90% 60% 4.04 75% 8.03 0 80% 8.94 Right P 95% 65% 4.71 85% 10.10 Filter Max Diff X Regression Sensitivity for 2019/U50 16.02 70% 5.57 90% 11.54 90% 75% 6.41 0 95% 13.29 #Errors 0 80% 7.71 Filter Min Off Rank Filter Max Off S8, WRZ 3 / 2019/20 / $G$39 #Filtered 0 #2 D2, RZ3 / 2019/20 / $G$88 0.970 0.180 0.215 #3 S6, Arlingtonand / 2019/20 $J$56 Regression Rank/ Information for 20190.099 0.041 #4 S4, Darwell Reservoir / 2019/20 / $G$15 Rank Name Regr Corr 0.079 S6, Darwell Reservoir / 2019/20 / $J$54 1 S8, WRZ 3 / 2019/20 0.988 0.992 0.063 0.554 #7 #8 2019/20/L32 #9 #10 Std b Coefficients 2 3 4 5 0.077 S6, Friston & Deep Dean / 2019/20 / $J$37 0.062 0.075 S6, Wallers Haven / 2019/20 / $J$55 0.054 -0.001 S4, Darwell Reservoir 0.084 / 2019/20 0.061 D2, RZ3 / 2019/200.076 S6, Cornish / 2019/20 / $J$46 0.065 0.035 0.053 S6, Stonegate / 2019/20 / $J$41 0.024 -0.006 S6, Birling Farm / 2019/20 / $J$42 S6, Wallers Haven0.029 / 2019/20 0.064 S6, Darwell Reservoir 0.017 / 2019/20 0.046 0.019 0.015 6 S6, Sweet Willow S6, Friston & Deep0.009 Dean / 2019/20 -0.062 0.018 Rd / 2019/20 / $J$43 0.054 7 S6, CrowhurstS6, Powder Mill (Group) 0.027 0.018 Bridge / 2019/20 / 0.008 $J$38 / 2019/20 0.049 0.009 #14 8 S6, River Rother D3,atRZ3 / 2020/210.007 Crowhurst Br / $J$53 0.721 0.016 9 S6, Holywell (E.Bourne) S6, Birling/Farm / 2019/20 0.005 2019/20 / $J$45 0.083 0.015 #15 10S6, Turzes Farm S6, /Sweet Willow Wood 0.005 / 2019/20 -0.027 0.013 2019/20 / $J$40 #16 112014/15 / $J$28 2009/10 0.002 0.027 0.011 12 2009/10 0.002 -0.047 13 2019/20 0.002 0.049 14 2019/20 0.002 -0.062 2024/25/N26 #11 S6, Friston & Deep Dean / .../R35 #12 .005 1 Corr 95% 11.87 0.919 #6 0.75 Sensitivity85% 8.60 90% 10.15 Regr Name #1 #5 0.5 45% 2.11 Diff P #Filtered 0.25 -0.31 25% Filter Min 0 -1.23 20% 10% -3.03 26.57066368 #Errors -0.25 -2.35 15% 15.74 Diff P -0.5 10% Maximum Diff X -0.75 -3.73 19.09 Variance Right P -1 Value 5% -7.57 Right X .006 %tile -7.46 Std Dev Left P .177 .099 .082 .065 .061 .034 .019 .018 .009 .008 50 Percentile 4.44 5% -4.15 5.15 Skewness Mean .911 Summary Statistics 50 Value Random Seed 00:03:16 Statistics Minimum Mean S8, WRZ 3 / 2019/20/G39 D2, RZ3 / 2019/20/G88 S6, Arlington / 2019/20/J56 S4, Darwell Reservoir / 20.../G15 S6, Friston & Deep Dean / .../J37 S6, Darwell Reservoir / 20.../J54 S6, Cornish / 2019/20/J46 S6, Crowhurst Bridge / 201.../J38 S6, Sweet Willow Rd / 2019.../J43 D3, RZ3 / 2020/21/I74 S6, Hazards Green / 2019/2.../J44 -.008 S6, Holywell (E.Bourne) / .../J44 -.006 -.006 S6, Powder Mill (Twr Fm) /.../L39 1 