Symbolic music features: Rhythm and meter
Transcription
Symbolic music features: Rhythm and meter
Symbolic music features: Rhythm and meter Anja Volk Sound and Music Technology, May 26, 2016 1 Today ! Main modules A. Sound and music for games B. Analysis, classification, and retrieval of sound and music for media C. Generation and manipulation of sound and music for games and media 2 Today ! Main modules A. Sound and music for games B. Analysis, classification, and retrieval of sound and music for media • • Representation of musical data: symbolic vs. audio data Main topic: Symbolic music feature extraction: Rhythm and meter – – – – – 9 What is rhythmic and metric information in music? Computational models for rhythm and meter extraction Inner Metric Analysis Application in Music Analysis, Music Cognition and Music Information Retrieval Student Presentation: paper by Andre Holzapfel Module B: Analysis, classification, and retrieval of sound and music for media ! Music Information Retrieval ! Symbolic vs. audio data 10 Module B: Analysis, classification, and retrieval of sound and music for media ! Music Information Retrieval ! Symbolic vs. audio data 11 Module B: Analysis, classification, and retrieval of sound and music for media ! Music Information Retrieval ! Symbolic vs. audio data 12 Representation of musical data: symbolic vs. audio data ! Audio is most natural representation of music ! ideally, this is what the MIR user works with ! Important digital audio formats ! PCM (Pulse Code Modulation), CD quality: • sample rate 44.100 Hz • amplitude resolution 16 bits • 2 channels ! MP3 • lossy, perceptual compression • perceptual masking • suppresses inaudible components • ‘bit rate’ can be set by creator • many different MP3s from one recording 13 Representation of musical data: symbolic vs. audio data ! Musical audio is analysed in 2 domains: ! time domain • change of amplitude over time ! frequency domain • within certain time interval • Fast Fourier Transform • magnitude of frequency components ! Musical tones have a periodic spectrum (f0, 2f0 , 3f0 , 4f0 ,…) ! harmonics trumpet 14 Representation of musical data: symbolic vs. audio data ! Sample audio features ! frequencies ! fundamental frequency ! spectral energy ! Cepstral coefficients, MFCC ! amplitude envelope ! attack ! decay ! zero crossing rate ! spectral centroid ! standard deviations of the above ! etc. etc. ! Low-level features: most of these not directly observable by listener ! Used in instrument recognition, genre classification, etc. 15 Representation of musical data: symbolic vs. audio data ! Music Information Retrieval ! Symbolic vs. audio data 16 Representation of musical data: symbolic vs. audio data ! MIDI: Musical Instrument Digital Interface ! Event messages: sound events ! Standardized in 1983 ! Protocol for communicating with electronic instruments 17 Sound event perception MIDI pitch low-high: c. 90 categories octave equivalence pitch number duration long-short: multiples of 2 and 3 Onset and offset times loudness soft-loud: continuous Velocity number timbre MIDI Instrument tone quality sound source Representation of musical data: symbolic vs. audio data 18 MFile 1 2 1024 MTrk 0 TimeSig 2/4 24 8 0 KeySig 0 major ! MIDI: 0 Tempo 500000 ! Event messages: sound events 16385 Meta TrkEnd TrkEnd MTrk 0 Meta TrkName "Acoustic Grand Piano" 0 PrCh ch=1 p=0 0 On ch=1 n=72 v=64 0 On ch=1 n=48 v=64 1024 Off ch=1 n=72 v=0 1024 On ch=1 n=72 v=64 1024 Off ch=1 n=48 v=0 1024 On ch=1 n=60 v=64 2048 Off ch=1 n=72 v=0 2048 Off ch=1 n=60 v=0 2048 On ch=1 n=79 v=64 2048 On ch=1 n=64 v=64 3072 Off ch=1 n=79 v=0 3072 On ch=1 n=79 v=64 3072 Off ch=1 n=64 v=0 3072 On ch=1 n=60 v=64 4096 Off ch=1 n=79 v=0 Representation of musical data: symbolic vs. audio data ! MIDI: Musical Instrument Digital Interface ! Event messages: sound events ! Standardized in 1983 piano roll notation MIDI in action: https://www.youtube.com/watch?v=gGdSxEKujDE 19 Representation of musical data: symbolic vs. audio