Aportes de ITENU a la Resolución de Problemas de Números de
Transcription
Aportes de ITENU a la Resolución de Problemas de Números de
Aportes de ITENU a la Resolución de Problemas de Números de Fibonacci Carolina Melo Lopez Semillero de Investigación ITENU. Encuentro ALTENCOA6-2014. Universidad de Nariño-Pasto. Agosto del 2014 ITENU This group was created during the fourth international conference on Algebra, Number Theory, Combinatorics and Applications in Tunja, Colombia, ALTENCOA4-2010. We are focused on the number theory, we are dedicated specifically to solve problems The Fibonacci Quarterly. ITENU Lines of research Fibonacci numbers. Theory of partitions. Theory of compositions. Theory of representations. Figurate numbers. ITENU Fibonacci Quarterly The Fibonacci Quarterly is a scientific journal on mathematical topics related to the Fibonacci numbers, published four times by year. It is the primary publication of The Fibonacci Association, which has published it since 1963. B-1142 Theorem Prove that n X k=1 F4k−1 = F2n F2n+1 for any positive integer n. B-1142 Proof. P 2 We know that F2n+1 = Fn2 + Fn+1 and nk=1 Fk2 = Fn Fn+1 , see for example [?, p.79, Cor. 5.4] and [?, p.77, Th. 5.5], respectively. Thus, n X F4k−1 = k=1 = n X k=1 2n X 2 2 F2k + F2k−1 Fk2 k=1 = F2n F2n+1 . This proves the result. B-1146 Theorem Prove that 2 2 Fn+2 ≥ 5Fn−1 for all integer n ≥ 1. B-1146 Proof. We prove the inequality by strong induction on n: The inequality is clear when n = 1 and when n = 2, We now assume that the 2 2 , inequality is true to a natural number n. Since Fn+2 ≥ 5Fn−1 2 2 Fn+1 ≥ 5Fn−2 and 2Fn+1 Fn+2 ≥ 2(5Fn−2 Fn−1 ), we have that: 2 Fn+3 = (Fn+2 + Fn+1 )2 2 2 = Fn+2 + 2Fn+2 Fn+1 + Fn+1 ≥ 5Fn−1 + 2(5Fn−2 Fn−1 ) + 5Fn−2 = 5(Fn−1 + Fn−2 )2 = 5Fn2 This proves the result. B-1144 Theorem Prove that n Y (Fk2 + 1) ≥ Fn Fn+1 + 1 k=1 n Y (L2k + 1) ≥ Ln Ln+1 − 1 k=1 For any positive integer n. B-1144 n X k=1 n X k=1 Fk2 = Fn Fn+1 , [1, p.77, Id.5.5] L2k = Ln Ln+1 − 2, [1, p.78, Id.5.10] B-1144 Lemma Let {Gn }n∈N be the generalized Fibonacci sequence with integers a and b. That is, G1 = a, G2 = b and Gn = Gn−1 + Gn−2 for all n ∈ N\{1, 2}, then n X k=1 Gk2 = Gn Gn+1 + a(a − b) B-1144 Proof. (by PMI) When n = 1: P1 2 2 2 2 k=1 Gk = G1 = a = a − ab + ab = G1 G2 + a(a − b). So the result is true when n = 1. Assume it is true for an arbitrary positive integer t: t X k=1 Gk2 = Gt Gt+1 + a(a − b). B-1144 Proof. Then t+1 X k=1 Gk2 = t X ! Gk2 2 + Gt+1 k=1 2 = Gt Gt+1 + a(a − b) + Gt+1 by the lH = Gt+1 (Gt + Gt+1 ) + a(a − b) = Gt+1 Gt+2 + a(a − b) So the statement is true when n = t + 1. Thus it is true for every positive integer n. B-1144 Lemma If {xn }n∈N is a sequence of nonnegative real numbers, then ! n n Y X (xk + 1) ≥ xk + 1. k=1 k=1 B-1144 Proof. Q P1 (by PMI) When n = 1, 1k=1 (xk + 1) = x1 + 1 = k=1 xk + 1. So the result is true when n = 1. Assume it is true for an arbitrary positive integer t: ! t t X Y (xk + 1) ≥ xk + 1. k=1 k=1 B-1144 Proof. Then t+1 Y t Y (xk + 1) = k=1 " ≥ ! (xk + 1) (xt+1 + 1) k=1 t X ! xk # + 1 (xt+1 + 1) by the lH k=1 ≥ xt+1 t X ! xk k=1 ≥ t+1 X k=1 k=1 ! xk + t+1 X +1 ! xk +1 B-1144 Theorem Prove that n Y (Fk2 + 1) ≥ Fn Fn+1 + 1 k=1 n Y (L2k + 1) ≥ Ln Ln+1 − 1 k=1 For any positive integer n. B-1144 Proof. Let {Gn }n∈N be the generalized Fibonacci sequence with integers a and b. That is, G1 = a, G2 = b and Gn = Gn−1 + Gn−2 for all n ∈ N\{1, 2}. Note that if a = b = 1, then Gn = Fn . If a = 1 and b = 3, then Gn = Ln . This way, can be proved a more general result. I.e.: n Y (Gk2 + 1) ≥ Gn Gn+1 + a(a − b) + 1 k=1 for all n ∈ N B-1144 Proof. So n Y (Gk2 + 1) ≥ k=1 n Y n X ! Gk2 +1 k=1 (Gk2 + 1) ≥ Gk Gk+1 + a(a − b) + 1 k=1 Bibliography Koshy N. N., Lecciones Populares de Matemáticas. Números de Fibonacci, A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York, October 2001. 672 pp. ISBN: 978-0-471-39969-8 Vorobiov Thomas, Fibonacci and Lucas Numbers with Applications, Editorial Mir, Moscú.
Similar documents
Staphylococcus spp. inhabiting backyard rabbits
All isolates were tested using the STAPHYtest 16 (Erba Lachema, Czech
Republic). Clumping factor, coagulase and hyaluronidase production, and
novobiocin susceptibility were tested using Itest comme...