Workbook Name Number of Iterations #13 0.031 0.022 -0.011 Headroom Model Results for dWRMP14 Final Report RZ4 Simulation Results for ADPW 2019 / U50 Summary Information Workbook Name Simulation Number of Simulations RZ4 - phase 3.3 v4.xls Summary Information 1 Workbook Name Number of Iterations RZ4_v4.5.xlsm 1000 Number of Inputs Number of Simulations 1 600 Number of Outputs Number of Iterations 1000 Sampling Type Number of Inputs 590 Simulation Start Time 133 Monte Carlo 05/11/2008 11:48 Number of Outputs 126 Sampling Type Monte Carlo Simulation Start Time 3/18/13 16:25:41 Simulation Duration 00:00:06 Simulation Stop Time Simulation Duration Random Seed 05/11/2008 11:51 00:03:30 50 Random # Generator RAN3I Summary Statistics Statistic Random Seed Value %tile 50 Minimum Maximum Mean -0.25 0 0.25 4.13 Median Std Dev 4.14 20% 6.07 3.09 40% 4.89 Mode Variance 17.1586282 25%10.97 3.74 45% 5.41 Left X Skewness 0.078056402 30%-1.28 4.40 50% 6.07 Left P Kurtosis 2.848366947 5% 35% 4.96 55% 6.75 Right X Median 6.57 40%15.07 5.53 60% 7.53 Mode 8.90 45% 5.97 95% 65% 8.38 Left X 0.03 16.34 50% 6.57 70% 9.14 5% 55% 7.12 0 75% 9.76 #Errors Left P 90% 80% 10.74 Filter Min Right X 13.48 60% 7.59 85% 11.85 95% 65% 8.24 90% 13.11 Diff X 13.45 0 70% 8.88 95% 15.07 Diff P 90% 75% 9.59 #Errors 0 #1 Std b Coefficients Rank Filter Min Off Sensitivity 80% 10.27 Name Regr 85% 11.09 S8, WRZ 4 / 2019/20 / $G$40 Corr 0.629 0.617 0.618 0.584 0.417 0.392 0.127 0.135 #5 Regression and Rank Information S6, College Avenue / 2019/20 / $J$40 for 2019 0.122 0.127 #6 0.062 #7 S6, Boxhalls Lane Chalk / 2019/20 / $J$30Corr 0.110 Rank Name Regr 2019/20 / $J$39 1 S6, Bray Gravels S8, /WRZ 4 / 2019/20 0.722 0.739 0.073 #8 PS RZ4 / 2019/20 / $J$37 2 S6, West HamD1, / 2019/200.547 0.568 0.059 0.000 #9 Park / 2019/20 / $J$38 3 S6, West HamD2, RZ4 / 2019/200.212 0.226 0.050 0.025 #2 #10 #11 #12 1 3.58 35% #3 0.75 30% 15% 2.38 2.957150831 Filter Max Off 90% 11.95 #Filtered 0 95% 13.48 D2, RZ4 / 2019/20 / $G$89 D1, RZ4 / 2019/20 / $L$45 #4 0.5 2.91 0.190892418 6.67 Regression Sensitivity for 2019/U50 -0.5 25% Mean #Filtered -0.75 2.27 25.31811084 Kurtosis Filter Max Right P -1 1.39 20% 10% 1.50 Diff P .008 .007 .007 .007 15% 19.73 Diff X S8, WRZ 4 / 2024/25/I20 0.36 6.46 -6.38 Right P .125 .122 .111 .077 .052 .016 .014 .009 10% Maximum Skewness .416 -1.28 21.95 Summary Statistics for 2019 Percentile 5.03 5% 0.03 Variance .628 .614 5% Statistics Minimum Std Dev S8, WRZ 4 / 2019/20/G40 D2, RZ4 / 2019/20/G89 D1, RZ4 / 2019/20/L45 S6, Lasham / 2019/20/J34 