data ! MIDI: Musical Instrument Digital Interface ! Event messages: sound events ! Standardized in 1983 piano roll notation Origin: piano roll 20 Representation of musical data: symbolic vs. audio data ! MIDI: Musical Instrument Digital Interface ! Event messages: sound events ! Standardized in 1983 piano roll notation Origin: piano roll 21 Representation of musical data: symbolic vs. audio data ! Symbolic data ! MIDI ! Kern ! MusicXML ! … ! Beyond MIDI. The Handbook of Musical Codes. ed. Eleanor Selfridge-Field (1997) ! c. 27 music encoding systems, detailed descriptions ! non-proprietory formats only 22 Representation of musical data: symbolic vs. audio data ! Symbolic data ! MIDI ! Kern ! MusicXML ! … ! Beyond MIDI. The Handbook of Musical Codes. ed. Eleanor Selfridge-Field (1997) ! c. 27 music encoding systems, detailed descriptions ! non-proprietory formats only 23 Representation of musical data: symbolic vs. audio data ! Symbolic data ! David Huron, c. 1990 ! http://csml.som.ohio-state.edu/ Humdrum/ ! syntax for developing (light-weight) encoding systems ! data organised in parallel ‘spines’ ! humdrum representation for CMN: kern ! humdrum tools (UNIX) 24 **kern *staff2 =1*clefF4 *k[] *M2/4 *^ * 2ryy . =2 2ryy . =3 2ryy . =4 2ryy . =5 2ryy . =6 2ryy . =7 **kern *staff1 =1*clefG2 *k[] *M2/4 4C 4c =2 4e 4c =3 4f 4c =4 4e 4c =5 4d 4B =6 4c 4A =7 4cc 4cc =2 4gg 4gg =3 4aa 4aa =4 4gg 4gg =5 4ff 4ff =6 4ee 4ee =7 Today ! Main modules A. Sound and music for games B. Analysis, classification, and retrieval of sound and music for media • • Representation of musical data: symbolic vs. audio data Main topic: Symbolic music feature extraction: Rhythm and meter – – – – – 25 What is rhythmic and metric information in music? Computational models for rhythm and meter extraction Inner Metric Analysis Application in Music Analysis, Music Cognition and Music Information Retrieval Student Presentation: Model evaluation Symbolic music feature extraction: Rhythm and meter ! What is rhythm and meter? ! Fundamental to human perception and cognition of music 26 Symbolic music feature extraction: Rhythm and meter ! What is rhythm and meter? ! Fundamental to human perception and cognition of music ! “Rhythm and pitch are the two primary parameters of musical structure (Meyer, E 1973). … If pitch is concerned with the disposition of the frequencies of musical notes, then rhythm is concerned with the description and understanding of their duration and durational patternings. These durations may be more or less regular, may or may not give rise to a sense of beat or tempo, and may be more or less continuous, but as all music involves duration(s), all music necessarily has some manner of rhythm. Grove Music Online 27 Symbolic music feature extraction: Rhythm and meter ! What is rhythm and meter? ! Fundamental to human perception and cognition of music Height (Pitch) Time 28 Symbolic music feature extraction: Rhythm and meter ! What is rhythm and meter? ! Fundamental to human perception and cognition of music ! Listening experiment 29 Dancing Picture from hcs.harvard.edu/~hma-bdc 30 Dancing Mambo ! Merengue ! Picture from hcs.harvard.edu/~hma-bdc 31 … even 7 months old babies are experts Phillips-Silver/Trainor: Feeling the Beat: Movement Influences Infant Rhythm Perception, 2005 32 Rhythm Spontaneous reaction: tapping 33 Rhythm: Meter Spontaneous reaction: tapping 1 34 2 3 1 2 3 Rhythm: Meter Spontaneous reaction: tapping 1 35 2 3 4 1 2 3 4 Rhythm: Meter Accent Pattern 36 Theories of rhythm and meter Yeston, Lerdahl/Jackendoff, Hasty I define the meter of a work as the union of all layers of motion (i.e., series of regularly recurring pulses) active within it. Harald Krebs 37 Theories of rhythm and meter nested pulses 38 Theories of rhythm and meter nested pulses 39 Today ! Main modules A. Sound and music for games B. Analysis, classification, and retrieval of sound and music for media • • • Short Recapitulation: Music Information Retrieval Representation of musical data: symbolic vs. audio data Main topic: Symbolic music feature extraction: Rhythm and meter – – – – – 40 What is rhythmic and metric information in music? Computational models for rhythm and meter extraction Inner Metric Analysis Application in Music Analysis, Music Cognition and Music Information Retrieval Student Presentation: Model evaluation Inner Metric Analysis Background: Mathematical Music Theory Simplicial complex (Algebraic Topology, Guerino Mazzola) A. Fleischer (Volk), G. Mazzola and T. Noll (2000): Computergestützte Musiktheorie, Musiktheorie, 15(4), 314-325. 