Talk Pham - BCAM - Basque Center for Applied
Transcription
Talk Pham - BCAM - Basque Center for Applied
PHYSICAL CHARACTERISATION OF THE GENERALISED GRAY BROWNIAN MOTION Pham Minh Tuan Belgorod National Research University, Russia in collaboration with Daniel Molina-Garcı́a and Gianni Pagnini Ikebasque and Basque Center for Applied Mathematics Bilbao 2015 Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Outline 1 Motivation 2 Definition of the ggBm with stationary increments 3 Definition of the ggBm with nonstationary increments 4 Physical characteristics of ggBm a. Ensemble average mean square displacement b. Ergodicity breaking parameter c. Time average mean square displacement 5 Conclusion Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Motivation Anomalous diffusion is observed in various physical systems like: photonics, plasma physics, biological systems, etc. 1 Normal diffusion: ⟨X 2 (t)⟩ = Ct 2 Anomalous diffusion: ⟨X 2 (t)⟩ = Ct 𝛾 𝛾 ̸= 1 In order to provide a stochastic process that well describes an experiment exhibiting anomalous diffusion, here we present an in-depth study of the so-called ”generalised grey Brownian process with nonstationary increments”. Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Definition of ggBm with stationary increments Mura A. Pagnini G. 2008 Jour. of Phys. A: Math. & Theor. √︀ X𝛽,H (t) = Λ𝛽 XH (t) where Λ𝛽 is a positive random variable distributed according to the one-side M-Wright/Mainardi function with 𝛽 ∈ (0, 1] M𝛽 (x) = ∞ ∑︁ (−1)k k=0 k! xk , Γ(1 − 𝛽(k + 1)) x ≥0 and XH (t) is the fBm with Hurst index H ∈ (0, 1) and 2 (t)⟩ = 2D t 2H ⟨X𝛽,H H [︂∫︁ t 1 )︀ XH (t) := (︀ (t − 𝜏 )H−1/2 dB(𝜏 )+ Γ H + 12 0 ∫︁ 0 {︁ }︁ + (t − 𝜏 )H−1/2 − (−𝜏 )H−1/2 dB(𝜏 ) −∞ ⇒ the process has stationary increments Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR PDF evolution equation Pagnini G. 2012 Fractional Calculus and Applied Analysis The one-point one-time PDF of the X𝛽,H (t) is (︂ )︂ |x| 1 . P(x, t) = H M𝛽/2 2t tH This PDF obeys the following evolution equation 2 𝜕P 2 𝛽−1,1−𝛽 𝜕 P = t 2H−1 D2H/𝛽 , 𝜕t 𝛽 𝜕x 2 where D𝜂𝜎,𝜇 is the Erdélyi-Kober fractional derivative defined as )︂ n (︂ ∏︁ )︀ 1 d (︀ 𝜎+𝜇,𝜂−𝜇 𝜎,𝜇 D𝜂 𝜙(t) = 𝜎+𝜇+ t I𝜂 𝜙(t) 𝜂 dt j=1 where I𝜂𝜎,𝜇 is the Erdélyi-Kober fractional integral operator ∫︁ t −𝜂(𝜎+𝜇) t 𝜎𝜂 𝜂 𝜎,𝜇 𝜏 (t − 𝜏 𝜂 )𝜇−1 𝜙(𝜏 )d(𝜏 𝜂 ) I𝜂 𝜙(t) = Γ(𝜇) 0 Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Definition of ggBm with nonstationary increments Molina, Pham, Pagnini, 2015 Proceedings of the NOLASC 15 X𝛼,𝛽,H (t) = √︀ t 𝛼 Λ𝛽 XH (t) , 𝛼 ∈ [−1, ∞) where Λ𝛽 is a positive random variable distributed according to the one-side M-Wright/Mainardi function with 𝛽 ∈ (0, 1] M𝛽 (x) = ∞ ∑︁ (−1)k k=0 k! xk , Γ(1 − 𝛽(k + 1)) x ≥0 and XH (t) is the fBm with Hurst index H ∈ (0, 1) and 2 (t)⟩ = 2D t 2H . ⟨X𝛽,H H ⇒ this process has nonstationary