S6, College Avenue / 2019/.../J40 S6, Boxhalls Lane Chalk / .../J30 S6, Bray Gravels / 2019/20.../J39 S6, Boxhalls Lane LGS / 20.../J31 S6, Tongham / 2019/20/J32 D3, RZ4 / 2020/21/I75 S6, Beenhams Heath / 2039/.../R47 -.009 2039/40/T29 2034/35/R37 S8, WRZ 1 / 2039/40/O37 2039/40/T39 Value -8.57 #13 #14 #15 #16 S6, Lasham / 2019/20 / $J$34 0.044 S6, Boxhalls Lane LGS / 2019/20 / $J$31 0.049 0.057 S6, Itchel / 2019/20 / $J$33 0.028 -0.020 S6, Woodgarston / 2019/20 / $J$41 0.025 0.013 6 S6, BeenhamsS6, College Avenue / 2019/20 0.054 0.024 Heath / 2019/20 / 0.094 $J$43 7 D3, RZ4 / 2020/21 S6, Lasham 0.078 0.090 0.020 / $I$75 / 2019/20 0.015 4 5 S6, Bray Gravels / 0.174 2019/200.167 S6, Boxalls Lane Chalk 0.131/ 2019/20 0.116 0.460 8 S6, Cookham S6, West Ham Park 0.065 / 2019/20 0.120 0.016 / 2019/20 / $J$27 0.031 2019/20 / $J$32 0.050 9 S6, Tongham /S6, Beenhams Heath 0.050 (including 0.047W0.012 Waltham) / 2019/20 10 S6, Cookham / 2019/20 0.050 11 S6, West Ham PS /0.036 2019/200.077 12 D3, RZ4 / 2020/210.024 13 S6, Boxalls Lane GS 0.017 / 2019/20 0.020 14 2019/20 0.015 0.021 0.544 0.057 Headroom Model Results for dWRMP14 Final Report RZ5 Simulation Results for ADPW 2019 / U50 Summary Information Workbook Name Simulation Number of Simulations RZ5 - phase 3.3 v4.xls Summary Information RZ5_v4.5.xlsm 1000 Number of Inputs Number of Simulations 1 523 Number of Outputs Number of Iterations 1000 Number of Inputs 510 Sampling Type Simulation Start Time Sampling Type Simulation Duration Monte Carlo Random Seed Simulation Start Time 3/18/13 16:32:40 Minimum Summary Statistics Random # Generator RAN3I Value Random Seed 50 -0.99 -0.34 2.14 15% 0.10 20% 0.37 -2.49 1.98 Percentile 3.909043564 5% -0.71 25% 0.72 6.47 0.070591554 10% -0.23 30% 1.04 Mean 2.01 2.89401061 35% 1.26 Std Dev 1.72 2.13 20% 0.43 40% 1.58 3.60 45% 1.88 Left X Variance 2.960581559 25%-0.99 0.68 50% 2.13 Left P Skewness 0.14143254 30% 0.89 5% 55% 2.39 Right X Kurtosis 2.457953114 35% 5.50 1.25 60% 2.65 Right P Median 1.96 40% 95% 1.50 65% 2.90 Diff X Mode 1.27 45% 6.49 1.73 70% 3.21 Left X -0.71 50% 1.96 90% 75% 3.49 Left P 5% 0 55% 2.18 80% 3.76 85% 4.17 Filter Max Right X 4.97 60% 2.42 90% 4.69 Right P 95% 65% 2.64 0 95% 5.50 Diff X 5.67 70% 2.95 Diff P 90% Median Mode Diff P #Errors Filter Min #Filtered Regression Sensitivity for 2019/U50 0 0.25 Std b Coefficients 0.5 Summary Statistics for 2019 Statistics Minimum #1 Rank #Errors #2 Sensitivity 75% 3.25 Name 80% 3.55 Regr Off D2, RZ5 / 2019/20 / $G$90 85% 3.86 #3 Filter Max Off S6, Oakhanger / 2019/20 / $J$34 #4 #Filtered 0 / $L$46 D1, RZ5 / 2019/20 0.815 0.311 0.307 90% 4.34 0.300 95% 4.97 0.274 0.259 0.205 0.157 #6 S6, Britty Hilland / 2019/20 $J$36 0.114 Regression Rank/ Information for 2019 0.106 #7 S6, Headley park / 2019/20 / $J$37 Rank Name Regr S6, The Bourne / 2019/20 / $J$38 1 S8, WRZ 5 / 2019/20 0.920 Corr 0.111 0.081 0.925 0.138 2 0.293 #9 #10 S6, Greatham / 2019/20 / $J$29 Corr 0.827 0.147 #8 S6, Windmill Hill, Alton / 2019/20 / $J$33 D1, RZ5 / 2019/200.308 0.113 0.056 0.024 -0.026 #12 0.166 0.021 4 S6, Tilford WRS6, Greatham / 2019/20 0.082 0.072 0.015 / 2019/20 / $J$26 #13 / 2019/20 / $J$39 5 S6, East MeonS6, Britty Hill / 2019/20 0.066 0.046 0.014 -0.015 #14 / 2019/20 / $J$27 6 S6, RushmoorS6, Headley park /0.057 2019/200.075 0.014 -0.016 #15 / $I$76 7 D3, RZ5 / 2020/21 S6, Sheet / 2019/20 0.031 #16 S6, Sheet / 2019/20 / $J$40 0.072 0.055 #11 1 0 15% 0.21 S8, WRZ 5 / 2019/20 / $G$41 Filter Min #5 0.75 Value 10% Skewness Maximum Kurtosis -0.25 %tile 8.22 Variance -0.5 50 5% Std Dev -0.75 00:02:33 -4.31 Mean -1 05/11/2008 12:18 00:00:05 Maximum .311 .301 .27 .145 .115 .11 .08 .074 .016 .014 .012 .008 .007 .005 .005 05/11/2008 12:15 140 Statistic .822 140 Monte Carlo Number Simulation Stop Timeof Outputs Simulation Duration S8, WRZ 5 / 2019/20/G41 D2, RZ5 / 2019/20/G90 S6, Oakhanger / 2019/20/J34 D1, RZ5 / 2019/20/L46 S6, Greatham / 2019/20/J29 S6, Headley park / 2019/20.../J37 S6, Britty Hill / 2019/20/J36 S6, The Bourne / 2019/20/J38 S6, Windmill Hill, Alton /.../J33 S6, Tilford WR / 2019/20/J26 D3, RZ5 / 2020/21/I76 2014/15/J34 S6, Hawkley / 2019/20/J30 S6, Hindhead LDN Rd / 2019.../J31 2034/35/R24 S8, WRZ 4 / 2034/35/M40 1 Number of Iterations Workbook Name 3 S6, Tilford Meads D2, RZ5 / 2019/200.215 / 2019/20 / $J$25 8 0.038 -0.050 0.013 0.604 0.010 0.015 S6, Hindhead Tower Rd / 2019/20 / $J$32 S6, Oakhanger (including 0.014 oaklands 0.020 and southlands) / 2019/20 9 D3, RZ5 / 2020/210.013 10 S6, Tilford Meads /0.011 2019/200.056 0.674 11 2014/15 0.010 -0.021 12 2019/20 0.010 0.016 13 2014/15 0.009 -0.054 14 2019/20 0.009 0.028 Headroom Model Results for dWRMP14 Final Report RZ6 Simulation Results for ADPW 2019 / U50 Summary Information Workbook Name RZ6 - phase 3.3 v4.xls Simulation Summary Information Number of Simulations 1 Number of Iterations Workbook Name RZ6_v4.5.xlsm 1000 Number of Inputs Number of Simulations 1 693 Number of Outputs Number of Iterations 1000 140 Sampling Type 629 Monte Carlo Number of Inputs Simulation Start Time 05/11/2008 12:29 Number of Outputs 140 Sampling