42 Inner Metric Analysis Inner metric analysis: motivation 43 Inner Metric Analysis 44 Inner Metric Analysis 46 Anton Webern Scott Joplin Piano Variations Op. 27, II Nonpareil Rag Inner Metric Analysis 47 Inner Metric Analysis Outer Metric Structure Inner Metric Structure 48 WITCHCRAFT, Inner Metric Analysis Metric Weight 49 Inner Metric Analysis Metric Weight Cycles in 3 Cycles in 2 50 Inner Metric Analysis Metric Weight Picture from www.ritzenhoff.de 51 Inner Metric Analysis Metric Weight Picture from www.ritzenhoff.de 52 Inner Metric Analysis Metric Weight Picture from www.ritzenhoff.de 53 Inner Metric Analysis Metric Weight Picture from www.ritzenhoff.de 54 Inner Metric Analysis Metric Weight Picture from www.ritzenhoff.de 55 Inner Metric Analysis Spectral Weight Picture from www.ritzenhoff.de 56 Inner Metric Analysis Metric Weight Metric Weight Picture from www.ritzenhoff.de 57 Spectral Weight Inner Metric Analysis 64 Anton Webern Scott Joplin Piano Variations Op. 27, II Nonpareil Rag Inner Metric Analysis ? 65 Webern vs. Joplin 66 Webern vs. Joplin left hand right hand 67 Webern vs. Joplin 68 Today ! Main modules A. Sound and music for games B. Analysis, classification, and retrieval of sound and music for media • • • Short Recapitulation: Music Information Retrieval Representation of musical data: symbolic vs. audio data Main topic: Symbolic music feature extraction: Rhythm and meter – – – – – 69 What is rhythmic and metric information in music? Computational models for rhythm and meter extraction Inner Metric Analysis Application in Music Analysis, Music Cognition and Music Information Retrieval Student Presentation: Model evaluation Music Analysis Symphony C Major K. 551 1. Movement (4/4) Wolfgang A. Mozart Excerpt from Metric weight W2,2 of the exposition (bars 1-55) 70 Music Analysis Igor Stravinsky: The Rite of Spring Danse Sacrale 71 Music Analysis 72 Music Analysis 73 Music Cognition J. Snyder & C. Krumhansl: Tapping to Ragtime - Cues to Pulse Finding ! Ragtime: Cues for pulse finding? ! First hypothesis: pitch ! Tapping experiments: rhythm only! 74 Music Cognition J. Snyder & C. Krumhansl: Tapping to Ragtime - Cues to Pulse Finding American Beauty Sensations Glad Cat S: Both Hands S: Both Hands S: Both Hands S: Right Hand S: Right Hand S: Right Hand S: Left Hand S: Left Hand S: Left Hand Anja Volk (2008), The Study of Syncopation using Inner Metric Analysis: Linking Theoretical and Experimental Analysis of Metre in Music, In: Journal of New Music Research, Vol. 37:4, p. 259-273. 75 Music Information Retrieval Picture from hcs.harvard.edu/~hma-bdc 76 Music Information Retrieval I taught cha cha, waltz, foxtrot, west coast swing, tango, rumba, etc. And sure, there were music catalogues with metadata tagged in all these genres. But the songs that had those metadata tags were all ballroom dance music. Awful, awful stuff. Stuff nobody really wanted to listen to. So what I really wanted was something that could find songs that were both good to listen to, and good to dance to at the same time. … I don't see how this could be done without looking at the content of the music. Jeremy Pickens, MIR-list, May 8th 2011 77 Music Information Retrieval Classification all in 4/4 ! Merengue Rumba Tango BossaNova March/Anthem Picture from www.mondolatino.it Picture from www.ritzenhoff.de Picture from www.accomodationbsas.co.ar Picture from www.armygermany.com 78 Picture from