Holographic Superfluid at Zero
Transcription
Holographic Superfluid at Zero
ZeroTemperatureHolographicSuperfluid ChaoNiu (GIST) basedonarXiv:1601.00257 1602.03824with: Minyong Guo,Shanquan Lan,YuTianandHongbao Zhang 23Feb2016@KIAS Outline • 1.Introductionandmotivation • 2.Holographicmodel • 3.LinearResponseTheory • 4.Non-linearEvolution • 5.SummaryandOutlook 2 Motivation Quantumcriticalbehaviorofultracoldcesiumatomsinanopticallattice Science335,1070(2012) Introduction:Holographicmodel Thefive-dimensionalEinstein-Maxwell-scalartheory Vacuumphase Superfluidphase T.Nishioka,S.Ryu,andT.Takayanagi,JHEP1003,131(2010) Introduction:Holographicmodel Conductivity Vacuumphase Superfluidphase Ourgoalistofillsomegapsintheprevious investigationsoftheaboveholographicmodel. T.Nishioka,S.Ryu,andT.Takayanagi,JHEP1003,131(2010) Holographicmodel Action AdSsolitonasthebulkgeometry • imposetheperiodicityontotheχcoordinate • Theinverseofthisperiodicityisusuallyinterpreted astheconfiningscaleforthedualboundary theory. Equationsofmotion Holographicmodel AsymptoticalbehaviorforthebulkfieldsneartheAdSboundary withtheaxialgaugeand. holographicrenormalizedaction Bytheholographicdictionary conservedparticlecurrent condensateorderparameter BackgroundSolution Theequationsofmotionforthestaticsolution Vacuumphase Superfluidphase ParticledensityandFreeenergy LinearResponseTheory Perturbationbulkfields Perturbationequations LinearResponseTheory Notethatthegaugetransformation generatesaspurioussolutiontotheaboveperturbationequations Sucharedundancycanberemovedbyrequiring attheAdSboundary. : Standardquantization Alternativequantization Dirichletbc Neumannbc OpticalConductivity decouplesfromtheother perturbationbulkfields WithattheAdSboundary,theopticalconductivity canbeextractedbyholographyas Vacuumphase OpticalConductivity Superfluidphase Superfluiddensity Analyticunderstanding:aboosttrick Superfluiddensity Boost AdSsolitonasthebulkgeometry Then NormalModes:FrequencyDomainAnalysis Perturbationbulkfields Perturbationequations NormalModes:FrequencyDomainAnalysis Linearperturbationequations and the boundary conditions Normalmodes whichcanbefurtheridentifiedbythedensityplot NormalModes:TimeDomainAnalysis Equationsofmotion:Hamiltonformalism NormalModes:TimeDomainAnalysis Perturbationequations: NormalModes:TimeDomainAnalysis Runge-Kuttamethod • Thenormalmodescanbeidentifiedbythepeaksinthe Fouriertransformation oftheevolvingdata. • Thelocationsarethesameasthosebythefrequency domain analysiswithournumericalaccuracy. SoundSpeed DispersionrelationforthegaplessGoldstone SoundSpeed Standardquantization Alternativequantization A.Yarom,JHEP0907,070(2009), Phys.Rev.D80,106002(2009) Non-linearEvolution:Non-thermalization • Toquenchanequilibriumstateandseewhathappens • Backreactionofmatterfields JHEP02,120(2014) Phys.Rev.D90,086004(2014). JHEP12,116(2015) • Intheprobelimit X.Gao,A.M.Garca-Garca,H.B.Zeng, and H.Q.Zhang, JHEP06,019(2014) • Tostartfromanon-equilibriumstateandseehowitevolves • Hamiltonformalism • Runge-Kuttamethod Non-linearEvolution:Non-thermalization Equationsofmotion:Hamiltonformalism Non-linearEvolution:Non-thermalization • Non-thermalization Summary • Wemakeuseofthelinearresponsetheorytoworkoutthe superfluiddensityandsoundspeed. • Weprovideananalyticprooffortheequalitybetweenthe superfluiddensityandparticledensity bytheboosttrick. • Theresultingsoundspeedisfoundtoincreasewiththechemical potentialandsaturatetothevaluepredictedbyconformalfield theoryforbothquantizations. • Weperformafullynon-lineardynamicalevolutionforourzero temperatureholographicsuperfluidtodemonstratethegeneric non-thermalization. Outlook • Zero Temperature Holographic Periodic Superfluid Thanksforyourattention!