Type Monte Carlo Simulation Start Time 3/18/13 16:44:48 Simulation Duration 00:00:06 Simulation Stop Time Simulation Duration Random Seed 05/11/2008 12:31 00:02:34 50 Random # Generator RAN3I Summary Statistics Statistic Random Seed Value 50 %tile Minimum -0.25 0 0.25 Std b Coefficients 0.5 0.75 Variance Maximum 5.40 3.088491598 10% 0.33 25% 1.50 Skewness Mean 1.96 0.173085057 15% 0.62 30% 1.73 2.884470626 35% 2.04 2.63 40% 2.24 2.09 45% 2.46 Std Dev 1.27 Variance 1.600392782 25% 1.11 Skewness 0.168758612 30% 1.26 -0.04 50% 2.63 Left P Kurtosis 2.687632975 35% 1.39 5% 55% 2.84 Right X Median 1.87 40% 1.57 5.62 60% 3.15 Right P Mode 1.35 45% 1.75 95% 65% 3.37 Diff X Left X -0.05 50% 1.87 5.66 70% 3.63 Diff P Left P 5% 90% 55% 2.06 75% 3.88 #Errors Right X 4.19 0 60% 2.23 80% 4.24 Filter Min Right P 95% 65% 2.41 85% 4.55 Filter Max Diff X 4.24 70% 2.58 90% 4.96 Diff P 90% 0 95% 5.62 #Errors 0 Filter Min Off Filter Max Off Rank 1 1.23 -1.28 Regression Sensitivity for 2019/U50 -0.5 0.80 20% Std Dev 2.72 Percentile 1.76 5% -0.05 #Filtered -0.75 0.50 15% Statistics Minimum Left X -1 10% Mean Mode .225 .181 .101 .093 .09 .088 .084 .077 .068 .066 .053 .05 .035 -0.04 8.49 Summary Statistics for 2019 Median .616 .489 .361 5% Maximum Kurtosis D2, RZ6 / 2019/20/G91 D1, RZ6 / 2019/20/L47 S4, Matts Hill / 2019/20/G18 S6, Trosley / 2019/20/J50 S6, Forstal Bhs 3 and Well.../J55 S6, Hartley Chalk / 2019/2.../J51 S6, Halling Greensand / 20.../J40 S6, Thurnham Bh 11 / 2019/.../J53 S8, RZ6 / 2019/20/G32 S6, Halling Chalk (Inc No..../J58 S6, Forstal Bh 4 / 2019/20.../J59 S6, Ridley / 2019/20/J52 S6, Nepicar Lane / 2019/20.../J46 S6, Boxley Well Source / 2.../J56 S6, Hartley Greensand / 20.../J48 S6, SWS Burham/J61 Value -1.89 20% 0.93 75% 2.79 80% 3.01 Sensitivity 85% 3.36 Name Regr 90% 3.73 #1 D2, RZ6 / 2019/20 / $G$91 #2 #Filtered 0 / $L$47 D1, RZ6 / 2019/20 #3 S4, Matts Hill / 2019/20 / $G$18 #4 Regression and Rank Information for S6, Trosley / 2019/20 / $J$50 #5 S6, Forstal Bhs 3 and Well / 2019/20 / $J$55Corr Rank Name Regr #6 Corr 0.620 0.628 0.487 0.481 0.363 0.441 20190.225 0.253 95% 4.19 0.181 0.218 S6, / 2019/20 / $J$51 1 Hartley Chalk D1, RZ6 / 2019/200.638 0.662 0.103 0.108 #7 S6, / 2019/20 / $J$40 2 Halling Greensand S4, Matts Hill / 2019/20 0.499 0.522 0.094 0.076 #8 S6, 11RZ6 / 2019/20 / $J$53 3 Thurnham Bh D2, / 2019/200.302 0.298 0.088 0.073 #9 S8, $G$32 Sourceworks 4 RZ6 / 2019/20 S6,/ Forstal 0.214 / 2019/20 0.186 0.084 0.308 #10 S6, Halling Chalk (Inc No.7) / $J$58 0.082 0.132 #11 S6, Forstal Bh 4 / 2019/20 / $J$59 0.076 0.052 #12 S6, Ridley / 2019/20 / $J$52 0.065 0.044 #13 S6, Nepicar Lane / 2019/20 / $J$46 0.065 0.092 #14 S6, Hockers lane / 2019/20 / $J$54 0.055 0.032 #15 9 Boxley Well S8, RZ6 // 2019/20 2019/20/ 0.112 S6, Source $J$56 0.337 0.054 10 S6, Paddlesworth 0.051 / 2019/20 -0.015 0.051 S6, Hartley Greensand / 2019/20 / $J$48 0.041 #16 5 S6, Thurnham Bhs0.201 / 2019/20 0.214 6 S6, Trosley / 2019/20 0.161 7 S6, Hartley Chalk /0.126 2019/200.123 8 S6, Matts Hill (Belmont) 0.124 / 2019/20 0.113 0.178 11 S6, Ridley / 2019/20 0.046 0.076 12 S6, Boxley Greensand 0.041 / 2019/20 0.075 13 S6, Hockers lane /0.038 2019/200.054 14 S6, Boxley Well Source 0.037/ 2019/20 0.050 0.065 Headroom Model Results for dWRMP14 Final Report RZ7 Simulation Results for ADPW 2019 / U50 Summary Information Simulation Summary Information Workbook Name Workbook Name Number of Simulations Number of Simulations Number of Iterations Number of Iterations Number of Inputs Number of Inputs Number of Outputs Number Sampling Typeof Outputs Sampling Simulation StartType Time Simulation Start Time Simulation Stop Time Simulation Duration Simulation Duration Random Seed # Generator Random Random Seed RZ7 - phase 3.3 v4.xls RZ7_v4.5.xlsm 1 1 1000 1000 292 308 140 140 Monte Carlo Monte Carlo 05/11/2008 12:44 3/18/13 16:47:31 05/11/2008 12:46 00:00:04 00:02:49 50 RAN3I 50 Summary Statistics Statistic %tile Summary StatisticsValue for 2019 Minimum Statistics Maximum Minimum -0.12 Mean Maximum 4.41 Std Dev Mean Variance Std Dev Skewness Variance Kurtosis Skewness Median Kurtosis Mode Median Left X Mode Left P Left X Right X Left P Right P Diff X Right X -1 -0.75 -0.5 -0.25 0 0.25 Std b Coefficients 0.18 30% 0.29 35% 0.41 40% 0.48 45% 0.59 50% 0.66 55% 0.77 60% 0.91 65% 1.00 3.42 60%2.51 2.42 65%90% 2.53 70% 1.12 75% 1.24 80% 1.38 85% 1.52 0 80% 2.85 90% 1.70 #Filtered Filter Min Off 0 85% 2.98 95% 1.94 Filter Max Off 90% 3.16 #Filtered 0 #5 #6 #7 #8 #9 #10 #11 1 0.03 25% #Errors Filter Max #3 0.75 -0.13 20% 90% #4 0.5 15% Diff P Filter Min #2 .209 .192 .121 .103 .101 .018 .012 .012 .011 .008 .007 .007 -0.31 10%0.70 1.26 0.77 2.22 15% 1.44 0.587649405 0.74 20% 1.62 0.034183181 0.548779468 25% 1.72 2.644493992 -0.065609476 30% 1.82 0.66 2.843260377 35% 1.90 0.63 2.21 40% 2.02 -0.57 2.81 45% 2.12 5% 1.00 50%1.94 2.21 5% 55%95% 2.32 70% 2.64 0 75% 2.74 #1 .41 .353 .342 -0.57 10% 95% Rank .724 Value 5% Diff P Right P Diff X #Errors Regression Sensitivity for 2019/U50 DO estimate / 2019/20/I23 D2, RZ7 / 2019/20/G92 D1, RZ7 / 2019/20/L48 S8, WRZ7 / 