www.danceuniverse.co.kr E. Chew, A. Volk, and C.Y Lee, Dance Music Classification Using Inner Metric Analysis, 2005 Music Information Retrieval Complete Book of the Worlds’ Dance Rhythm Picture from www.ritzenhoff.de http://andrewjpeterswrites.com/? tag=stephanie-spinner Similarity (correlation coefficient) 80 E. Chew, A. Volk, and C.Y Lee, Dance Music Classification Using Inner Metric Analysis, 2005 Music Information Retrieval Template Rhythms: Complete Book of the Worlds’ Dance Rhythm Corpus: 21 Marches, 17 Merengues, 25 Bossa Nova, 17 Rumbas, 22 Tangos 81 Music Information Retrieval Metric Weight Metric Weight 82 Spectral Weight Spectral Weight Music Information Retrieval 83 Music Information Retrieval Classification correct genre: 80% Merengue Rumba Tango BossaNova March/Anthem Picture from www.mondolatino.it Picture from www.ritzenhoff.de Picture from www.accomodationbsas.co.ar Picture from www.armygermany.com 84from www.danceuniverse.co.kr Picture E. Chew, A. Volk, and C.Y Lee, Dance Music Classification Using Inner Metric Analysis, 2005 Ragtime 90 Ragtime “A discussion on what constitutes ragtime could fill several web pages …” 91 What’s the problem? ! historic sources vs. study of the musical material itself ! not just the three main composers (Joplin, Scott, Lamb) ! Edward Berlin: we need more balanced view on ragtime Computational corpus-based study is the next step 107 Patterns in the RAG-collection ! 11.000 MIDI files ! contains Ragtimes from 1890s to 2012 ! Ragtime Compendium: ! 15.000 identified ragtime compositions ! out of these 5600 pieces have MIDI files. ! probably the most complete listing that exists, organized by the Internet community of ragtime lovers 108 Some numbers from the compendium… ! 128 websites for Ragtime MIDI’s ! 101 cited sources of data (Libraries, societies, individuals) ! 38 contributors for the compendium creation 109 ragtime Syncopation 24 Œ œœ œ ! 1-2-1 a) 2 b) 4 2 c) 4 7 2 b) 4 ! I"I"O"I""."."."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." untied 2 c) 4 2 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 .".".".""I"I"O"I"".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 e) 4 d) 110 ! a) Œ œœ œ ‰ œœ œœ‰ 2 e) 4 tied .".".".""."."I"I""O"I".".""."."."." .".".".""."."I"I""O"I".".""."."."." 11 ragtime Syncopation 24 Œ œœ œ ! 1-2-1 a) 2 b) 4 2 c) 4 7 2 b) 4 ! I"I"O"I""."."."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." untied 2 c) 4 2 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 .".".".""I"I"O"I"".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 e) 4 d) 111 ! a) Œ œœ œ ‰ œœ œœ‰ 2 e) 4 tied .".".".""."."I"I""O"I".".""."."."." .".".".""."."I"I""O"I".".""."."."." 11 ragtime Syncopation 24 Œ œœ œ ! 1-2-1 a) 2 b) 4 2 c) 4 7 2 b) 4 ! I"I"O"I""."."."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." untied 2 c) 4 2 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 .".".".""I"I"O"I"".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 e) 4 d) 112 ! a) Œ œœ œ ‰ œœ œœ‰ 2 e) 4 tied .".".".""."."I"I""O"I".".""."."."." .".".".""."."I"I""O"I".".""."."."." 11 ragtime Syncopation 24 Œ œœ œ ! 1-2-1 a) 2 b) 4 2 c) 4 7 2 b) 4 ! I"I"O"I""."."."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." untied 2 c) 4 2 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 .".".".""I"I"O"I"".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 e) 4 d) 113 ! a) Œ œœ œ ‰ œœ œœ‰ 2 e) 4 tied .".".".""."."I"I""O"I".".""."."."." .".".".""."."I"I""O"I".".""."."."." 11 ragtime Syncopation 24 Œ œœ œ ! 1-2-1 a) 2 b) 4 2 c) 4 7 2 b) 4 ! I"I"O"I""."."."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." untied 2 c) 4 2 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 .".".".""I"I"O"I"".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 e) 4 d) 114 ! a) Œ œœ œ ‰ œœ œœ‰ 2 e) 4 tied .".".".""."."I"I""O"I".".""."."."." .".".".""."."I"I""O"I".".""."."."." 11 Musicological hypothesis a) a) a) I"I"O"I""."."."."".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 I"I"O"I""."."."