increments Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Trajectories and PDF of ggBm with nonstationary increments H = 0.3 , 𝛽 = 0.3, 𝛼 = 0.3 150 histogram (N=10000) 100 x(t) 50 0 -50 -100 -150 0 100 200 300 400 500 600 700 800 900 1000 0 t 0.005 0.01 0.015 0.02 0.025 P(x, t=1000) Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Trajectories and PDF of ggBm with nonstationary increments H = 0.3 , 𝛽 = 0.3, 𝛼 = −0.3 20 histogram (N=10000) 15 10 x(t) 5 0 -5 -10 -15 -20 0 100 200 300 400 500 600 700 800 900 1000 0 t 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 P(x, t=1000) Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Trajectories and PDF of ggBm with nonstationary increments H = 0.3 , 𝛽 = 0.3, 𝛼 = 0 histogram (N=10000) 40 f2H,β(x,t=1000) x(t) 20 0 -20 -40 0 100 200 300 400 500 600 700 800 900 1000 0 t 0.01 0.02 0.03 0.04 0.05 0.06 P(x, t=1000) Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Physical characteristics From physical point of view, the second moment of the process X𝛼,𝛽,H (t) is one of the most crucial observables EAMSD (Ensemble Average Mean Square Displacement) ⟨︀ 2 ⟩︀ X𝛼,𝛽,H (t) = 2DH t 2H+𝛼 , Γ(1 + 𝛽) 𝛼 ∈ [−1; ∞) Remark: In comparison with the well-known fBm, the power law of time is perturbed by 𝛼. Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Ergodicity Breaking parameter A parameter characterising the ergodicity of the studied process is the EB (ergodicity breaking parameter). Definition )︁2 ⟩ 𝛿X2 (ta , T , Δ) ⟨ ⟩2 − 1 𝛿X2 (ta , T , Δ) ⟨(︁ EB = lim T →∞ where T , Δ, ta stand for measurement time, lag time and aging time, respectively. Remark: Since this limit does not depend on the value of ta , so to simplify notations, we consider 𝛿X2 (T , Δ) ≡ 𝛿X2 (ta , T , Δ). Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Temporal-Average MSD The denominator of EB TAMSD ∫︁ 𝛿X2 (ta , T , Δ) = ⟨ ⟩ 𝛿X2 (ta , T , Δ) ≃ ta +T −Δ [︁ ]︁2 X𝛼,𝛽,H (𝜏 + Δ) − X𝛼,𝛽,H (𝜏 ) d𝜏 ta Δ≪ta ≪T T −Δ ⎧ T𝛼 ⎪ ⎪ K ⎪ ⎨ 1 + 𝛼 , −1 < 𝛼 < ∞ ⎪ ⎪ ⎪ ⎩ K lnT T ,K = 2DH Δ2H Γ(1 + 𝛽) , 𝛼 = −1 Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Comparison with numerical data H = 0.3, 𝛽 = 0.3, 𝛼 = −0.3 〈δ2 (T,∆) 〉 10 1 ∆=1 ∆=10 0.1 0 10 ∆=20 ∆=30 ∆=40 ∆=50 1 10 10 2 Tα 3 10 4 10 T Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Calculation for the numerator of the EB From the definition of the TAMSD, we have ∫︁ ⟨(︁ )︁2 ⟩ = 𝛿X2 (T , Δ) T −Δ ∫︁ d𝜏1 0 T −Δ d𝜏2 G (𝜏1 , 𝜏2 ) 0 (T − Δ)2 where ⟨[︁ ]︁2 [︁ ]︁2 ⟩ G (𝜏1 , 𝜏2 ) = X (𝜏1 + Δ) − X (𝜏1 ) X (𝜏2 + Δ) − X (𝜏2 ) = G0 + G1 + G2 + G3 Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Expressions for G0 and G1 ⟨︀ ⟩︀ G0 = 4DH2 Δ4H Λ2𝛽 [𝜏1 𝜏2 (𝜏1 + Δ)(𝜏2 + Δ)]𝛼/2 ⟨︀ ⟩︀ {︁ 𝛼/2 + 2DH2 Λ2𝛽 |𝜏1 + Δ − 𝜏2 |2H 𝜏2 (𝜏1 + Δ)𝛼/2 𝛼/2 + |𝜏2 + Δ − 𝜏1 |2H 𝜏1 (𝜏2 + Δ)𝛼/2 − |𝜏1 − 𝜏2 |2H [︁ ]︁ }︁2 × (𝜏1 𝜏2 )𝛼/2 + (𝜏1 + Δ)𝛼/2 (𝜏2 + Δ)𝛼/2 𝛼/2 G1 = Δ2H 𝜏2 𝛼/2 +Δ2H 𝜏1 (𝜏1 [︁ ]︁[︁ ]︁ 𝛼/2 2H+𝛼/2 −(𝜏1 +Δ)2H+𝛼/2 𝜏1 −(𝜏1 +Δ)𝛼/2 + (𝜏2 +Δ)𝛼/2 𝜏1 + Δ) 𝛼/2 [︁ ]︁[︁ ]︁ 2H+𝛼/2 𝛼/2 2H+𝛼/2 𝛼/2 − (𝜏2 + Δ) 𝜏2 𝜏2 − (𝜏2 + Δ) Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Expressions for G2 and G3 {︁[︁ 2H+ 𝛼 ]︁[︁ 𝛼 ]︁ 𝛼 𝛼 2 G2 = 𝜏1 − (𝜏1 + Δ)2H+ 2 𝜏22 − (𝜏2 + Δ) 2 + [︁ 2H+ 𝛼 ]︁[︁ 𝛼 ]︁ 𝛼 𝛼 2 + 𝜏2 − (𝜏2 + Δ)2H+ 2 𝜏12 − (𝜏1 + Δ) 2 × {︁ (︁ )︁ 𝛼 (︁ )︁ 𝛼 2 2 2H 2H × |𝜏1 + Δ − 𝜏2 | + |𝜏2 + Δ − 𝜏1 | 𝜏2 (𝜏1 + Δ) 𝜏1 (𝜏2 + Δ) ]︁}︁ [︁ 𝛼 𝛼 𝛼 −|𝜏1 − 𝜏2 |2H (𝜏1 𝜏2 ) 2 + (𝜏1 + Δ) 2 (𝜏2 + Δ) 2 [︁ ]︁ [︁ ]︁ 2H+𝛼/2 2 𝛼/2 2 G3 = (𝜏1 + Δ)2H+𝛼/2 − 𝜏1 (𝜏2 + Δ)𝛼/2 − 𝜏2 [︁ ]︁ [︁ ]︁ 2H+𝛼/2 2 𝛼/2 2 + (𝜏2 + Δ)2H+𝛼/2 − 𝜏2 (𝜏1 + Δ)𝛼/2 − 𝜏1 [︁ ]︁[︁ ]︁ 2H+𝛼/2 𝛼/2 + 4 𝜏1 − (𝜏1 + Δ)2H+𝛼/2 𝜏1 − (𝜏1 + Δ)𝛼/2 [︁ ]︁[︁ ]︁ 2H+𝛼/2 𝛼/2 × 𝜏2 − (𝜏2 + Δ)2H+𝛼/2 𝜏2 − (𝜏2 + Δ)𝛼/2 Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Approximation of G (𝜏1 , 𝜏2 ) It can be shown that G0 ∼ T 4H+2𝛼 (Δ/𝜏 )4H G1 , G2 ∼ T 4H+2𝛼 (Δ/𝜏 )2H+2 and G3 ∼ T 4H+2𝛼 (Δ/𝜏 )4 . This means that, due to 4H < 2 + 2H < 4, the following inequalities are met G0 ≫ G1 , G2 ≫ G3 . Using the approximation Δ ≪ 𝜏1 , 𝜏2 , we obtain [︁ ⟨︀ 2 ⟩︀ 𝛼 𝛼 {︁ 2 4H G (𝜏1 , 𝜏2 ) ≈ Λ𝛽 𝜏1 𝜏2 4DH Δ + 2DH2 |𝜏1 + Δ − 𝜏2 |2H + Δ≪𝜏1 ,𝜏2 +|𝜏2 + Δ − 𝜏1 |2H − 2|𝜏1 − 𝜏2 |2H ]︁2 }︁ Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Final result Now, EB is given by EB = lim T →∞ ⟨Λ2𝛽 ⟩ ⟨Λ𝛽 ⟩2 [︂ ]︂ (1 + 𝛼)2 Ψ −1 1+ 2T 2𝛼+2 Δ4H Here, the integral Ψ is defined as ∫︁ T −Δ ∫︁ T −Δ {︁ Ψ= d𝜏1 d𝜏2 𝜏1𝛼 𝜏2𝛼 |𝜏1 − 𝜏2 + Δ|2H + 0 0 + |𝜏2 − 𝜏1 + Δ|2H − 2|𝜏1 − 𝜏2 |2H }︁2 Depending on the value of H, ⎧ 4H+1 2𝛼+1 T , 0 < H < 43 , ⎨ Δ Ψ∼ ⎩ 4 4H+2𝛼−2 3 Δ T , 4 < H < 1. Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Final result EB depends solely on 𝛽 EB = ⟨Λ2𝛽 ⟩ ⟨Λ𝛽 ⟩2 −1= 𝛽Γ2 (𝛽) −1 Γ(2𝛽) We have presented here the analysis of the Ergodicity breaking parameter of the defined ”nonstationary” ggBm. Our finding is that this parameter depends only on 𝛽 in the same way like the standard ggBm. Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Comparison with numerical data 10 EB (T,∆) Vn(2)(t) 2 n=9 n=8 n=7 n=6 5·10 2 4·10 3·102 2·102 1·102 0 0 2·103 4·103 t 6·103 1 ∆=1 ∆=10 101 ∆=20 ∆=30 102 ∆=40 ∆=50 103 104 T [H = 0.3, 𝛽 = 0.3, 𝛼 = −0.3] Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Conclusion 1 The variance of the process X𝛼,𝛽,H (t) is mainly governed by H and affected by 𝛼 2 The process is non-ergodic and 𝛽 is the only parameter that controls the ergodic/non-ergodic transition. This mean that in this aspect, there is no difference from ggBm with stationary and nonstationary increments. 3 𝛼 is the only parameter that controls aging, driving its slope according to its sign. Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR Thank you for your attention! Pham Minh Tuan Belgorod National Research University, Russia inPHYSICAL collaboration CHARACTERISATION with Daniel Molina-Garcı́a OF THE and GENERALISED Gianni Pagnini Ikeb GR