2019/20/G33 DO estimate / 2019/20/I19 DO estimate / 2019/20/I16 DO estimate / 2019/20/I17 DO estimate / 2019/20/I21 DO estimate / 2019/20/I18 D3, RZ7 / 2020/21/I78 S5, Goudhurst / 2019/20/P16 S5, Goudhurst / 2009/10/L16 S5, Goudhurst / 2014/15/N16 S5, Goudhurst / 2019/20/P17 S5, Lamberhurst / 2014/15/N18 S5, Lamberhurst / 2009/10/L18 -1.58 Percentile 5%2.91 1.00 2.42 Sensitivity 95% 3.42 Name Regr DO estimate / 2019/20 / $I$23 for 2019 0.724 Regression and Rank Information Rank 1 2 3 4 5 6 7 8 #12 9 #13 10 #14 11 #15 12 #16 13 14 D2, RZ7 / 2019/20 / $G$92 Name Regr D1, RZ7 / 2019/20 / $L$48 Burham / 2019/20 0.566 0.410 Corr 0.570 0.353 S8, WRZ7 / 2019/20 / $G$33 0.342 Bewl Bridge SW / 2019/20 0.549 0.513 DO estimate / 2019/20 / $I$19 0.209 D1, RZ7 / 2019/200.373 0.346 DO estimate / 2019/20 / $I$16 0.192 S8, WRZ7 / 2019/20 0.364 0.368 DO estimate / 2019/20 / $I$17 0.121 D2, RZ7 / 2019/200.167 0.200 DO estimate / 2019/20 / $I$21 0.103 DO estimate / 2019/20 0.164 0.133 DO estimate / 2019/20 / $I$18 0.101 DO estimate / 2019/20 0.157 0.195 D3, RZ7 / 2020/21 / $I$78 0.017 DO estimate / 2019/20 0.098 0.060 0.012 S5, Goudhurst / 2019/20 / $P$16 DO estimate / 2019/20 0.085 S5, Goudhurst / 2009/10 / $L$16 0.040 0.012 DO estimate / 2019/20 0.060 S5, Goudhurst / 2014/15 / $N$16 0.038 0.012 DO estimate / 2019/20 0.039 S5, Goudhurst / 2014/15 / $N$17 0.067 0.008 D3, RZ7 // 2020/210.016 S5, Goudhurst 2019/20 / $P$17 0.293 0.008 S5, Goudhurst / 2014/15 0.013 S5, Goudhurst / 2009/10 / $L$17 0.015 0.007 S5, Goudhurst / 2019/20 0.013 -0.010 Corr 0.677 0.401 0.295 0.323 0.176 0.164 0.092 0.085 0.102 0.234 -0.022 0.070 0.051 -0.001 0.061 0.045 Headroom Model Results for dWRMP14 Final Report RZ8 Simulation Results for ADPW 2019 / U50 Summary Information Simulation Summary Information Workbook Name RZ8 - phase 3.3 v4.xls Name Number Workbook of Simulations RZ8_v4.5.xlsm of Simulations Number Number of Iterations 1 1000 Number Number of Inputsof Iterations 1000 602 Number Number of Outputs of Inputs 572 140 Sampling Type of Outputs Number 140 Monte Carlo Simulation Start Time Sampling Type Monte Carlo Simulation Start Time 3/18/13 16:53:03 Simulation Duration 00:00:05 Random # Generator RAN3I Simulation Stop Time Simulation Duration Random Seed 1 05/11/2008 14:29 05/11/2008 14:30 50 Random Seed 50 Summary Statistics Statistic Value %tile MinimumSummary Statistics for 2019 -2.43 5% Maximum Statistics Minimum -0.12 7.48 10% Percentile 5%2.50 0.51 15% Std Dev Maximum 5.94 10%1.60 0.77 20% Mean Variance Mean 2.47 Std Dev 1.26 Variance 