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 c) 2 b) 42 b) 4 2 c) 42 c) 4 2 d) 42 d) 4 2 e) 42 e) 4 2 4 I"I"O"I""."."."."".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." .".".".""."."I"I""O"I".".""."."."." e) .".".".""I"I"O"I"".".".".""."."."." a) 2 4 .".".".""."."I"I""O"I".".""."."."." 2 .".".".""."."I"I""O"I".".""."."."." .".".".""I"I"O"I"".".".".""."."."." c) 4 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." b) 42 2 e) 4 d) 1890 1900 early Ragtime era 115 2 b) 4 1910 ."."I"I""O"I"."."".".".".""."."."." 1920 late Ragtime era … .".".".""."."I"I""O"I".".""."."."." Result RAG-collection: a) a) a) I"I"O"I""."."."."".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." 42 2 I"I"O"I""."."."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." d) 4 c) 2 b) 42 b) 4 2 c) 42 c) 4 2 d) 42 d) 4 2 e) 42 e) 4 2 4 I"I"O"I""."."."."".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." .".".".""."."I"I""O"I".".""."."."." e) .".".".""I"I"O"I"".".".".""."."."." a) 2 4 .".".".""."."I"I""O"I".".""."."."." 2 .".".".""."."I"I""O"I".".""."."."." .".".".""I"I"O"I"".".".".""."."."." c) 4 ."."I"I""O"I"."."".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." I"I"O"I""."."."."".".".".""."."."." b) 42 2 e) 4 d) 1890 1900 early Ragtime era 116 2 b) 4 1910 ."."I"I""O"I"."."".".".".""."."."." 1920 late Ragtime era … .".".".""."."I"I""O"I".".""."."."." Result RAG-collection: a) proportion of syncopation patterns per bar a) 1890 1900 early Ragtime era 117 2 42 2 d) 4 e) 1910 1920 late Ragtime era I"I"O"I"".".".".""."."."."" .".".".""I"I"O"I""."."."."" 42 2 ."."I"I""O"I".".""."."."."" d) 4I"I"O"I""."."."."".".".".""."."."." c) b) 4 c) 2 b) 4 e) 2 .".".".""."."I"I""O"I"."."" 4.".".".""I"I"O"I"".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." 42 .".".".""."."I"I""O"I".".""."."."." … Result RAG-collection: a) a) proportion of syncopation patterns per bar 1890 1900 early Ragtime era 118 2 42 2 d) 4 e) 1910 1920 late Ragtime era I"I"O"I"".".".".""."."."."" .".".".""I"I"O"I""."."."."" 42 2 ."."I"I""O"I".".""."."."."" d) 4I"I"O"I""."."."."".".".".""."."."." c) b) 4 c) 2 b) 4 e) 2 .".".".""."."I"I""O"I"."."" 4.".".".""I"I"O"I"".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." 42 .".".".""."."I"I""O"I".".""."."."." … Result RAG-collection: ? 1890 1900 1910 Ragtime era 119 1920 … modern times Result RAG-collection: a) proportion of syncopation patterns per bar 1890 1900 I"I"O"I""."."."."".".".".""."."." 42 2 d) 4 c) e) 1910 Ragtime era 120 2 b) 4 1920 .".".".""I"I"O"I"".".".".""."."." ."."I"I""O"I"."."".".".".""."."." 42 .".".".""."."I"I""O"I".".""."."." … modern times Result RAG-collection: proportion of syncopation patterns per bar a) 1890 1900 * e) Ragtime era 121 1920 I"I"O"I""."."."."".".".".""."."." 42 2 d) 4 c) * 1910 2 b) 4 .".".".""I"I"O"I"".".".".""."."." ."."I"I""O"I"."."".".".".""."."." 42 .".".".""."."I"I""O"I".".""."."." … modern times Result RAG-collection a) proportion of syncopation patterns per bar * 1890 1900 e) 1910 Ragtime era 122 1920 I"I"O"I""."."."."".".".".""."."." 42 2 d) 4 c) * 2 b) 4 .".".".""I"I"O"I"".".".".""."."." ."."I"I""O"I"."."".".".".""."."." 42 .".".".""."."I"I""O"I".".""."."." … modern times Metric weight patterns in ragtime Metric Feature 123 Metric weight patterns in ragtime My Best Girl No untied patterns, tied patterns 124 Metric weight patterns in ragtime a) 2 b) 4 42 2 d) 4 c) e) 42 I"I"O"I""."."."."".".".".""."."."." .".".".""I"I"O"I"".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." .".".".""."."I"I""O"I".".""."."."." You can’t expect kisses from me tied pattern 1 125 Metric weight patterns in ragtime a) 2 b) 4 42 2 d) 4 c) e) 42 A Catchy Thing 126 high number I"I"O"I""."."."."".".".".""."."."." lower number .".".".""I"I"O"I"".".".".""."."."." ."."I"I""O"I"."."".".".".""."."."." .".".".""."."I"I""O"I".".""."."."