1.576753718 Mode Skewness 0.082877882 Left X Kurtosis 2.14403854 Left P Median 2.48 Skewness Kurtosis Median -.01 -.009 -1 -0.75 -0.5 -0.25 0 0.25 Std b Coefficients 0.5 0.75 1 1.09 0.78 2.567593414 25% 1.35 0.168178571 30% 1.54 2.747283839 35% 1.74 2.49 40% 2.06 15% 1.04 20% 1.19 25% 1.43 30%2.37 1.63 45% 35% 1.85 50% -0.09 2.29 2.49 Right P Left X Diff X Left P 0.51 50%95% 2.48 65% 3.07 5% 55%5.22 2.70 70% 3.33 Diff P Right X 4.41 60%90% 2.84 75% 3.61 #Errors Right P 95% 0 80% 65% 3.00 3.87 85% 4.17 90% 4.60 95% 5.13 Regression Sensitivity for 2019/U50 S5, Newnham / 2019/20/P36 0.45 2.40 Diff X 3.90 70% 3.20 Diff P 90% 75% 3.41 #Errors 0 80% 3.72 Filter Min Off Filter Max Rank Off #Filtered .207 .181 .159 .111 .097 .072 .051 .033 .016 .015 .013 S5, Newnham / 2014/15/N15 .01 S8, WRZ6 / 2019/20/G15 -0.09 Right X Mode Filter Max .716 .603 Value 40% 5% 2.07 55% 45%5.13 2.27 60% Filter Min D2, RZ8 / 2019/20/G93 D1, RZ8 / 2019/20/L49 DO estimate / 2019/20/I46 Flow meter / 2019/20/I45 DO estimate / 2019/20/I39 DO estimate / 2019/20/I47 DO estimate / 2019/20/I37 DO estimate / 2019/20/I42 Flow meter / 2019/20/I31 Flow meter / 2019/20/I30 None / 2019/20/I36 Flow meter / 2019/20/I34 S8, WRZ8 / 2019/20/G17 00:00:57 0 Sensitivity85% 3.93 90% 4.19Regr Name 2.69 2.86 Corr #1 #Filtered D2, RZ8 / 02019/20 / $G$93 95% 4.41 0.726 0.697 #2 D1, RZ8 / 2019/20 / $L$49 0.610 0.595 #3 DO estimate 2019/20 / $I$46 0.206 Regression and /Rank Information for 2019 0.166 #4 / 2019/20 / $I$45Regr Rank Flow meter Name DO estimate 2019/20 / $I$39 1 D1,/RZ8 / 2019/200.901 Corr 0.183 0.9010.155 0.121 0.116 0.072 0.101 0.035 0.074 0.073 0.053 0.106 #5 #6 #7 #8 #9 2 3 4 DO estimate / 2019/20 / $I$47 D2, RZ8 / 2019/200.408 0.349 None / 2019/20 0.081 0.117 D3, RZ8 / 2020/210.074 0.028 DO estimate / 2019/20 / $I$37 DO estimate / 2019/20 / $I$42 Flow meter / 2019/20 / $I$31 0.161 #10 5 Flow meter / /2019/20 0.071 DO estimate / 2019/20 $I$43 0.0490.040 0.014 #11 6 estimate / 2019/20 0.061 S8, WRZ8DO / 2019/20 / $G$34 0.0230.039 0.016 #12 7 DO estimate/ $I$30 / 2019/20 0.047 Flow meter / 2019/20 0.0320.036 0.067 #13 8 S5, Godmersham / 2019/20 /0.045 / 2014/15 $P$27 0.0460.035 S5, Godmersham 0.001 #14 9 0.008 #15 10 Flow meter / $I$29 S5,/ 2019/20 Thanington / 2014/15 0.043 0.0820.035 Flow meter S5,/ 2019/20 Chilham//$I$32 2014/15 0.042 -0.0160.033 11 S5, Thanington / 2019/20 / $P$33 S5, Chilham / 2019/20 0.041 0.009 #16 0.0610.032 12 S5, Thanington / 2019/20 0.041 0.039 13 DO estimate / 2019/20 0.034 0.065 14 Flow meter / 2019/20 0.032 0.061 0.000