." And further ! Automatic meter finding ! W.B. de Haas & A.Volk: Meter detection in symbolic music using Inner Metric Analysis, just accepted to ISMIR 2016 ! Application to Audio 210 And further ! Automatic meter finding ! W.B. de Haas & A.Volk: Meter detection in symbolic music of the piece of length at least `, then the metric weight of an onset, o 2 On, is defined as follows: { (1) SW`,p (t) = X p km . 2 4 In this paper we have use the standard parameters p = 2, and ` = 2. Hence, we consider all local meters that exist in a piece. A more elaborate explanation of the IMA including examples can be found in [28]. 211 3. IMA BASED METER DETECTION In this section we will outline the P RIMA model in a bottom-up fashion. We start with the input MIDI data, and 0 4 (3) 3 6 { (2) (2) {m2M (`):t2ext(m)} 3 4 NSW The spectral weight is calculated in a similar fashion, but for the spectral weight each local meter is extended throughout the entire piece. The idea behind this is that the metrical structure induced by the onsets stretches beyond the region in which onsets occurs. The extension of a the local meter m is defined as ext(ms,d,k ) = {s + id, 8i} where i is an integer number. For all discrete metrical positions t, regardless whether it contains an onset or not, the spectral weight is defined as follows: (1) NSW bin 3 {m2M (`):o2m} { p km . NSW X NSW bin 0 W`,p (o) = IMA using Inner Metric Analysis, ISMIR 2016 NSW bin 4 NSW bin 6 Figure 1. The construction of NSW profiles for a piece in 2 4 : (1) displays IMA , (2) displays the NSW profiles derived from IMA for a 24 and a 34 meter, and (3) shows how two bins are selected from each profile and used to estimate the probability of that meter. The ellipse represents the Gaussian distribution fitted to selected bins of the NSW profiles in the training phase. Note that the 34 NSW profile does not 3 Automatic meter detection at least `, then the metric weight of defined as follows: = X p km . { use the standard parameters p = 2, consider all local meters that exist in rate explanation of the IMA including d in [28]. ED METER DETECTION 3 4 0 4 (3) 3 6 { (2) (2) {m2M (`):t2ext(m)} 212 2 4 NSW ht is calculated in a similar fashion, weight each local meter is extended piece. The idea behind this is that the uced by the onsets stretches beyond nsets occurs. The extension of a the ned as ext(ms,d,k ) = {s + id, 8i} number. For all discrete metrical poshether it contains an onset or not, the ned as follows: (1) NSW bin 3 {m2M (`):o2m} (1) { p km . NSW X NSW bin 0 )= IMA Conditional probability a certain meter, given a set of onsets NSW bin 4 NSW bin 6 Figure 1. The construction of NSW profiles for a piece in 2 4 : (1) displays IMA , (2) displays the NSW profiles derived from IMA for a 24 and a 34 meter, and (3) shows how two bins are selected from each profile and used to estimate the probability of that meter. The ellipse represents the Gaussian distribution fitted to selected bins of the NSW profiles Try out yourself? ! Java tool: JMetro ! Visualizes metric weights ! Displays all local meters ! Tutorial ! Send email to me! 213 Literature n n n n n n 214 Elaine Chew, Anja Volk (Fleischer), and Chia-Ying Lee, Dance Music Classification Using Inner Metric Analysis: a computational approach and case study using 101 Latin American Dances and National Anthems. in The Next Wave in Computing, Optimization and Decision Technologies: Proceedings of the 9th INFORMS Computer Society Conference. Bruce Golden, S. Raghavan, Edward Wasil (eds.) Kluwer, 2005. Haral Krebs: Fantasy Pieces: Metrical Dissonance in the Music of Robert Schumann, Oxford University Press, 1999. Fred Lerdahl & Ray Jackendoff: Generative Theory of Tonal Music, MIT Press, 1983. Anja Volk (2008), The Study of Syncopation using Inner Metric Analysis: Linking Theoretical and Experimental Analysis of Metre in Music, In: Journal of New Music Research, Vol. 37:4, p. 259-273. Anja Volk (2008), Persistence and Change: Local and Global Components of Metre Induction using Inner Metric Analysis, In: Journal of Mathematics and Computation in Music, Vol. 2:2, p. 99-115. Maury Yeston: The Stratification of Musical Rhythm, Yale University Press,1976.